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Before we can assess and interpret how developmental changes in human brain structure relate to cognition, affect, and motivation, and
how these processes are perturbed in clinical or at-risk populations, we must first precisely understand typical brain development and
how changes in different structural components relate to each other. We conducted a multisample magnetic resonance imaging study to
investigate the development of cortical volume, surface area, and thickness, as well as their inter-relationships, from late childhood to
early adulthood (7–29 years) using four separate longitudinal samples including 388 participants and 854 total scans. These independent
datasets were processed and quality-controlled using the same methods, but analyzed separately to study the replicability of the results
across sample and image-acquisition characteristics. The results consistently showed widespread and regionally variable nonlinear
decreases in cortical volume and thickness and comparably smaller steady decreases in surface area. Further, the dominant contributor
to cortical volume reductions during adolescence was thinning. Finally, complex regional and topological patterns of associations
between changes in surface area and thickness were observed. Positive relationships were seen in sulcal regions in prefrontal and
temporal cortices, while negative relationships were seen mainly in gyral regions in more posterior cortices. Collectively, these results
help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and
provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related.
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Significance Statement

Different measures of brain anatomy develop differently across adolescence. Their precise trajectories and how they relate to each
other throughout development are important to know if we are to fully understand both typical development and disorders
involving aberrant brain development. However, our understanding of such trajectories and relationships is still incomplete. To
provide accurate characterizations of how different measures of cortical structure develop, we performed an MRI investigation
across four independent datasets. The most profound anatomical change in the cortex during adolescence was thinning, with the
largest decreases observed in the parietal lobe. There were complex regional patterns of associations between changes in surface
area and thickness, with positive relationships seen in sulcal regions in prefrontal and temporal cortices, and negative relation-
ships seen mainly in gyral regions in more posterior cortices.
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Introduction
Insight into postnatal human brain development has been greatly
enhanced over the last two decades by the use of imaging meth-
ods, particularly magnetic resonance imaging (MRI; Jernigan et
al., 2011; Blakemore, 2012; Giedd et al., 2015). There are, how-
ever, still fundamental disagreements across available studies re-
garding the developmental patterns and precise trajectories for
cortical volume and its distinct components, surface area and
thickness (Mills and Tamnes, 2014). To try to resolve the incon-
sistencies and provide clues about the processes driving the
changes in the different dimensions of the cerebral cortex from
childhood to adulthood, we investigated the development of cor-
tical structure concurrently in four separate longitudinal sam-
ples, and directly assessed how changes in different cortical
measures are inter-related.

Previous results are particularly contradictory with regard to
the development of cortical thickness, with some studies report-
ing increases until late childhood, while others finding continu-
ous thinning from early or midchildhood (Walhovd et al., 2016).
Inconsistencies across studies of development of cortical struc-
ture may have resulted from varying sample characteristics, im-
age acquisition, image processing, including quality-control
(QC) procedures and software used, and/or statistical analyses
and curve fitting (Fjell et al., 2010; Sullivan et al., 2011; Aubert-
Broche et al., 2013; Ducharme et al., 2016; Mills et al., 2016). One
approach to try to clarify these inconsistencies is to conduct mul-
tisample studies following current standards and recommenda-
tions for processing and analysis. Here, we build upon a recent
such study in which we reported replicable models for gross
structural brain development between childhood and adulthood
(Mills et al., 2016).

Cortical volume is determined by surface area and thickness,
and these components are influenced by different evolutionary
(Geschwind and Rakic, 2013), genetic (Chen et al., 2013; Kremen

et al., 2013), and cellular (Chenn and Walsh, 2002) processes, and
show unique changes across different stages of life (Brown et al.,
2012; Storsve et al., 2014; Wierenga et al., 2014; Lyall et al., 2015;
Amlien et al., 2016). Knowledge about the relative contributions
of surface area and thickness to developmental cortical volume
changes, and the relationship between changes in surface area
and thickness during adolescence, may provide important, al-
though indirect, clues for understanding the biological processes
underlying development of cortical structure. In prenatal and
perinatal life, the primary processes driving surface-area expan-
sion and thickening are cortical column generation and genesis of
neurons within columns, respectively (Rakic, 1988; Bhardwaj et
al., 2006). The processes underlying changes in cortical structure
throughout childhood and adolescence are less well understood,
although we know that the protracted human brain development
involves increasing caliber and myelination of axons (Yakovlev
and Lecours, 1967; Benes, 1989; Benes et al., 1994), and that early
synaptogenesis is followed by pruning (Huttenlocher and Dab-
holkar, 1997; Petanjek et al., 2011).

To increase our confidence in current interpretations about
how the cerebral cortex grows and to gain knowledge that might
help us understand the processes driving its development, the
present study aimed to (1) characterize the regional developmen-
tal trajectories of cortical volume, surface area, and thickness
across adolescence in four separate longitudinal samples and (2)
directly test how changes in the distinct cortical components are
inter-related. Each independent dataset was analyzed separately
to examine the consistency and replicability of the results across
sample and image-acquisition specifics.

Materials and Methods
Participants. This study used four separate datasets: Child Psychiatry
Branch (CPB), Pittsburgh (PIT), Neurocognitive Development (NCD),
and Braintime (BT). Each of these included data about typically devel-
oping participants collected at four separate sites (National Institutes of
Health, University of Pittsburgh, University of Oslo, Leiden University)
in three countries (United States, Norway, Netherlands). All datasets
were collected using accelerated longitudinal designs. Each separate
study was approved by a local review board. For the CPB dataset, partic-
ipants and scans were selected from a pool of �1000 scans for their
quality and number of time points per individual. For the PIT, NCD, and
BT datasets, respectively, 126, 111, and 299 participants were recruited
and scanned at baseline. Of these, 20, 26, and 45 dropped out at follow
up, and an additional 33, 9, and 45 were excluded based on the QC of the
MRI data (see below). The final CPB, PIT, NCD, and BT datasets in-
cluded 30, 73, 76, and 209 participants, respectively. In total, the present
study includes 388 participants (199 females) and 854 scans covering the
age range of 7–29 years old (Table 1). Details regarding participant re-
cruitment have been described previously for each sample separately
(Tamnes et al., 2013; Herting et al., 2014; Mills et al., 2014b; Braams et al.,
2015) and together (Mills et al., 2016).
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Table 1. Participant demographics and MRI acquisition parameters for each sample

CPB PIT NCD BT

N participants (females) 30 (9) 73 (41) 76 (37) 209 (112)
Age mean (SD)a 15.6 (1.7) years 13.4 (0.9) years 15.2 (3.3) years 15.7 (3.6) years
Age range 7.0 –29.9 years 10.1–16.2 years 8.2–21.9 years 8.0 –26.6 years
N scans (individual range) 138 (3– 6) 146 (2) 152 (2) 418 (2)
Scan interval mean (SD) 3.7 (2.2) years 2.2 (0.4) years 2.6 (0.2) years 2.0 (0.1) years
Scan interval range 1.1–14.0 years 1.5–3.7 years 2.4 –3.2 years 1.6 –2.5 years
Scanner GE Signa 1.5 T Siemens Allegra 3 T Siemens Avanto 1.5 T Philips Achieva 3 T
Repetition time (TR) 2400 ms 1540 ms 2400 ms 9.76 ms
Echo time (TE) 5.00 ms 3.04 ms 3.61 ms 4.59 ms
Voxel size 0.938 � 0.938 � 1.5 mm 1.0 � 1.0 � 1.0 mm 1.25 � 1.25 � 1.20 mm 0.875 � 0.875 � 1.2 mm
aMean across available time points.
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Image acquisition and processing. T1-weighted anatomical scans were
obtained at four different sites using different scanners and sequences.
Only key parameters are summarized here (Table 1), as details regarding
image acquisition at each site were described in detail previously (Mills et
al., 2016). At each site, a radiologist reviewed all scans for gross abnor-

malities. Image processing was performed with FreeSurfer 5.3 (RRID:
SCR_001847), which is documented and freely available online (http://
surfer.nmr.mgh.harvard.edu/). The technical details of the procedures
were described in detail previously (Dale et al., 1999; Fischl et al., 1999,
2002). The processing stream includes motion correction (Reuter et al.,

Figure 1. Developmental trajectories for global cortical measures. Spaghetti plots of mean cortical thickness, total cortical surface area, and total cortical volume, controlling for sex. The colored
lines represent the GAMM fitting while the lighter colored areas correspond to the 95% confidence intervals. Pink, CPB; purple, PIT; blue, NCD; green, BT.

Figure 2. Developmental trajectories for lobar cortical measures. Spaghetti plots of lobar cortical thickness, surface area, and volume, controlling for sex. The colored lines represent the GAMM
fitting while the lighter colored areas correspond to the 95% confidence intervals. Pink, CPB; Purple, PIT; blue, NCD; green, BT.
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2010), removal of nonbrain tissue using a hybrid watershed/surface-
deformation procedure (Ségonne et al., 2004), automated Talairach
transformation, nonparametric nonuniform intensity normalization
(Sled et al., 1998), tessellation of the gray–white matter boundary, auto-
mated topology correction (Fischl et al., 2001; Ségonne et al., 2007), and
surface deformation following intensity gradients to optimally place the
gray–white and gray–CSF borders at the location where the greatest shift
in intensity defines the transition to the other tissue class (Dale and
Sereno, 1993; Dale et al., 1999; Fischl and Dale, 2000). Each cortical
model was registered to a spherical atlas using individual cortical folding
patterns to match cortical geometry across participants (Dale et al.,
1999).

Images were then processed using FreeSurfer 5.3’s longitudinal stream
(Reuter et al., 2012). This process includes the creation of an unbiased
within-subject template space and image using robust, inverse consistent
registration (Reuter et al., 2010). Several processing steps, such as skull
stripping, Talairach transforms, and atlas registration, as well as spherical
surface maps and parcellations, were then initialized with common in-
formation from the within-subject template, significantly increasing re-
liability and statistical power (Reuter et al., 2012). The QC procedure was
coordinated across sites so that all images were visually inspected
post-processing by trained operators for accuracy, but no editing was
performed.

Surface maps for cortical volume, surface area (white surface), and
thickness, as well as symmetrized annual percentage change (APC; i.e.,
the linear annual rate of change with respect to the average volume/area/
thickness measure across all available time points) over all available ob-
servations for each measure, were generated and smoothed with a
Gaussian kernel of full-width at half-maximum of 15 mm. Additionally,
we computed global total cortical volume, total surface area, and
weighted mean thickness (with each label contributing to the mean ac-
cording to its area) for each time point for each subject across all labels in
the Desikan–Killiany cortical parcellation (Desikan et al., 2006), and
APC for each of the measures. Similar variables were calculated for the
frontal (including anterior cingulate), temporal (including insula), pari-
etal (including posterior and retrosplenial cingulate), and occipital lobes,
and for each label across both hemispheres.

Statistical analysis. First, spaghetti plots and longitudinal curve fitting
were performed using the Multimodal Imaging Laboratory data portal
(Bartsch et al., 2014; Vidal-Pineiro et al., 2016), which uses functions
freely available through the statistical environment R (http://www.r-
project.org/, RRID:SCR_001905). Cortical volume, surface area, and
thickness measures from each time point, adjusted for the effect of sex,
were introduced as predicted variables in generalized additive mixed
model (GAMM) analyses where the predictor was age, with k parameters
specifying the stiffness of the model curves set to five (except for tem-
poral lobe volume where four was used so the models would converge).
The main effect of sex was adjusted for through linear mixed-effect
models. GAMM can be represented as the following formula: G( y) �
X�� � � j�1

p �xj� � fj�xj� � Zb � �, where G(�) is a monotonic differ-
entiable link function, � is the vector of regression coefficients for the
fixed parameters; X * is the fixed-effects matrix; fj is the smooth function
of the covariate xj; Z is the random-effects model matrix; b is the vector of
random-effects coefficients; and � is the residual error vector (Wood,
2006). GAMM fitting was visualized over its correspondent spaghetti
plots. Estimated mean values across sex were used as display values.
GAMM provides accurate delineations of developmental trajectories, as
it avoids some of the inherent weaknesses of global polynomial models,
e.g., quadratic and cubic models, where the timing of peaks and the end
points of the trajectories may be substantially affected by irrelevant fac-
tors, such as the age range sampled (Fjell et al., 2010).

Second, as background analyses before testing for inter-relationships
between cortical volume, surface area, and thickness, mean global and
lobar APC values for each cortical measure for each sample were calcu-
lated, one-sample t tests were used to test whether the APC values were
significantly different from zero, and ANOVAs with Tukey’s HSD post
hoc comparisons were performed to test for sample differences. For each
sample, we then performed vertex-wise general linear models (GLMs) as
implemented in FreeSurfer 5.3, testing whether APCs for each of the

measures were significantly different from zero, with sex, age (mean
across time points), and their interaction as covariates.

Third, regional relationships between changes in cortical volume, sur-
face area, and thickness were initially tested for by means of partial cor-
relations between global and lobar APCs in each measure, with sex and
mean age as covariates. Then, a series of GLMs were performed in Free-
Surfer to test for vertex-wise change– change relationships among the
different measures across the cortical surface. APC maps for each mea-
sure were entered as per-vertex regressors of interest to the other mea-
sures, with sex, mean age, and their interaction as covariates.

All regional (global and lobar) results were Bonferroni-corrected by a
factor of five (reflecting the number of regions), corresponding to a
corrected � of p � 0.01. For all vertex-wise analyses, the data were tested
against an empirical null distribution of maximum cluster size across
10,000 iterations using Z Monte Carlo simulations as implemented in
FreeSurfer (Hayasaka and Nichols, 2003; Hagler et al., 2006) synthesized
with a cluster-forming threshold of p � 0.05 (two-sided), yielding clus-
ters fully corrected for multiple comparisons across the surfaces. Cluster-
wise corrected p � 0.05 was regarded to be significant.

Results
Delineating cortical developmental trajectories
To accurately characterize longitudinal developmental trajecto-
ries, global (Fig. 1) and lobar (Fig. 2) cortical volume, surface
area, and thickness measures were visualized as spaghetti plots
fitted with GAMM. Total cortical volume decreased across the
whole age range in all four samples, with slightly accelerated de-
creases in the adolescent period compared with late childhood
and early adulthood. Total cortical surface area showed nearly
linear decreases in all four samples, but appeared overall greater
for the two European samples (NCD, BT) and had a somewhat
flatter slope for one of the US samples (CPB). Mean cortical
thickness showed highly overlapping nonlinear trajectories, with
accelerated thinning in adolescence.

The lobar trajectories were overall similar to the global results,
although some regional differences were also evident. For exam-
ple, cortical volume showed a relatively stable trajectory in late
childhood in the frontal lobe, and the accelerated thinning in
adolescence was most clearly seen in the frontal lobe, while de-
celerating trajectories with increasing age were seen for thickness
in the parietal and occipital lobes.

Table 2. Global and lobar change in cortical volume, surface area, and thickness for
each sample

CPB PIT NCD BT Significant sample differences

Cortical volume �1.10 �1.87 �1.15 �1.60 CPB–PIT, PIT–NCD, NCD–BT
Frontal lobe �1.04 �1.67 �1.08 �1.60
Temporal lobe �0.88 �1.65 �0.99 �1.32 CPB–PIT, PIT–NCD
Parietal lobe �1.54 �2.53 �1.49 �1.98 CPB–PIT, PIT–NCD, PIT–BT, NCD–BT
Occipital lobe �0.61 �1.31 �0.84 �1.28 CPB–PIT, CPB–BT, NCD–BT

Cortical surface area �0.36 �0.61 �0.53 �0.71 CPB–PIT, CPB–BT, NCD–BT
Frontal lobe �0.29 �0.48 �0.47 �0.61 CPB–BT
Temporal lobe �0.31 �0.52 �0.43 �0.59 CPB–BT
Parietal lobe �0.50 �0.90 �0.71 �0.87 CPB–PIT, CPB–BT
Occipital lobe �0.34 �0.46 �0.47 �0.85 CPB–BT, PIT–BT NCD–BT

Cortical thickness �0.93 �1.38 �0.83 �0.98 PIT–NCD, PIT–BT
Frontal lobe �0.93 �1.29 �0.83 �0.99
Temporal lobe �0.89 �1.43 �0.82 �0.90 PIT–NCD, PIT–BT
Parietal lobe �1.15 �1.63 �0.94 �1.17 PIT–NCD, PIT–BT
Occipital lobe �0.45 �0.90 �0.58 �0.66

Values displayed are mean symmetrized APC for each measure. All APC values were significantly different from zero
(p � 0.001). Differences among the samples were tested with ANOVAs (p � 0.05, Bonferroni-corrected, factor of 5)
with Tukey’s HSD post hoc comparisons (p � 0.05) and those showing significant differences are listed in the far
right column.
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Mapping longitudinal cortical change
On average for each sample, and on both the global and lobar
level, cortical volume, thickness, and surface area all showed neg-
ative change rates, i.e., reductions with increasing age (Table 2;
see Table 3 for APCs for all measures for all labels in the cortical

parcellation). For the global measures and within all four sam-
ples, cortical volume showed the largest decrease (APCs from
�1.10 to �1.87; sample mean, �1.43), followed by thickness
(APCs from �0.83 to �1.38; sample mean, �1.03), and finally
surface area (APCs from �0.36 to �0.71; sample mean, �0.55).

Figure 3. Longitudinal change in cortical volume. GLMs were used to test the statistical significance of APC in volume across the brain surface in each sample, with sex and mean age included as
covariates. The results were corrected for multiple comparisons using cluster-size inference. Left, Uncorrected p values within the corrected significant clusters. Right, Rates of change.

Table 3. Regional change in cortical volume, surface area and thickness for each sample

Cortical volume Cortical surface area Cortical thickness

CPB PIT NCD BT CPB PIT NCD BT CPB PIT NCD BT

Frontal, superior �1.04 �1.63 �0.99 �1.66 �0.21 �0.33 �0.36 �0.50 �0.92 �1.36 �0.80 �1.09
Frontal, rostral middle �1.27 �2.14 �1.42 �2.12 �0.52 �0.74 �0.64 �0.79 �1.25 �1.73 �1.26 �1.34
Frontal, caudal middle �1.38 �2.09 �1.55 �1.90 �0.54 �0.79 �0.83 �0.80 �0.94 �1.24 �0.87 �1.02
Frontal, lateral orbital �1.02 �1.78 �1.14 �1.29 �0.14 �0.62 �0.38 �0.34 �0.93 �1.27 �0.78 �0.91
Frontal, pars orbitalis �1.06 �1.67 �1.12 �1.65 �0.26 �0.45 �0.47 �0.95 �0.93 �1.19 �0.71 �0.87
Frontal, pars triangularis �0.96 �1.74 �0.99 �1.70 �0.06 �0.26 �0.24 �0.62 �1.02 �1.49 �0.96 �1.15
Frontal, pars opercularis �1.02 �1.66 �1.15 �1.51 �0.28 �0.46 �0.47 �0.50 �0.95 �1.28 �0.86 �1.00
Frontal, precentral �0.55 �1.24 �0.57 �1.07 �0.20 �0.36 �0.42 �0.50 �0.41 �0.78 �0.28 �0.55
Frontal, pole �0.42 �0.95 0.17 �2.38 �0.32 �0.58 0.31 �1.52 �0.54 �0.77 �0.45 �0.89
Frontal, medial orbital �1.12 �1.26 �1.46 �1.33 �0.18 �0.29 �0.55 �0.62 �1.08 �1.01 �1.06 �0.79
Frontal, rostral anterior cingulate �1.07 �0.40 �0.44 �0.82 �0.22 �0.02 �0.15 �0.40 �1.14 �1.08 �0.68 �0.49
Frontal, caudal anterior cingulate �1.11 �1.06 �1.08 �1.26 �0.29 �0.08 �0.26 �0.31 �1.05 �1.08 �1.03 �1.05
Frontal, paracentral �1.33 �2.15 �1.36 �1.62 �0.41 �0.70 �0.62 �0.92 �1.01 �1.69 �0.95 �1.07
Temporal, superior �0.73 �1.59 �0.80 �1.28 �0.22 �0.37 �0.26 �0.56 �0.79 �1.35 �0.76 �0.82
Temporal, middle �0.74 �1.50 �0.92 �1.42 �0.19 �0.34 �0.26 �0.52 �1.07 �1.64 �1.06 �1.06
Temporal, inferior �0.98 �1.90 �1.31 �1.52 �0.38 �0.66 �0.51 �0.65 �1.02 �1.69 �1.06 �1.01
Temporal, banks superior temporal sulcus �2.06 �3.12 �1.91 �2.06 �0.76 �1.23 �1.02 �0.84 �1.91 �2.45 �1.32 �1.57
Temporal, transverse �1.27 �1.91 �1.36 �1.47 �0.45 �1.08 �0.95 �1.21 �0.71 �0.75 �0.51 �0.49
Temporal, pole 0.28 �0.85 0.59 0.01 0.02 �0.28 0.27 �0.07 0.14 �0.66 0.13 0.09
Temporal, entorhinal �0.43 �0.45 �0.56 �0.25 �0.36 �0.22 �0.40 �0.34 0.07 �0.13 0.08 0.11
Temporal, parahippocampal �1.32 �1.77 �0.83 �1.20 �0.29 �0.51 �0.27 �0.52 �1.03 �1.49 �0.62 �0.81
Temporal, fusiform �1.28 �2.02 �1.19 �1.50 �0.23 �0.43 �0.38 �0.64 �1.04 �1.53 �0.82 �0.95
Temporal, insula �0.58 �0.94 �0.85 �1.12 �0.46 �0.62 �0.76 �0.54 �0.54 �0.95 �0.53 �0.92
Parietal, superior �1.64 �2.58 �1.45 �2.02 �0.55 �0.83 �0.80 �0.93 �1.18 �1.66 �0.83 �1.08
Parietal, inferior �1.65 �2.58 �1.67 �2.15 �0.53 �1.01 �0.82 �0.88 �1.34 �1.72 �1.05 �1.32
Parietal, supramarginal �1.48 �2.71 �1.53 �2.01 �0.51 �1.01 �0.71 �0.86 �1.07 �1.64 �0.93 �1.14
Parietal, postcentral �1.23 �2.26 �1.27 �1.64 �0.42 �0.73 �0.57 �0.96 �0.77 �1.22 �0.74 �0.74
Parietal, precuneus �1.60 �2.65 �1.44 �1.99 �0.46 �0.90 �0.64 �0.78 �1.26 �1.92 �0.99 �1.42
Parietal, posterior cingulate �1.52 �2.17 �1.45 �1.78 �0.57 �0.90 �0.57 �0.59 �1.18 �1.54 �1.05 �1.34
Parietal, retrosplenial cingulate �1.46 �2.37 �1.64 �2.08 �0.44 �0.98 �0.54 �0.73 �1.07 �1.45 �1.16 �1.41
Occipital, lateral �0.48 �1.38 �0.97 �1.43 �0.55 �0.36 �0.51 �1.03 �0.30 �1.12 �0.81 �0.72
Occipital, cuneus �0.94 �1.36 �0.90 �1.36 �0.37 �0.58 �0.54 �0.80 �0.72 �0.94 �0.53 �0.84
Occipital, pericalcarine 0.05 0.35 0.37 0.11 0.17 �0.08 �0.23 �0.33 �0.21 0.21 0.25 0.17
Occipital, lingual �0.89 �1.69 �0.99 �1.39 �0.20 �0.72 �0.48 �0.84 �0.62 �0.91 �0.50 �0.67

Values displayed are mean symmetrized APC for each measure.
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Although the ranking of APCs in the different global measures
was the same in all four samples, there were also significant sam-
ple differences in all three measures (Table 2).

For the lobar measures, cortical volume consistently showed
the same ranking of APCs within all four samples, with the largest
decrease in the parietal lobe, followed by the frontal, the tempo-
ral, and finally the occipital lobe. The parietal lobe also showed
the largest decrease in both cortical surface area and thickness in
all four samples, and the occipital lobe consistently showed the
smallest decrease in cortical thickness. Except for frontal lobe
volume and thickness and occipital lobe thickness, there were
significant sample differences in the lobar APC values in all mea-
sures (Table 2).

Vertex-wise surface maps were then created to visualize the
statistical significance (controlling for sex and mean age) and rate
of APCs in cortical volume (Fig. 3), surface area (Fig. 4), and
thickness (Fig. 5) for each of the samples separately. Corrected
significant negative changes were seen for all three measures for

extensive portions of the cerebral cortex in all four samples. Some
exceptions or sample differences were noted. For volume, signif-
icant increases or no effects were seen around the central sulcus
and in insular, medial temporal, and medial occipital cortices.
For surface area compared with the other two measures, more
regions did not show significant APCs, especially gyral regions in
the three smaller samples. And finally, for thickness, the rate
decrease in most regions was larger for the sample with a nar-
rower age range in adolescence (PIT), than for the other three
samples. Note that the scale for rate of APCs varies across the
different measures.

Testing for inter-related changes in different
cortical components
Relationships between global and lobar changes in surface area and
volume and in thickness and volume were first tested with partial
correlations, controlling for sex and mean age (Table 4). All samples
showed large positive associations between thickness APCs and vol-

Figure 4. Longitudinal change in cortical surface area. GLMs were used to test the statistical significance of APC in area across the brain surface in each sample, with sex and mean age included
as covariates. The results were corrected for multiple comparisons using cluster-size inference. Left, Uncorrected p values within the corrected significant clusters. Right, Rates of change.

Figure 5. Longitudinal change in cortical thickness. GLMs were used to test the statistical significance of APC in thickness across the brain surface in each sample, with sex and mean age included
as covariates. The results were corrected for multiple comparisons using cluster-size inference. Left, Uncorrected p values within the corrected significant clusters. Right, Rates of change.
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ume APCs (r � 0.72–0.95) for both global and all lobar measures.
For global measures, the associations between surface area APC and
volume APC varied from small to medium (r � 0.16–0.55), while
for the lobar measures medium-to-large positive associations (r �
0.51–0.76) were seen in the frontal lobe in three of the samples (PIT,
NCD, BT), in the temporal lobe in two samples (NCD, BT), and in
the parietal lobe in one sample (PIT).

The results from the per-vertex regression models (control-
ling for sex and mean age) of surface area APCs and volume APCs
and of thickness APCs and volume APCs, respectively, confirmed
these general patterns (Fig. 6). Highly significant positive associ-
ations between thickness change and volume change were ob-
served across nearly the entire cerebral cortex in all four samples.
In comparison, the associations between area change and volume
change were not as strong or widespread, and in several regions in
two of the samples (NCD, BT) even in the opposite direction (i.e.,
negative).

Inter-relationships between APCs in cortical surface area and
APCs in cortical thickness were first tested on global and lobar
measures with partial correlations, controlling for sex and mean
age (Table 5). For the global measures, a significant small positive
association (r � 0.22) was seen in the largest sample (BT). For the
lobar measures, significant small-to-medium positive associa-
tions (r � 0.21– 0.52) were seen for the frontal lobe in three
samples (PIT, NCD, BT) and for the temporal lobe in two sam-
ples (NCD, BT), while significant medium negative associations
(r � �0.46 to �0.48) were seen for the occipital lobe in two
samples (PIT, BT). Inconsistent with the other samples, the CPB
sample showed negative, although nonsignificant, associations
for the frontal and temporal lobe measures, possibly related to the
younger average baseline age of this sample.

To investigate these regional differences in more detail, per-
vertex regression models (controlling for sex and mean age) of
surface area APCs and thickness APCs were performed (Fig. 7).
In all four samples, positive associations were observed in lateral
prefrontal and temporal cortices, while negative associations
were seen around the central sulcus and in paracentral, insular,
and both lateral and medial occipital cortices. Generally, the
negative associations were more widespread than the positive.
Importantly, the vertex-wise results also revealed a complex top-
ographic pattern of positive and negative associations, with pos-
itive relations mainly seen in sulcal regions and negative relations

seen in gyral and insular regions. The exact location of some of
the relations between surface area APCs and thickness APCs did,
however, vary across samples, e.g., three samples (CPB, NCD,
BT) showed positive associations in the superior temporal sulcus,
while one sample (PIT) showed positive associations in the mid-
dle and interior temporal cortices. Also, the extent of both the
positive and negative associations appeared to be related to sam-
ple size, with the spatially most limited effects seen in the CPB
sample and the most widespread effects, especially negative
associations, seen in the BT sample. In the three smallest sam-
ples (CPB, PIT, NCD), most vertices did not show significant
associations.

Discussion
The current multisample neuroimaging study aimed to examine
the development of the human cerebral cortex across adolescence
in four independent longitudinal samples. The results were
generally consistent across samples and showed the following:
(1) that the cerebral cortex undergoes widespread and regionally
variable nonlinear decreases in volume and thickness with in-
creasing age, and comparatively smaller steady decreases in sur-
face area; (2) that the dominant contributor to cortical volume
reductions during adolescence is cortical thinning; and (3) that
there are complex regional and topological patterns in the rela-
tionships between longitudinal changes in surface area and thick-
ness. Together, the results increase confidence in conclusions
about structural cortical development and provide novel insight
into how changes in distinct cortical components are linked.

In the first 2 years of life, cortical volume, surface area, and
thickness all increase over time (Gilmore et al., 2012; Lyall et al.,
2015). There are almost no data for the following years of early
childhood due to head motion-related MRI artifacts, and there
are inconsistencies across studies regarding developmental pat-
terns and trajectories of different structural measures from mid-
childhood to adulthood (Mills and Tamnes, 2014; Walhovd et al.,
2016). Early longitudinal studies suggested continued increases
in cortical volume until late childhood or early adolescence
(Giedd et al., 1999; Lenroot et al., 2007; Raznahan et al., 2011),
while later longitudinal studies (Lebel and Beaulieu, 2011;
Aubert-Broche et al., 2013; Tamnes et al., 2013; Mills et al., 2014a,
2016; Wierenga et al., 2014), as well as the current results, indicate
that cortical volume is at its highest earlier in childhood and
decreases in late childhood and throughout adolescence.

Previous longitudinal studies are particularly conflicting with
regard to cortical thickness, with some indicating inverted-U tra-
jectories from childhood to adulthood, with estimates of peak
thickness in late childhood (Shaw et al., 2007, 2008; Raznahan et
al., 2011), while others show widespread monotonic decreases
during childhood and adolescence (Sowell et al., 2004; Shaw et
al., 2006; van Soelen et al., 2012; Mutlu et al., 2013; Alexander-
Bloch et al., 2014; Mills et al., 2014a; Wierenga et al., 2014; Zie-
linski et al., 2014; Fjell et al., 2015; Zhou et al., 2015; Ducharme et
al., 2016; Vijayakumar et al., 2016). Our results support the con-
clusion of decreasing cortical thickness with increasing age dur-
ing late childhood and across adolescence. Fewer longitudinal
studies have investigated cortical surface area, but with the excep-
tion of one recent paper showing increases in adolescence (Vi-
jayakumar et al., 2016), these (Raznahan et al., 2011; Mills et al.,
2014a; Wierenga et al., 2014; Ducharme et al., 2015) and the
present results together support the conclusion of childhood in-
creases followed by subtle decreases during adolescence.

After applying similar processing and analytic techniques, the
results of the present multisample study showed consistent devel-

Table 4. Relationships between changes in surface area and volume and between
changes in thickness and volume, for each sample

CPB PIT NCD BT

Area change�
volume change

Global cortex 0.16 (0.427) 0.47a (�0.001) 0.55a (�0.001) 0.51a (�0.001)
Frontal lobe 0.26 (0.179) 0.68a (�0.001) 0.69a (�0.001) 0.51a (�0.001)
Temporal lobe 0.04 (0.827) 0.37a (0.002) 0.69a (�0.001) 0.52a (�0.001)
Parietal lobe 0.00 (0.985) 0.76a (�0.001) 0.33a (0.005) 0.29a (�0.001)
Occipital lobe 0.37 (0.056) 0.07 (0.543) 0.01 (0.922) �0.07 (0.304)

Thickness change�
volume change

Global cortex 0.87a (�0.001) 0.85a (�0.001) 0.93a (�0.001) 0.93a (�0.001)
Frontal lobe 0.86a (�0.001) 0.87a (�0.001) 0.94a (�0.001) 0.93a (�0.001)
Temporal lobe 0.90a (�0.001) 0.95a (�0.001) 0.95a (�0.001) 0.92a (�0.001)
Parietal lobe 0.90a (�0.001) 0.72a (�0.001) 0.91a (�0.001) 0.93a (�0.001)
Occipital lobe 0.82a (�0.001) 0.79a (�0.001) 0.94a (�0.001) 0.89a (�0.001)

Values displayed are partial correlations between symmetrized APC in different cortical measures, controlling for sex
and age, with p values in parentheses.
ap � 0.05 (Bonferroni-corrected, factor of 5).
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opmental patterns and trajectories for cortical structure across four
longitudinal datasets with varying sample and image-acquisition
characteristics. We did not observe any global increase or “peak” for
cortical volume, surface area, or thickness from ages 7 to 29 in any of
the four samples. The same was true for the lobar measures, except
for a small early increase in frontal lobe volume in two of the sam-
ples. Our results suggest that previous inconsistencies have not pri-
marily resulted from sample or image-acquisition differences.
Rather, we speculate that they stem from the combined effects of

differences in image processing, including
QC procedures, and/or statistical analyses
and curve fitting. All datasets in the present
study were processed with an extensively
used and well validated open-source soft-
ware suite (Fischl, 2012) and underwent
post-processing QC. Also, curve-fitting was
performed with models that avoid some
of the weaknesses of global polynomial
models.

In both adult and developmental sam-
ples, head motion has a negative effect on
estimates of cortical volume and thickness,
even after excluding low-quality scans (Reu-
ter et al., 2015; Alexander-Bloch et al., 2016).
As younger participants generally move
more during acquisition, motion is often
confounded with age or time point (Satter-
thwaite et al., 2012). The importance of
post-processing QC was demonstrated by
Ducharme et al. (2016), who showed that
exclusion of scans defined as QC failures
had a large impact on identified patterns for
cortical thickness development, with a shift
toward more complex trajectories when
scans of lower quality were included. While
we attempted to limit the impact of motion
by visually inspecting all reconstructed im-
ages and only included scans judged to be of
adequate quality, future studies might ben-
efit from further efforts to limit motion dur-
ing data acquisition, for example by further
development of on-line motion-correction
procedures and quantitative motion assess-
ment within popular software packages
(Reuter et al., 2015; Greene et al., 2016; Tis-
dall et al., 2016). Additionally, it is likely that
differences in statistical analyses may have
contributed to the inconsistencies, as we re-
cently showed that whether and how one
controls for intracranial volume or total
brain size influences developmental models
of brain volumes (Mills et al., 2016). In rela-
tion to this, future studies are needed to in-
vestigate the consistency of reported sex
differences in brain structure and develop-
ment (Lenroot et al., 2007; Mutlu et al.,
2013; Vijayakumar et al., 2016), using both
raw and corrected measures (Marwha et al.,
2017).

In addition to providing detailed de-
scriptions of developmental patterns and
trajectories of cortical structure, our results
showed consistent and very strong positive

relationships between cortical thickness change and volume change
across nearly the entire cortex, such that relatively large reductions in
thickness were associated with relatively large reductions in volume.
In comparison, the relationships between surface-area change and
volume change were not as strong or widespread, and for most of the
occipital lobe either nonsignificant or negative. Thus, although most
of the individual variation in adult cortical volume is due to variation
in surface area and not thickness (Im et al., 2008), our results show
that the greatest contributor to volume decrease from 7 to 29 years is

Figure 6. Relationships between change in surface area and thickness and change in volume. Vertex-wise p value maps from
GLMs testing the relationships between symmetrized APC in different cortical measures, with sex and mean age included as
covariates. The results were corrected for multiple comparisons using cluster-size inference. Uncorrected p values within the
corrected significant clusters are shown. Red–yellow reflects a positive relationship, where a relatively large decrease in one
measure is associated with a relatively large decrease in the other measure. Blue– cyan reflects a negative relationship, in which a
relatively large decrease on one measure is associated with a relatively small decrease or increase on the other measure.
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thinning, as previously also shown to be the case across the adult
lifespan (23–87 years; Storsve et al., 2014).

Finally, complex regional and topological patterns in the rela-
tionships between surface-area change and thickness change were
observed. Across samples, both positive and negative associations
were found, with positive relationships mainly seen in sulcal regions
in prefrontal and temporal cortices, and negative relationships
mainly seen in gyral regions in occipital cortices, paracentral cortex,
and insula, and around the central sulcus. Our results mainly
showed decreases with increasing age for both surface area and
thickness. Thus, positive relationships indicate that relatively large
reductions in surface area are associated
with relatively large reductions in thickness,
while negative relationships indicate that
relatively large reductions in surface area are
associated with relatively small reductions
in thickness, and vice versa. The importance
of local topology for cortical development
was demonstrated in a recent large cross-
sectional study finding that age-related de-
creases in thickness were most pronounced
in the sulci (Vandekar et al., 2015), but no
previous study has examined the relation-
ships between longitudinal change in differ-
ent cortical metrics on a vertex-wise level in
children and adolescents (but see Storsve et
al., 2014, for a study on adults, and Alemán-
Gómezet al., 2013, for lobar analyses in ad-
olescents).

The cellular and molecular changes un-
derlying observed developmental changes
in the different dimensions of the cerebral
cortex and their inter-relationships remain
unknown. They likely include multiple in-
teracting processes that vary in their relative
importance across regions and age (Mills
and Tamnes, 2014). A recent imaging study
suggests that increasing intracortical myeli-
nation is a significant driver of cortical
changes in adolescence (Whitaker et al.,
2016). A hypothesis for the relationships be-
tween area change and thickness change in
development is that white matter growth in
the form of increasing myelination and
axon caliber (Yakovlev and Lecours, 1967;
Benes, 1989; Benes et al., 1994) causes the
cerebral cortex to stretch tangentially to the surface, expanding its
area and becoming thinner, as well as improving its ability to differ-
entiate incoming signals (Seldon, 2005, 2007). However, this does
not fully explain the surface-area decrease seen in many regions in
adolescence. A second hypothesis is that synaptic pruning and den-
dritic arborization (Bourgeois and Rakic, 1993; Huttenlocher and
Dabholkar, 1997; Petanjek et al., 2011) results in decreasing gyrifica-
tion and flattening of the cortex during adolescence (Raznahan et al.,
2011; Alemán-Gómezet al., 2013; Klein et al., 2014) due to release of
axonal tension (White et al., 2010). It is likely that a combination of
these hypotheses might explain the observed complex patterns in the
relationships between surface-area change and thickness change.

Conclusion
The present results from four independent longitudinal datasets
showed consistent developmental trajectories and patterns of
change in cortical volume, surface area, and thickness across adoles-

cence. Regionally variable nonlinear decreases in cortical volume
and thickness, and relatively smaller steady decreases in surface area,
were observed from ages 7 to 29. Further, analyses of the inter-
relationships between changes in these different dimensions of the
cortex revealed tight links between volume reductions and thinning,
as well as regional and topological patterns in the relationships be-
tween surface-area change and thickness change.
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Weiskopf N, Callaghan MF, Wagstyl K, Rittman T, Tait R, Ooi C, Suckling
J, Inkster B, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, the NSPN
Consortium, Bullmore ET (2016) Adolescence is associated with gen-
omically patterned consolidation of the hubs of the human brain connec-
tome. Proc Natl Acad Sci U S A 113:9105–9110. CrossRef Medline

White T, Su S, Schmidt M, Kao CY, Sapiro G (2010) The development of
gyrification in childhood and adolescence. Brain Cogn 72:36 – 45.
CrossRef Medline

Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmen-
tal trajectories of cortical thickness and surface area. Neuroimage 87:
120 –126. CrossRef Medline

Wood SN (2006) Generalized additive models: an introduction with R.
Boca Raton, FL: Chapman and Hall/CRC.

Yakovlev PA, Lecours IR (1967) The myelogenetic cucles of regional matu-
ration of the brain. In: Regional development of the brain in early life
(Minkowski A, ed), pp 3–70. Oxford: Blackwell.

Zhou D, Lebel C, Treit S, Evans A, Beaulieu C (2015) Accelerated longi-
tudinal cortical thinning in adolescence. Neuroimage 104:138 –145.
CrossRef Medline

Zielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Ander-
son JS, Fletcher PT, Zygmunt KM, Travers BG, Lange N, Alexander
AL, Bigler ED, Lainhart JE (2014) Longitudinal changes in cortical
thickness in autism and typical development. Brain 137:1799 –1812.
CrossRef Medline

3412 • J. Neurosci., March 22, 2017 • 37(12):3402–3412 Tamnes et al. • Development of the Cerebral Cortex

http://dx.doi.org/10.1016/j.neuroimage.2007.03.053
http://www.ncbi.nlm.nih.gov/pubmed/17513132
http://dx.doi.org/10.1093/cercor/bhu027
http://www.ncbi.nlm.nih.gov/pubmed/24591525
http://dx.doi.org/10.1016/j.neuroimage.2016.12.021
http://www.ncbi.nlm.nih.gov/pubmed/27956206
http://dx.doi.org/10.1016/j.dcn.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/24879112
http://dx.doi.org/10.1093/scan/nss113
http://www.ncbi.nlm.nih.gov/pubmed/23051898
http://dx.doi.org/10.1159/000362328
http://www.ncbi.nlm.nih.gov/pubmed/24993606
http://dx.doi.org/10.1016/j.neuroimage.2016.07.044
http://www.ncbi.nlm.nih.gov/pubmed/27453157
http://dx.doi.org/10.1016/j.neuroimage.2013.05.076
http://www.ncbi.nlm.nih.gov/pubmed/23721724
http://dx.doi.org/10.1073/pnas.1105108108
http://www.ncbi.nlm.nih.gov/pubmed/21788513
http://dx.doi.org/10.1126/science.3291116
http://www.ncbi.nlm.nih.gov/pubmed/3291116
http://dx.doi.org/10.1523/JNEUROSCI.0054-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21562281
http://dx.doi.org/10.1016/j.neuroimage.2010.07.020
http://www.ncbi.nlm.nih.gov/pubmed/20637289
http://dx.doi.org/10.1016/j.neuroimage.2012.02.084
http://www.ncbi.nlm.nih.gov/pubmed/22430496
http://dx.doi.org/10.1016/j.neuroimage.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25498430
http://dx.doi.org/10.1016/j.neuroimage.2011.12.063
http://www.ncbi.nlm.nih.gov/pubmed/22233733
http://dx.doi.org/10.1016/j.neuroimage.2004.03.032
http://www.ncbi.nlm.nih.gov/pubmed/15219578
http://dx.doi.org/10.1109/TMI.2006.887364
http://www.ncbi.nlm.nih.gov/pubmed/17427739
http://www.ncbi.nlm.nih.gov/pubmed/15841825
http://dx.doi.org/10.1016/j.mehy.2007.03.001
http://www.ncbi.nlm.nih.gov/pubmed/17449192
http://dx.doi.org/10.1001/archpsyc.63.5.540
http://www.ncbi.nlm.nih.gov/pubmed/16651511
http://dx.doi.org/10.1073/pnas.0707741104
http://www.ncbi.nlm.nih.gov/pubmed/18024590
http://dx.doi.org/10.1523/JNEUROSCI.5309-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18385317
http://dx.doi.org/10.1109/42.668698
http://www.ncbi.nlm.nih.gov/pubmed/9617910
http://dx.doi.org/10.1523/JNEUROSCI.1798-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15385605
http://dx.doi.org/10.1523/JNEUROSCI.0391-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24948804
http://dx.doi.org/10.1016/j.neuroimage.2011.04.003
http://www.ncbi.nlm.nih.gov/pubmed/21511039
http://dx.doi.org/10.1016/j.neuroimage.2012.11.039
http://www.ncbi.nlm.nih.gov/pubmed/23246860
http://dx.doi.org/10.1016/j.neuroimage.2015.11.054
http://www.ncbi.nlm.nih.gov/pubmed/26654788
http://dx.doi.org/10.1016/j.neuroimage.2011.11.044
http://www.ncbi.nlm.nih.gov/pubmed/22155028
http://dx.doi.org/10.1523/JNEUROSCI.3628-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25589754
http://dx.doi.org/10.1002/hbm.23267
http://www.ncbi.nlm.nih.gov/pubmed/27228371
http://dx.doi.org/10.1002/hbm.23154
http://www.ncbi.nlm.nih.gov/pubmed/26946457
http://dx.doi.org/10.1093/cercor/bhv301
http://dx.doi.org/10.1073/pnas.1601745113
http://www.ncbi.nlm.nih.gov/pubmed/27457931
http://dx.doi.org/10.1016/j.bandc.2009.10.009
http://www.ncbi.nlm.nih.gov/pubmed/19942335
http://dx.doi.org/10.1016/j.neuroimage.2013.11.010
http://www.ncbi.nlm.nih.gov/pubmed/24246495
http://dx.doi.org/10.1016/j.neuroimage.2014.10.005
http://www.ncbi.nlm.nih.gov/pubmed/25312772
http://dx.doi.org/10.1093/brain/awu083
http://www.ncbi.nlm.nih.gov/pubmed/24755274

	Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness
	Introduction
	Materials and Methods
	Results
	Discussion


