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Action potentials, taking place over milliseconds, are the basis of neural computation. However, the dynamics of excitability over longer,
behaviorally relevant timescales remain underexplored. A recent experiment used long-term recordings from single neurons to reveal
multiple timescale fluctuations in response to constant stimuli, along with more reliable responses to variable stimuli. Here, we demon-
strate that this apparent paradox is resolved if neurons operate in a marginally stable dynamic regime, which we reveal using a novel
inference method. Excitability in this regime is characterized by large fluctuations while retaining high sensitivity to external varying
stimuli. A new model with a dynamic recovery timescale that interacts with excitability captures this dynamic regime and predicts the
neurons’ response with high accuracy. The model explains most experimental observations under several stimulus statistics. The com-
pact structure of our model permits further exploration on the network level.
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Introduction
Action potentials, or spikes, are the basic information currency of the
nervous system. The dynamics of excitability, providing the condi-
tions for spike emission, are thus crucial for all cognitive functions.

Measurements of neural excitability revealed fluctuations
across timescales ranging from milliseconds to hours and across
many levels of organization (Ulanovsky et al., 2004; Anderson,
2001; Monto et al., 2008; Marom, 2010). Despite this, natural (or
natural-like) stimuli are very effective at reducing this variability
both in vitro and in vivo (Mainen and Sejnowski, 1995; de Ruyter
van Steveninck et al., 1997; Schneidman et al., 1998; Churchland
et al., 2010). Recently, it was shown that such phenomena exist
over much longer timescales at the single neuron level (Gal et al.,

2010; Gal and Marom, 2013). Isolated cultured rat cortical neu-
rons were stimulated by periodic pulse trains of 10 –20 Hz for
several hours. The neuron responded intermittently to the stim-
uli, revealing slow fluctuations correlated across many time-
scales. In contrast, pulse trains with variable intervals were able to
entrain the neuron’s response, revealing a much shorter time-
scale. This was particularly evident for power-law-distributed
(natural-like) stimulus intervals. Considering all of the slow bio-
physical processes that could give rise to intermittency, it is not
trivial to explain the relatively fast entrainment. These two seem-
ingly paradoxical properties pose a challenge to our understand-
ing of long-term single neuron excitability dynamics.

Slow dynamics of excitability and its constituents have been stud-
ied experimentally and theoretically from ion channels through neu-
rons to networks (Adelman and Palti, 1969; Fox, 1976; Rudy, 1978;
Aldrich et al., 1983; Quandt, 1988; Ogata and Tatebayashi, 1992;
LeMasson et al., 1993; Marder et al., 1996; Richmond et al., 1998;
Toib et al., 1998; Mickus et al., 1999; Vilin et al., 1999; Ellerkmann et
al., 2001; Beggs and Plenz, 2004; Ulbricht, 2005). It is convenient to
describe the main finding at the level of a single channel that can be
either active (open or closed) or inactive. The finding is that the
duration of inactive epochs is widely distributed. Corresponding
observations include, among others, the overall conductance in a
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Significance Statement

Excitability is the basis for all neural computations and its long-term dynamics reveal a complex combination of many timescales.
We discovered that neural excitability operates under a marginally stable regime in which the system is dominated by internal
fluctuation while retaining high sensitivity to externally varying stimuli. We offer a novel approach to modeling excitability
dynamics by assuming that the recovery timescale is itself a dynamic variable. Our model is able to capture a wide range of
experimental phenomena using few parameters with significantly higher predictive power than previous models.
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population of channels, the combined excitability of a single neuron,
and the response of a network to external stimulus. Among the pro-
posed mechanisms underlying these observations are slow sodium
and potassium channel inactivation and slow intracellular calcium
dynamics. For instance, the large number of protein conformations
corresponding to inactive channels led to models of excitability dy-
namics as a diffusion along a Markov chain of unavailable states
(McManus and Magleby, 1988; Millhauser et al., 1988). Similar
models have been made at the single neuron level, treating the neu-
ron as an ensemble of channels, with excitability being set by the
fraction of active channels (Gilboa et al., 2005; Soudry and Meir,
2010).

Our aim is to provide a model with few parameters that ad-
dresses both the existence of slow fluctuations and their reduc-
tion by variable stimuli. Such a model can be useful both for
robust fitting of data (Pozzorini et al., 2013; Mensi et al., 2016)
and to explore the effect of parameters on network function. A
model with very few parameters was suggested by Marom (2009),
in which an adaptive recovery timescale replaces the ensemble of
states. In this approach, the details of ion channel populations are
neglected and instead an effective recovery timescale is given as a
direct function of the current excitability level. However, this
model was neither compared directly with experimental results
nor considered under variable stimuli.

Here, we show that the two paradoxical aspects of single neuron
excitability (intermittency and entrainment) could be understood
within a framework of marginally stable dynamics in which excit-
ability is marginally below criticality with a weakly sustained equilib-
rium while at the same time maintaining high responsiveness to
external stimuli. We introduce a new model in the spirit of the
adaptive timescale to capture these dynamics. A novel method is
proposed based on statistical inference for analyzing long-term ex-
citability experiments through which we could measure the recovery
timescale from data. The measured results reveal a dynamical time-
scale that provides a compact description of various features of the
data.

The model, similar to experimental results, is sensitive to stimu-
lus statistics over large timescales, suggesting a potential memory
mechanism (Marder et al., 1996). The relatively simple form of the
model opens new avenues for exploration in a network setting.

Materials and Methods
This section contains five parts: (1) a brief description of the experimen-
tal data; (2) the statistical observables that were extracted both from the
data and from the various models; (3) a definition of all models used and
analytical approximations where appropriate; (4) methods used to infer
model parameters; and (5) tables of the resulting parameters and notes
about their robustness.

Experimental details
The full details of the experiment were described previously (Gal and
Marom, 2013), but we will repeat the main points here. Synaptic blockers
were applied to a culture of rat cortical neurons that was plated on a multi
electrode array, effectively creating a population of isolated single neu-
rons. A single electrode was chosen to deliver stimuli, whereas other
electrodes that contained well isolated spikes were used for recording.

A natural concern when dealing with long timescales is isolating experi-
mental drift from physiological processes. This concern was addressed as
detailed previously (Gal et al., 2010). Controls included monitoring spike
shape and amplitude and ensuring that there are no correlations between
inactive periods of two synaptically isolated neurons that were recorded
simultaneously.

Spikes were extracted from the extracellularly recorded voltage trace
by setting a threshold at three times the SD. Spike latency was neglected

because we aimed to study behavior in the timescale beyond the stimu-
lation interval (0.1 s).

Statistical observables
Probability trace
Input pulses and output spikes were collected in 1 s nonoverlapping bins.
A continuous probability function was defined as follows:

Pt
m �

Rt
m

It
m (1)

Where Rt
m and It

m are the number of output spikes and input pulses
respectively in time bin t and trial m.

Fano factor
The Fano factor is used to quantify fluctuation level relative to mean
under constant stimulus defined as follows:

FFm�T� �
��Nm�T��

� Nm�T� �
(2)

Where N m( T) is the number of spikes per time window T and � m( T) is
the SD of N m( T). The average is taken over all time windows of size T.

Autocorrelation
Autocorrelation is used to study the fluctuation under constant stimulus
as follows:

A��� �
1

N �
i�1

N 1

var�Pt
m�

� �Pt
m � Pt

m��Pt��
m � Pt��

m � � (3)

where var�Pt
m� and Pt

m are the variance and mean of the probability trace,
respectively. A(0) � 1, and is not displayed in the figures.

Covariance function
Covariance between input and output was used to characterize impact of
stimulus on its output across time as follows:.

Cov��� �
1

N �
l�1

N

� �It � I���Pt��
m � Pt��

m � � (4)

where I� is the average of stimulus intensity.

Reproducibility
This measure was defined to quantify reproducibility of output while
eliminating the effect of trivial input dependency. Specifically, the mean
response to a given input level was subtracted before calculating the
intertrial correlation as follows:

CPP �
1

N(N � 1) �
m�n

�
m�1

N � �Pt
m � P(I)��Pt

n � P(I)� �

std�Pt
m � P(I)�std�Pt

n � P(I)�
(5)

where P( I) is the averaged response probability conditioned on certain
stimulus intensity I in 1 s resolution.

Models
Single timescale model
This is the simplest model, which also forms the basis for all other models
herein. It describes the dynamics of an abstract excitability variable x due
to incoming input pulse at ti and feedback from successful spikes yi as
follows:

dx

dt
�

1 � x

�
� U��t � ti� yi 	 �
 (6)

P� yi�xi
–� � �1 	 exp����2yi � 1��xi

– � 0.5����1 (7)

where ti denotes stimulus times. Both xi
– and ti

– refer to the values before
the stimulus and spike. yi is the binary output response sampled from
conditional probability P�yi�xi

–� according to a sigmoid function with a
slope �. After an output spike ( y � 1), x decreases by a utilization
fraction U and later recovers with a timescale �. An additive noise of
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magnitude � is added through a Gaussian variable 
. The model assumes
that an input pulse that did not lead to an output spike does not affect
excitability. The differential equation is simulated by Euler method with
time step of 0.01 s and noise scaled by �dt according to Ito’s formula.

Linearized analysis. All the simulations were done using discrete
input and output pulse trains. Most of the mathematical analysis,
however, uses a continuous approximation as a coarse grained ver-
sion of the original equations to facilitate the analysis. We replace yt

with a continuous function f(x) and replace �(t � ti) with a stimulus
intensity I(t). The noise associated with the independent Bernoulli
spiking is absorbed into the additive Gaussian noise in the equation
�� � ��2 	 U2If� x��1 � f� x��, effectively approximating the Ber-
noulli distribution by a normal one as follows:

dx

dt
�

1 � x

�
� UI�t� f� x� 	 ��
 (8)

Linearizing around the fixed point x� results in the following Langevin
equation:

dx

dt
� ��x� x � x� � 	 ��
 (9)

�x � � 1

�0
	 UIf�� x� �� (10)

Despite the large fluctuations in response to a constant stimulus, the
average response probability P� can still constrain model parameters
through the following steady-state equation:

1 � x�

�0
� UIf� x� � � UIf�1�P� � (11)

where we approximate �f(x)	 � f(x�). Substituting the actual sigmoid
into Equation 11 gives rise to the following equation that is the basis for
deriving inequality 41 in the main text:

U�0 �

� 0.5 	
1

�
log�1

P�
� 1��

P� I
(12)

�x �
1 	 ��1 � x� ��1 � f� x� ��

�0
(13)

The Langevin dynamics dictate the statistics of excitability as
x � N(x� , �2/ 2� ), with autocorrelation timescale Tac of x (and also of
P) as follows:

Tac �
1

�x
�

�0

1 	 �1 � P� �� 0.5� 	 log�1

P�
� 1�� (14)

To estimate the response to the fluctuations of the white noise stimulus,
we consider the input’s deviation from the mean using linear analysis
(the variance of 2.6 Hz is not too large compared with the mean of 11 Hz)
as follows:

I � I� 	 Ĩ (15)

d� x � x� �

dt
� �


F� x� �


 x
� x � x� � �


F� x� �


I
�I � I�� 	 ��
 (16)

Equation 16 allows us to evaluate the sensitivity of response probability
to an input perturbation �i � �
Ii��t � ti�.

Adaptive timescale model
The adaptive timescale model (Marom, 2009) is defined by the following
equations:

dx

dt
�

1 � x

�0x�� � U��t � ti� yi 	 �
 (17)

The model’s coarse grained version is as follows:

dx

dt
�

1 � x

�0x�� � UIf� x� 	 U�If(x)(1 � f(x))
 (18)

F� x, I� �
1 � x

�0x�� � UIf� x� (19)

which leads to the following fixed point condition:

U�0 �
�1 � x� � x� �

If� x� �
(20)

x� 	 �
1

�
log� 1

� Pt �
� 1� 	 0.5. (21)

Marginal stability corresponds to a low value of 
F�x�, I�/
x as follows:


F�x�, I�


x
�

1

�0

�1 	 ��x�� � �x���1 	

�e���x��0.5�

1 	 e���x��0.5� �1 � x��x���
(22)

Criticality happens when 
F�x�, I�/
x � 0 as follows:

�1 � �� x� � � �x� ��1 	
�e��� x��0.5�

1 	 e��� x��0.5� �1 � x� � x� � � 0 (23)

Given the average response probability P, we can calculate a critical ex-
ponent �c from Equation 22, which can also be determined graphically by
estimating the slope of the nullcline in log scale.

Dynamical timescale model
The dynamical timescale model augments the adaptive timescale model
by including an equation for the evolution of the recovery timescale as
follows:

d�

dt
� �

1

�r
�� � �0x��� (24)

In addition to the parameters of the adaptive timescale mode, we now
need to infer �r. The most obvious observable effect of �r is different �(x)
relations to the three stimuli. We could therefore get an intuitive estimate
of �r by looking at the separation between �(x) to scale-free stimulus and
constant stimulus. A larger separation indicates a larger value of �r. The
values obtained from the fitting procedure described below confirm this
intuition.

Multiple timescale model
This model is a combination of two single timescales with arbitrary linear
weighting as follows:

ds1

dt
� �1 � s1�/�1 � U1y1 	 �1
1 (25)

ds2

dt
� �1 � s2�/�2 � U2y2 	 �2
2 (26)

P�yi�s1, s2� � �1 	 exp����2yi � 1���1s1 	 �2s2 � �����1 (27)

Inference methods
Inference of �(t)
Given stimulation times ti, model parameters U, �, and the data-
observed probability trace P(t) � R(t)/I(t), where R(t) and I(t) are num-
ber of spikes and stimuli in a given time window, respectively. We are
interested in inferring �(t) such that the resulting probability trace P̂�t�
will be as similar as possible to the data. We used an iterative procedure
that is a simplified version of expectation maximization (Dempster et al.,
1977). The main idea is to use the current estimate of �(t) to obtain P̂�t�
and then to use the difference P̂�t� � P�t� to change �(t). This is done
iteratively until convergence.
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The resolution of �(t) is chosen to be sufficiently low to allow the
model dynamics to have an effect (see below).

Step 1: Initialization. We cut the data into segments by assuming that �
does not change significantly during an individual segment, allowing us
to use the single timescale steady-state condition as follows:

��t� �
�0.5� � artanh�2P�t� � 1��

P�t�UI�
(28)

To avoid local minima, we add Gaussian noise with SD equals to U and
interpolate between individual segments to obtain a continuous �(t).

Step 2: Simulation. Using �(t), we simulate the two Equations (1 and 2)
and get an output P̂�t�.

Step 3: Correction. Using the probability (Eq. 1) derived from
model output, we modify �(t) according to P̂(t) � P(t) using


�j � � ��	
Ij

� I �
�Pj � P̂j� 	 k�� j�1 	 � j�1 � 2� j�. Where �

and k are the learning rate and smoothness constraint, respectively.

The reason for the scaling ��	
Ij

� I �
is that the signal-to-noise

ratio increases with the number of data points. We therefore put more
weight on segments with more data points. We chose � � 0.2 and k �
0.03 according to a fitting score that was defined as the correlation
between model and data probability traces.

Steps 2 and 3 were iterated until convergence of �(t) (�100 iterations).
Choice of estimation time window. To estimate the accuracy of the

inference method, we first applied it to output generated by a model with
known �(t), which is generated by the dynamical timescale equations
(24 –27) giving response probability with same statistics as data. The
estimation window cannot be smaller than the longest interstimulus in-
terval of scale-free stimulus (�5 s) because empty data segments are
highly detrimental to the convergence of the process. Conversely, the
window size should not be too large to avoid missing the dynamics,
leading us to choose a window of 5 s.

Effect of U and � on estimation process. When validating on the model,
U and � are known. For real data, however, we need to choose some
values that might affect �(t). We thus repeated the estimation procedure
for different U and � values and found that the estimation error is similar
whenever U and � are within a reasonable range. This range could be
obtained by the following arguments: First, if U� is very small, then the
dynamics are too slow to follow any stimulus and the covariance to white
noise stimulus will not fit. Second, if U� is very large, then the estimation
process diverges on scale-free stimulus. The reasonable range is set
around U� � �0.1. To compare the results across neurons, we fix the
same U and � values for the entire dataset as U � 0.01, � � 10.

As a sanity check, we compared the results of the model with �(t) to a
Bernoulli sampling using the probability at each time segment. Compar-
ison done at a 1 s resolution was much better for the model, indicating
that fluctuations �5 s could be explained by depletion and recovery
processes within the time segment.

Evaluating dynamical relation of x
If we assume that �(t) is actually a function of x, then we arrive at the
following equation:

dx

dt
� F� x, I� 	 U�If(x)(1 � f(x))
 (29)

Both F(x, I ) and �� � U�If� xt��1 � f� xt�� were estimated from the

model by considering P �xt��t � xt

�t
�xt, I�, where �t is stimulus interval.

For constant stimulus, we only need to consider the histogram of
xt��t � xt

dt
on x. For variable stimulus, however, we need to condition on

different I values. In particular, because we are interested in slow dynam-
ics of excitability, we low passed the input using a 5 s time window.

Inference of � for adaptive timescale
The parameter � can be estimated by the following method:

1. Using fixed values of U � 0.01 and � � 10, estimate �(t) from the
data.

2. Plot the resulting �(t).
3. Using the same U and � values, simulate the dynamics using

���0x ��. This is done for several values of � between 0 and the
critical �. For each �, �0 is calculated from the mean field equation
(Eq. 21).

4. Plot all resulting �(x) curves from estimated �(t) described above,
and choose � based on the curve closest to that obtained from the
�(x) estimated from the data.

In the next section, we show an alternative method of extracting �. The
values obtained there are consistent with the method described above.

General parameter fitting
In addition to the custom method described for � above, we used a more
general approach of cross-validation to fit the parameters of all models,
which allowed us to compare the predictive power of different models
and avoid over fitting.

1. Divide the data into train and test session: the white noise stimulus
is chosen as a training session and the constant and scale-free stim-
uli are chosen as test sessions. This is because white noise has both
a well defined autocorrelation and input– output covariance func-
tions. Furthermore, the scale-free data provide a good test because
both the slow and fast features need to be captured to get a good fit.

2. Scan the parameter space and then choose the best parameters
according to a training score composed of different features of data:

Score � S(Pw(t)) 2 � S(Autow(t)) 2 � S(Covw(t)) 2 �
0.1�

U
. The

four terms are as follows: the Euclidean distance between the prob-
ability trace in 1 s resolution; the Euclidean distance between the
autocorrelation function in 1 s resolution; input– output covari-
ance in 1 s resolution; and a cost associated with �/U as a bias for
solutions with low additive noise. Each component is normalized
by the range of values in the entire parameter set and then raised to
the power of 2. The results are quite insensitive to the power as long
as it is at least 2.

3. To capture the variability of the data, we also use one feature from
the constant stimulus. Only parameters that produce a Fano factor
(in 32 s) larger than 70% of that computed from the data were
considered.

4. The test score is calculated via the average distance between prob-
ability trace averaged in one second bins for constant and scale-free
stimuli.

5. Because of intertrial variability in the data, we do not expect errors
to go to zero. We therefore calculated the average distance between
two probability traces that were derived from two halves of the
trials. This error serves as a reference for the fitting scores and is
displayed as a dashed line in Figure 6C.

In addition to the cross validation study, we also estimated training
error on the entire dataset. We used a similar training score as in the cross
validation session, but with more features of the data: Score � S(Pc(t)) 2

� S(Pw(t)) 2 � S(Pf(t)) 2 � S(rc(t)) 2 � S(rw(t)) 2 � S(rf(t)) 2 �
S(Autoc(t)) 5 � S(Autow(t)) 2 � S(Covw(t)) 5 � 0.1�/U. The additional
elements are rz, which stand for the mean response probability for stim-
ulus z. The autocorrelation in constant stimulus and covariance in white
noise stimulus are raised to a higher power to better differentiate them
because they are the principle features of the data. The selection of opti-
mal parameter is also constrained according to the constant stimulus
Fano factor as above.

Parameter tables
Tables 1 and 2 show the parameters used to fit the autocorrelation to
constant stimulus and input– output covariance to white noise stimulus,
respectively, which are used to generate Figure 2.
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Tables 3, 4, 5, and 6 list the parameters trained with white noise stim-
ulus obtained for the various models, which are used to generate Figure 6.
Robustness of parameters was checked with 
10% variation around the
chosen value. The sensitivity/robustness of these results regarding pa-
rameters variation varies according to neuron. For half of the neurons
that are slightly marginal, 10% variation of each parameter makes almost
no visible impact. For the very critical neuron, results are actually quite

sensitive for parameter changes, especially with �, �, and �1 concerning
criticality. A 10% of � or diminishing 10% of � would make the neural
dynamics unstable.

Table 7 shows parameters trained by all three stimuli for dynamical
scale model, which is used to generate Figures 7 and 8.

Results
Experimental observations
To study the long-term dynamics of single neuron excitability, we
analyzed data obtained by Gal and Marom (2013). Briefly, seven
synaptically isolated neurons situated in a culture of rat cortical
neurons were stimulated by extracellular pulse trains lasting 10
min each. The pulse trains were designed as 10 repetitions of
identical time series to study the reproducibility of responses. The
output spikes were sorted from extracellular recordings. Several
controls were made to ensure that the measured variability arises
from slow excitability dynamics and not experimental drifts (see
Materials and Methods). Because we were interested in long-
term dynamics, the output spikes were averaged in 1 s time bins
to produce a continuous firing rate for further analysis. This
choice led us to denote a periodic pulse train as “constant stimu-
lus” herein to avoid confusion with an oscillatory stimulation
rate. The actual stimulus is of course different from intracellular
experiments in which the same term is used for constant current
injection. Importantly, basing the analysis on this continuous
firing rate rather than on discrete spikes still allows us to describe
the major experimental observations of intermittency and en-
trainment, as will be detailed below.

Intermittency is mostly observed for a constant stimulus. In
this case, the neuron initially responds with an action potential to
every stimulus pulse (Fig. 1A,E, top right). After �30 s, however,
the probability of response drops to �60% and fluctuates around
this value (Fig. 1E, top right, shows an input of 11.5 Hz leading to
an output of around 7 Hz). The simplest explanation is of some
fatigue process characterized by a timescale that is longer than the
interstimulus intervals, such as slow sodium inactivation and po-
tassium activation (Adelman and Palti, 1969; Soudry and Meir,
2012). A closer look at the fluctuations, however, reveals a more
complex picture. Even if we average the response over 5 s bins, the
fluctuations do not seem to subside (Fig. 1B, cyan vs purple).
Following Gal et al. (2010), we quantify this effect by plotting the

Table 1. Parameters used for single timescale model optimized for the
autocorrelation function in response to a constant stimulus (see Fig. 2C,D)

Neuron �0 � U �

38 25 4 0.002 0.036
77 41 40 0.002 0.006
48 38 20 0.002 0.012
14 12.5 10 0.003 0.012
53 7.1 10 0.01 0.03
54 9.6 12 0.01 0.03
35 9.5 40 0.01 0.03

Table 2. Parameters used for single timescale model optimized for the
input– output covariance in response to a constant stimulus (see Fig. 2C,D)

Neuron �0 � U �

38 0.9 5 0.06 0
77 6 40 0.01 0
48 2.9 20 0.02 0
14 1.1 10 0.05 0
53 1.4 10 0.05 0
54 1.9 12 0.05 0
35 2.4 40 0.04 0

Table 3. Parameters for the dynamical timescale model obtained by fitting to
white noise stimulus

Neuron � �0 � U �1 �

38 2.0 0.88 6 0.02 0.31 0.06
77 2.8 0.57 20 0.02 5 0.03
48 2.4 0.72 10 0.02 2.5 0.04
14 2.2 0.053 10 0.25 1 0.13
53 2.6 0.42 15 0.03 5 0.03
54 2.8 0.27 20 0.04 5 0.04
35 2.2 0.31 20 0.06 0.63 0.09

Table 4. Parameters for the adaptive timescale model obtained by fitting to white
noise stimulus

Neuron � �0 � U �

38 2.3 0.72 10 0.02 0.06
77 2.2 1.7 20 0.01 0.01
48 2.6 0.61 15 0.02 0.04
14 2.0 0.07 10 0.2 0.4
53 2.4 0.48 15 0.03 0.045
54 2.8 0.37 15 0.01 0.01
35 2.2 0.38 20 0.07 0.14

Table 5. Parameters for the single timescale model obtained by fitting to white
noise stimulus

Neuron �0 � U �

38 0.59 9 0.09 0.9
77 6.7 15 0.01 0.01
48 6.25 28 0.01 0.08
14 0.29 10 0.13 0.5
53 1.5 10 0.04 0.18
54 1.2 13 0.053 0.3
35 3.2 20 0.03 0.12

Table 6. Parameters for the multiple timescale model obtained by fitting to white
noise stimulus

Neuron U1 U2 �1 �2 �1 �2 �1 �2 � �

38 0.045 0.002 2.2 50 0.6 1.7 0.045 0.04 0.4 7
77 0.059 0.0035 1.7 28 0.6 1.7 0.059 0.018 0.69 7
48 0.2 0.083 0.5 12 0.8 1.25 0.2 0.07 0.34 7
14 0.25 0.0029 0.4 35 0.8 1.25 0.25 0.017 0.20 9
53 0.045 0.002 2.8 60 0.6 1.7 0.036 0.0083 0.7 15
54 0.25 0.0056 0.4 18 0.5 2.0 0.25 0.028 0.65 12
35 0.063 0.0042 1.6 24 0.8 1.25 0.063 0.021 0.97 20

Table 7. Parameters for the dynamical timescale model obtained by fitting to all
three stimuli

Neuron � �0 � U �1 �

38 2.5 0.72 7 0.02 5 0.025
77 2.8 0.56 20 0.02 3.3 0.03
48 2.8 0.55 15 0.02 5 0.04
14 2.0 0.10 10 0.15 1 0.15
53 2.2 0.55 12 0.03 10 0.045
54 3 0.24 20 0.04 2.5 0.06
35 2.0 0.3 20 0.07 0.6 0.14
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Fano factor as a function of time window for three different neu-
rons (Fig. 1C). The degree of intermittency in the response varies
between different neurons. For all neurons, however, the Fano
factor does not go to zero, indicating that we cannot detect an

upper bound for the recovery timescale. We also characterized
these fluctuations by computing the autocorrelation of the re-
sponse (Fig. 1D) that echoes the differences in response variabil-
ity seen in the Fano factor.

Figure 1. Experimental data. A, Intermittent response to stimuli. B, Firing rate of a neuron in response to constant stimulus displayed using bins of either 1 s (purple) or 5 s (cyan), showing that
fluctuations exist in both fast and slow timescales. C, Fano factor as a function of time window under constant stimulus (dots). Linear fits (solid lines) are provided to visualize the trends. Dashed lines
are linear fit for same analysis with white noise stimulus. D, Autocorrelation function of the response of three neurons under constant stimulus. E, Three stimulus types, constant, white noise, and
scale-free, characterized by different auto-covariance functions (left), applied to the same neuron. Mean output rate (right, black lines) and single trials (gray lines) are measured in 1 s resolution.
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In contrast to this variability, a much more reliable response
profile is revealed when the stimulus itself presents large variabil-
ity. Entrainment of response to stimulus was studied by stimuli
with either white noise or scale-free interpulse statistics (Fig. 1E,
left). All three input protocols were matched to the same mean
rate of 11.5 Hz. As can be observed from Figure 1E (right), the
neuron’s output is better entrained by the stimulus as the latter’s
variability increases. We later quantify entrainment by the corre-
lation between input and output firing rates and the reproduc-
ibility across trials (see Figs. 2, 5, 7, and 8).

A minimal model suggests stimulus-dependent timescales
Intermittency and entrainment represent two seemingly contradictory
features of the neuron’s response to stimulus. To provide one frame-
workforexplainingbothaspectswhilekeepingthestructureassimpleas
possible, we started by looking for a minimal model.

The classical approach to neural excitability is through the
Hodgkin–Huxley formalism, in which excitability could be re-
garded as response sensitivity, depending mainly on the ratio
between sodium and potassium conductance (Gilboa et al.,
2005). The original Hodgkin–Huxley model focuses on the fast
millisecond dynamics of spiking. Although slow timescale exten-
sions to this formalism were proposed (Adelman and Palti, 1969;
Rudy, 1978; Schneidman et al., 1998), we chose to pursue a

different route to keep our focus only on prolonged and slow
excitability dynamics beyond 1 s. We therefore use a simplified
framework that is formulated directly in this scale.

Specifically, our minimal model consists of an abstract excit-
ability variable x that represents resources (e.g., fraction of active
sodium channels). Upon a spike, x decreases by a utilization frac-
tion U and later recovers with a timescale � (Fig. 2A). The model
also includes an additive noise term to capture variability of the
output. The probability of spiking given an input pulse is deter-
mined by the excitability x according to a sigmoid function (Gil-
boa et al., 2005). The model, with parameters U, �0, �, and �, is
given by the following equations:

dx

dt
�

1 � x

�
� U��t � ti� yi 	 �
 (30)

P�yi � 1�xi
–� � f�xi

–� � �1 	 exp����xi
– � 0.5����1 (31)

where 
 is taken from a normal distribution with zero mean and
unit variance. By an appropriate choice of parameters, the model
can capture the overall response probability in response to a con-
stant stimulus. The neuron initially responds to the stimulus in a
one-to-one manner and neural excitability drops upon each
spike. After �50 s, the neuron begins to react stochastically,

Figure 2. A single timescale is insufficient to describe both intermittency and entrainment. A, Model schema. Input elicits a spike with a probability determined by the excitability x, causing
depletion by a factor U, followed by recovery with a timescale �. White noise of amplitude � is added to x. B, Fano factors of response probability as a function of time window. Data (black) are
compared with model (�� 0, blue; �� 18U, red). C, Autocorrelation of response probability to constant stimulus (calculated in 1 s resolution) as a function of time. Data (black) are compared with
models chosen to fit either the autocorrelation (red) or the input– output covariance under white noise stimuli (green). D, Input– output covariance for white noise stimulus for the same three
neurons. Colors are the same as in C.
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which in turn weakens depletion and increases recovery. This
model, however, is not able to capture both the intermittency and
entrainment aspects of the data, as will be shown below.

To gain insight about the model, we use a coarse-grained ver-
sion that will serve as a basis for subsequent models here as well.
Specifically, we replace both the discrete input and output with
smoothed continuous versions and approximate stochastic spik-
ing with an additive Gaussian noise (see Materials and Methods).
Note that the model is still simulated with discrete input and
output pulses, but the continuous version below facilitates our
understanding of it:

dx

dt
� �F� x, I� 	 ��
 (32)

F� x, I� � �
1 � x

�0
	 UIf� x� (33)

�� � ��2 	 U2If� x��1 � f� x�� (34)

For the constant and white noise stimuli, we linearize the dynam-
ics around the fixed point x� implicitly defined by the following:

U�0 �

� 0.5 	
1

�
log � 1

f�x��
� 1��

f�x��I�
(35)

The resulting linearized equations describe an Ornstein–Uhlen-
beck process for the excitability as follows:

d�x � x��

dt
� �


F�x��


x
�x � x�� �


F�x��


I
�I � I�� 	 ��


(36)


F� x� �


 x
� U �If� x� ��1 � f� x� �� 	

1

�0
(37)


F� x� �


I
� Uf� x� � (38)

The formulas above lead to the following observables: the auto-
correlation function of output probability under constant stim-
ulus (via its timescale Tac) and the input– output covariance
function under white noise stimulus (via its amplitude � and
timescale Tcv) as follows:

Tac � Tcv � 1/

F� x� �


 x
(39)

� � � � �I � 2

F� x� �


I
(40)

Where ��I	 is the SD of the input averaged in 1 s time bins. The
two observables are not independent because the partial deriva-
tives are related, giving rise to the following constraint:

1

Tac�
�

I�1 � f �

� �I � 2 (41)

Tac is inversely correlated to �, imposing a tradeoff between long-
term fluctuations and high sensitivity to input.

Measuring these observables from the data reveals a long au-
tocorrelation time Tac under constant stimulus (Fig. 2C, black:
5–50 s), but also a large input–output covariance � under white

noise stimulus (Fig. 2D, black, �0.1 to �0.2), violating the tradeoff
imposed by the minimal model. The parameter set satisfying the
autocorrelation in constant stimulus (Fig. 2C, red) is inadequate to
describe the neuron’s response to a fluctuating input for most of the
dataset, as characterized by the input–output covariance under
white noise stimulus (Fig. 2D, red). Conversely, fitting the input–
output covariance in white noise stimulus (Fig. 2D, green) results in
a much shorter autocorrelation timescale in constant stimulus (Fig.
2C, green). This failure of the single timescale model indicates that
the effective timescales in the same neuron differ by an order of
magnitude. A possible explanation could be multiple timescales op-
erating in parallel, but we show below (in the section “Dynamical
timescale model”) that it does not describe the data well. Instead, we
opt for a phenomenological description of a single timescale that
adapts to different input statistics.

Another paradox revolves around the noise level. In the data,
the Fano factor is large across all timescales, suggesting � 		 U
(Fig. 2B). At the same time, we observe a relatively high repro-
ducibility across trials to white noise and scale-free stimuli (Fig.
8B,C), suggesting a high signal-to-noise ratio, implying � �� U.
Fitting the single timescale model to the observed Fano factor
results in negligible reproducibility for fluctuating stimuli
(0.06 
 0.02 model vs 0.42 
 0.16 data to white noise and 0.11 

0.08 vs 0.55 
 0.15 for scale-free stimulus). This apparent para-
dox raises questions on the origin of “noise”: are the observed
fluctuations really noise or do they point to unknown biological
fluctuations that interact with the internal state of the neuron?
This issue will also be discussed in the following section.

Inferred dynamic timescale suggests a marginally
stable regime
If the best choice of a timescale depends on the stimulus regime,
could this optimal timescale also change on a finer scale? To
explore this possibility, we took a novel analysis approach: mea-
suring a dynamic timescale. We assumed that � is a function of
time and developed a simplified expectation minimization algo-
rithm to infer �(t) from the data (see Materials and Methods).
The other parameters, U and �, were chosen to fit the input–
output covariance under fluctuating stimuli. Given the thou-
sands of parameters tuned to the data, it is not surprising that the
model fits the data perfectly (Fig. 3A). We will show that, despite
this overfitting, we can still gain insights from these results.

As we suspected, �(t) does not only vary between stimulus
regimes, but also within the same stimulus regime (Fig. 3B). To
gain insight into these fluctuations, we return to the coarse
grained dynamics of Equation 3 and extend them to the case
where � depends on time as follows:

dx

dt
� �F� x, I, t� 	 ��
 (42)

F� x, I, t� � �
1 � x

��t�
	 UIf� x� (43)

�� � U�If� x��1 � f� x�� (44)

Equation 42 can be viewed as a generalized drift diffusion equa-
tion for excitability, with the drift term F(x, I, t) describing the
deterministic effects and the diffusion term ��
 describing ran-
domness inside the system.

We also make a further simplification by assuming that the drift
term only depends indirectly on time. Specifically, we replace F(x, I,
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t) with F(x, I) by averaging across all time bins that share the same
value of x and I (see Materials and Methods).

The qualitative behavior of the system is strongly affected
by the ratio of drift to diffusion, F� x, I�/��. We thus measure
F� x, I�/�� directly from data via our � estimation procedure.
For constant stimulus (I � 11.5 Hz), F(x, I ) only depends on x.
The red curves in Figure 3D show the dependence of F� x�/��
on x, with the shaded area indicating the noise dominated
regime (F(x)���). A stable fixed point exists at x� 	 0.55,
revealed by the negative slope around F(x�) � 0. This slope,
although negative, is small compared with the noise, indicat-
ing a weak or marginal stability. We will show that this mar-
ginally stable regime, characterized by a weakly sustained
equilibrium with noise-driven dynamics, can explain the main
experimental observations.

These dynamics are qualitatively different from those ob-
tained from a single timescale model, as shown in the previous
section. To show this, we apply the same estimation process to
output generated from a single timescale model using the same
U,� calibrated to the same fixed point. The associated drift diffu-
sion ratio F�(x)/�� is much more inclined than that measured
from the data, revealing a stable attractor (blue line in Fig. 3D). In
this case, we can determine analytically the slope 
F�(x)/
x �
(1/�0 � U If�(x�)). We use relatively large U and short �0 to fit the
response to white noise stimulus, so 
F(x)/
x is also a relatively

large number. Because the diffusion term is the same for both
models, we have �
F(x)/
x� �� �(
F�(x))/
x�.

This observation leads to a new explanation of the origin of
excitability fluctuations: marginally stable dynamics. Because, for
most x values estimated from the data, F(x) is smaller than ��, the
dynamics of x is fluctuation dominated and resembles a random
walk. Combined with the nonlinear transfer function, the result-
ing spike train is characterized by long-term correlated fluctua-
tions (Soen and Braun, 2000). Note that this is a different source
of noise compared with the large additive noise introduced in the
single timescale model.

We now consider how entrainment by variable stimuli can occur
in such a setting. The neuron’s response to fast changes in the input
is addressed by choosing U to fit white noise susceptibility. What
remains to be explained is entrainment over slower timescales,
which is determined by changes to F(x, I)/�� as a function of I.

Thus we measure the dependence of F(x, I)/�� on I for a fixed
value of x for white noise and scale-free stimuli. Figure 3E shows
that the drift is larger than the noise for many input values used in
the experiment. This property can be formalized as an inequality
of the linearized dynamics as follows:


F� x� �


 x̃
��


F� x� �


 Ĩ
(45)

Figure 3. Estimation of � as a function of time. A, Response probability for constant (top), white noise (middle), and scale-free (bottom) inputs. Data (black) are compared with model with
estimated �(t) (red) (B) Estimated �(t) for constant and scale-free inputs. C, Excitability, x(t), obtained from optimized model (red) is compared with that obtained from fitting a single timescale
model (blue). D, Drift to diffusion ratio of excitability calculated as function of excitability. �(t) model (red) is compared with single timescale model (blue) for both constant and white noise stimuli.
For white noise, input intensity between 10 and 12 Hz was used. Shading emphasizes diffusion dominated regime. E, Same ratio as a function of external input, revealing a large sensitivity to input
for both white noise and scale-free stimuli.
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This inequality reconciles the long autocorrelation timescale with
the high input– output covariance. The dynamics are diffusion
dominated for a stationary input (intermittency, large Fano fac-
tor) and drift dominated in response to external perturbation
(entrainment, high reproducibility). The two features are hall-
marks of the marginally stable regime.

Adaptive recovery timescale accounts for marginal stability
Our description above of F(x, I) only used the estimation of � as
an intermediate step. Specifically, �(t) was used to derive x(t),
from which we derived F(x, I). We now use our observations to
formulate a compact model that captures the main aspects of the
data. To that end, we determine what functional dependence �(x)
leads to marginal stability. In the extreme case of F(x, I) � 0, this
amounts to �(x) � (1�x)/UIf(x), as depicted in Figure 4C. This
functional form implies a a history-dependent recovery timescale
(Toib et al., 1998; Lundstrom et al., 2008) and is very similar to
power law dependence, as suggested by the adaptive transition
rate model (Marom, 2009). The biophysical intuition behind that
model is of an ensemble of channels that reside in various states
along an abstract inactivation axis (Fig. 4A). Recovery from the
inactive domain depends on diffusion and is thus slower for
states that are more to the right. The current excitability acts as a

reporter on the distribution of inactive states, leading to the
relationship � � x��. In this paper we refer to this model as
adaptive timescale rather than adaptive transition rate, and it is
given by the following:

dx

dt
�

1 � x

�0x�� � U��t � ti� yi 	 �
 (46)

Different levels of marginal stability associated with each neuron
are captured by different values of the exponent � (Fig. 4B, C).
The critical value of � for which the dynamics are closest to the
critical state is obtained from 
F(x, I)/
x � 0 (see Materials and
Methods). With marginal stability this model is able to fit the
long-term fluctuations of the constant stimulus, revealed by Fano
factor measured in 32 s (1.3 
 0.9 model vs 1.4 
 1 data) and at
the same time maintaining a strong signal-to-noise ratio to fluc-
tuating input, revealed by reproducibility (0.21 
 0.09 model vs
0.42 
 0.16 data for white noise stimulus and 0.55 
 0.15 model
vs 0.46 
 0.24 data for scale-free stimulus with best fit). Note that
Equation 45 shows that sensitivity to input is not affected by
marginality, leading to the inequality between external and inter-
nal sensitivity holding for a large range of input values as follows:

Figure 4. Adaptive timescale model from Marom (2009). A, Model schema depicting the distribution of channel states along an abstract inactivation axis. The effective recovery timescale
depends on the fraction of channels in various inactive states. This fraction is proportional to the fraction of excitable states, so x acts as a reporter of the timescale. The proposed equation captures
this relationship. B, Drift to diffusion ratio of excitability as a function of excitability for three example neurons (colors same as in Fig. 1) under constant stimulus. The points were extracted from
adaptive timescale models fit to each neuron, showing varying degrees of marginal stability. C, The �(x) relationship of the same neurons, compared with the x nullcline. With noise, the dynamics
move along a region where these curves are close to the nullcline.

Xu and Barak • Dynamical Timescale in Excitability Dynamics J. Neurosci., April 26, 2017 • 37(17):4508 – 4524 • 4517




F� x, I�


 Ĩ
� Uf� x� � 		


F� x, I�


 x̃
(47)

Even without additive noise (� � 0), we are able to capture the
marginal stability and fit both autocorrelation (Fig. 5A) and the

Fano factor (Fig. 5C). Additive noise can offer an alternative ac-
count of response fluctuations (Fig. 5C). The resulting dynamics,
however, are different. If � is responsible for variability, then
excitability performs a random walk independent of input. As a
result, we get lower reproducibility (Fig. 5D). In contrast, vari-

Figure 5. Comparison of adaptive timescale model with data. A, Autocorrelation of response probability to constant stimulus for the three example neurons (rows) and their corresponding
models with or without noise. B, Input– output covariance for white noise, model with same parameter as in A is compared with data (C). Fano factor in a large time window (32 s) as a function of
� with � � 0 (red) or � � 2U (blue). The dashed line indicates Fano factor in 32 s averaged across all neurons under constant stimulus. D, Reproducibility of output to scale-free stimulus as a
function of �. The dashed line indicates reproducibility averaged across dataset under scale-free stimulus. E, Comparison of response probability of model and data to the constant (black) and
scale-free (red) stimuli. The example neuron is the middle one in A. F, Relationship between � and x for different stimulus statistics (scale-free in red, constant in black) as estimated from the data
(dashed) or from the � 	 0 model (solid lines). Shading indicates SD. Example neuron is the same as in E.
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ability originating from marginal stability causes the magnitude
of the random walk to be heavily influenced by the stimulus,
leading to high reproducibility between trials (Fig. 5D). There-
fore, by measuring the Fano factor and reproducibility together
we could infer the origin of fluctuations.

Apart from providing a compact description of the data, our
estimation method offers a first example of a measurement of
the exponent � directly from data (see Materials and Methods).
Closer inspection, however, reveals the shortcomings of this
model. The covariance function to white noise stimulus reveals a
significant delay that is not observed in the real data and cannot
be solved by varying parameters (Fig. 5B). Another discrepancy is
observed in the response to scale-free stimulus: there is a system-
atic error associated with high input intensity (Fig. 5E), showing
that the input– output relation is not described correctly. These
failures limit the predictive power of the model, which is only
mildly better than the single timescale model (discussed below;
Fig. 6C).

The systematic error on the fit to scale-free stimulus sug-
gests that � might not be completely determined by x. To probe
this relationship directly, Figure 5F shows that, indeed, �(x)
differs between white noise and scale-free stimuli. This dis-
crepancy leads us to our final model.

Dynamical timescale model
Guided by the findings above, we reexamine the underlying in-
tuition for the adaptive timescale model (Fig. 4A). Specifically, we
note that, in order for excitability to be a reporter of the recovery
timescale, the distribution of channels has to reach a steady state.
If, however, the diffusion timescale is comparable to or longer
than the transition timescale between active and inactive states,
this would no longer be the case (Fig. 6A). We thus assume that �
relaxes toward a function of x as follows:

dx

dt
�

1 � x

�
� U��t � ti� yi 	 �
 (48)

d�

dt
� �

1

�r
�� � �eq� x�� (49)

�eq � �0x�� (50)

This simple modification greatly improves the ability of the
model to describe the data, as revealed by the following cross-
validation. We fit model parameters for each neuron using the
entire white noise stimulus and the Fano factor from the constant
stimulus (Fig. 6B, middle). Using the same parameters, the model
provides a good description of the response to constant and scale-
free stimuli (Fig. 6B). We quantified both the test error and the
training error (ability to fit all three stimuli) for all models de-
scribed so far, showing a performance jump when moving to the
dynamic timescale model (Fig. 6C). The relaxation timescale �r

accounts for the separate x � � relationships derived from con-
stant and scale-free stimuli (Fig. 7A). Figures 7 and 8 summarize
various comparisons of the model to the data, showing that we
are able to address all the main shortcomings of the adaptive
timescale model. The systematic error in input– output relation
to scale-free stimulus is corrected (Fig. 7B). The model captures
precisely both the autocorrelation function under constant stim-
ulus (Fig. 7C) and the covariance function under white noise
stimulus without any delay (Fig. 7D). Figure 8, A and B, shows
that the model fits the average response probability and its vari-
ance in the individual neuron level.

Due to marginal stability, the model captures rather well both
intermittency and entrainment as measured by the Fano factor
(1.3 
 0.5 data vs 1.4 
 1 model) and average reproducibility
(0.32 
 0.08 model vs 0.42 
 0.16 data for white noise stimulus
and 0.55 
 0.15 model vs 0.55 
 0.12 data for scale-free stimulus
with best fit). Although all neurons display intermittent response
to constant stimulus and entrainment to variable input, the bal-
ance between these two features varies. Figure 8, B–E, shows the
different measures of this tradeoff, with lines connecting the
model and data for each neuron. For most of the data, the lines
connecting data and model are short, indicating that the model is
able to capture different balances between intermittency and en-
trainment for each neuron in the full experimental range.

Some insight into the model can be gained by dividing the
parameters to those that are responsible for fast responses
(U, �0, �) and slow dynamics (�, �1). The former are mainly
revealed by the immediate response to input perturbation,
whereas the latter manifest mainly in the long-term fluctuation
and history dependency. The stimulus-dependent �(x) profile
(Fig. 7A) is mostly shaped by the slow dynamics. The dynamical
timescale model is able to answer the original question about distinc-
tive timescale of output correlation and input–output covariance by
the separation of timescales. The parameters obtained indicate that
the relaxation process is substantially slower than the recovery pro-
cess (3.9 
 3 s for �r vs 0.4 
 0.2 s for �0), decoupling the immediate
impact of input perturbation from the slow process. Because the
dynamical timescale provides a good description of both slow and
fast processes, it is able to predict the response to the scale-free stim-
ulus that contains both slow and fast components.

The dynamical timescale is an abstraction of many processes
with different timescales. To compare the model’s predictive
power with a more explicit representation of multiple processes,
we fit a model with 10 parameters that combines two indepen-
dent timescales (see Materials and Methods). As shown in Figure
6, C–E, whereas the model is able to fit the training data as well as
the dynamical timescale model, its predictive power is worse. In
particular, it is not able to capture intermittency and entrainment
simultaneously.

Discussion
We analyzed the response of several neurons to different types of
extended stimuli. Consistent with previous experimental reports,
we found response fluctuations over large timescales for constant
inputs (intermittency) and less variable responses for more vari-
able stimuli (entrainment). Our analysis revealed that the neu-
rons operate in a marginally stable regime that reconciles these
two seemingly paradoxical aspects. This regime is characterized
by a separation of timescales in the reaction to internal and ex-
ternal perturbations, which are linked directly to intermittency
and entrainment, respectively. This regime explains scale-free
fluctuations observed under constant stimulus and at the same
time strong input coupling observed under white noise stimulus.

We proposed a novel approach to derive a model for this
multiple timescale adaptation. Using a simplified expectation
maximization method, we infer from the data both a continuous
adaptation timescale, �(t), and the corresponding excitability,
x(t). Observing the inferred excitability trace has revealed the
marginally stable regime described above.

We showed that the qualitative features of the data can be
approximated by the adaptive timescale model proposed by Ma-
rom (2009). We provided the first experimental estimate of the
model’s power law exponent, �. This model can only match the
observed multiple timescale fluctuations when � approaches a
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Figure 6. Dynamic timescale model. A, Schema indicating why x might not be an instantaneous reporter of recovery timescale. If the diffusion among inactive states is slower than the transition
between active and inactive ones, then the distribution will slowly relax into the adaptive rate schema of Figure 4A. Top, A decrease in external input can allow a rapid increase in the fraction of
excitable states, but the distribution of deeply inactive states has not yet stabilized. Bottom, An increase in stimulation rapidly depletes excitable states leading to the opposite scenario. B, Dynamical
timescale model trained on white noise stimulus provides a good prediction to constant and scale-free stimuli. The data output rate (black) is compared with the model’s output (blue train session,
red test session) under three stimuli (green, SF: scale-free stimulus). The SD of data is represented by gray shading. C, Comparison of prediction performance between models with different number
of parameters (4 for single timescale, 5 for adaptive timescale, 6 for dynamic timescale, and 10 for multiple timescales). Models are trained on white noise data and tested on constant
(blue) and scale-free (red) data. The fitting performance on white noise data is also shown by black line. The dashed line below indicates variability of data, serving as a reference of model
performance with color corresponding to description above. D, Error in matching autocorrelation from data under constant stimulus for individual neurons (light gray) and averaged (solid
black) compared between four models. E, Ratio between reproducibility in model and data under scale-free stimulus for individual neurons (light gray) and averaged (solid black)
compared between four models.
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critical value, corresponding to a random walk along an approx-
imate line attractor.

Although the adaptive framework provides a decent approxi-
mation to the data, several systematic errors remain, primarily
the dependence of the neuron’s response on long-term statistics.
To address these issues, we proposed the dynamical timescale
model. This model treats the recovery timescale as a dynamic
variable, giving rise to a 2D dynamical system. The model ex-
plains all major observations on the data.

The structure of the model suggests a possibility of a hierarchy
of adaptive timescales in which �r itself is determined by another
differential equation, similar in form to that of the recovery time-
scale �. For the data that we studied, our two-layer model proved
to be sufficient. It might be speculated that a full hierarchical
structure would be revealed by longer experiments.

The issue of variability reduction by natural stimuli was also
addressed in shorter timescales both experimentally (Mainen and
Sejnowski, 1995) and theoretically (Schneidman et al., 1998).
The proposed model consisted of a stochastic Hodgkin–Huxley
model poised near the threshold. Although formulated for very
different timescales, the essence of the dynamical state is actu-
ally similar to our proposed marginal stability. A similar regime

was also explored in a very different setting: networks with bal-
anced excitation and inhibition operating in a fluctuation driven
regime for a large range of parameters (van Vreeswijk and Som-
polinsky, 1996, 1998). Note that, in our case as well, marginal
stability does not depend on a finely tuned choice of parameters
or inputs.

Our model draws inspiration from the experiments and mod-
els developed for ion channel dynamics. Channel gating was de-
scribed as a discrete Markov process (McManus and Magleby,
1988; Millhauser et al., 1988) or as a deterministic fractal system
(Liebovitch et al., 1987; Lowen et al., 1999). Despite their differ-
ent origin, both descriptions gave rise to similar wide distribu-
tions (up to power law) of residence durations (Korn and Horn,
1988). Our model deals with longer timescales, probably corre-
sponding to channel inactivation. Our approach is an abstraction
of the Markov chain approach, in which the effective timescale
captures the distribution among states in the chain, but the large
number of states gives rise to a continuous version that is formally
similar to the fractal models. The simple structure of the model
allows us to extract the parameters directly from data and predict
responses to novel stimuli, but does not allow for a clear biophys-
ical interpretation of model parameters.

Figure 7. Dynamical timescale model captures qualitative features of data. A, Relationship between � and x for different stimulus statistics (red and black) as estimated from the data (dashed
lines) or from the dynamical timescale model with �r � 5s (solid lines). Shading indicates SD of the model from the average. Same experimental neuron is used as Figure 5E. B, Comparison of
response probability of model and data to the constant (black) and scale-free (red) stimuli. Same neuron as A. C, Autocorrelation of response probability to constant stimulus for the three example
neurons (rows) and their corresponding models. D, Input– output covariance for white noise. Model with same parameter as C is compared with data.
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At the single neuron level, proposed
models of slow dynamics include frac-
tional differentiation (Lundstrom et al.,
2008) and power law kernels (Pozzorini et
al., 2013), among others. These models
integrate incoming stimuli by a linear ker-
nel. The specific kernel that was able to fit
many aspects of their data is equivalent to
a sum of exponential kernels with slow
and fast timescales. While providing ex-
cellent predictions for the experiments to
which they were developed (intracellular
current injections over tens of seconds),
their linear nature is unlikely to fit the ex-
periments that we analyzed. Several as-
pects of the data we analyzed seem to
suggest a nonlinear model—the response
rate increases with stimulus variance de-
spite maintaining the same mean input
rate. This can be understood as a strong
response for isolated bursts compared
with periodic pulses. The short bursts are
not long enough to increase � and de-
crease output with the dynamic timescale
model because � has certain inertia,
whereas a linear model would respond
maximally to periodic input. The main
effect studied here, high reproducibility
under scale-free input with strong fluctu-
ation observed in constant stimulus,
might also be beyond linear models. Spe-
cifically, our two parallel timescale model
was not able to fit this behavior despite
having more parameters than the dy-
namic timescale model. It might be spec-
ulated that an interaction between the
different timescales is necessary and the
dynamic timescale is an abstraction of
such an interaction.

Recently, a dynamically adaptive
threshold model reminiscent of dynami-
cal timescale has been suggested (Mensi et
al., 2016). The nonlinear dynamical pro-
cesses in that study enhanced sensitivity to
input fluctuation on different levels of
baseline input, preserving the sensitivity
to a broad range of input statistics.

A multiple timescale architecture was
also suggested as a form of synaptic plas-
ticity (Fusi et al., 2005). A cascade of hid-
den metaplastic states governed the actual
synaptic efficacy, leading to a near optimal
combination of memory retention and
initial signal-to-noise ratio. Although the underlying biophysics
are different, the cascade model shares some similarities with our
work. Relating the metaplastic states of the synapse with the space
of inactive channels in the neuron, we can draw some analogies.
The decay of stimulus impact measured by input– output cova-
riance follows a multiple timescale process instead of single time-
scale exponential function. This decay time is in a sense a measure
of memory retention of the stimulus. For a given memory reten-
tion value, the dynamical timescale model has a better signal-to-
noise ratio than the single timescale model. Therefore, our

dynamical timescale formalism might translate into the synaptic
domain as well.

Our model provides a compact description of neural re-
sponses in timescales much longer than those associated with
spiking. What could be the functional consequences of such slow
processes? Specifically, can excitability dynamics be a form of
memory? This question was addressed by another model applied
to similar data, suggesting that the long-term fluctuations of neu-
ral excitability are not a signature of long memory (Soudry and
Meir, 2014). That model consisted of a parallel architecture of

Figure 8. Comparison of dynamic timescale model with data. A, Comparison of the mean response probability of the model and
data for all seven neurons (different colors) and three stimulus protocols. B, Comparison of the variance of response probability of
the model and data for all seven neurons (different colors) and three stimulus protocols. C, Entrainment–variability tradeoff as
quantified by input– output covariance (white noise stimulus) and 32 s window Fano factor (constant stimulus), respectively. Lines
connect model and data for each neuron. D, Same as B, but reproducibility was measured using scale-free input. E, Same tradeoff
quantified by reproducibility between trials for white noise stimulus versus Fano factor (constant stimulus) in 32 s time window. F,
Same as D, but using a scale-free stimulus.
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slow and rapid processes. The response to input is mostly shaped
by the fast processes, whereas the slow processes only lead to
internal fluctuations. Our model bears some similarities to that
analysis because the response to external perturbations is primar-
ily governed by fast processes (U and �0). Nevertheless, the serial
nature of our model leads to a larger effect of the slow processes
on input processing. Input history could be encoded in the
recovery timescale, which in turn can affect the dynamics of
excitability.

Finally, part of the motivation of formulating a compact
model is to enable its integration into network models. Although
outside of the scope of the current study, we can speculate on
possible implications. Marginal stability can cause a population
to develop a heterogeneous response to homogeneous input,
which would lead to a better coding efficiency (Marder and
Goaillard, 2006). Whether synaptic coupling would cancel this
heterogeneity remains to be seen (Soen and Braun, 2000). The
dynamic timescale offers a “hidden depth” to the neuron, which
could be a substrate for information processing of time series.
This might be particularly useful for processing time series with
natural statistics because they contain many timescales (Drew
and Abbott, 2006; Lundstrom et al., 2008, 2010; Pozzorini et al.,
2013). Finally, a powerful element of recurrent neural networks
in the machine learning community is the “long short-term
memory” (LSTM) unit (Hochreiter and Schmidhuber, 1997).
This element is endowed with a “forget” gate (Gers et al., 2000)
that can be described as inducing an effective timescale. It would
be interesting to explore whether the activity-induced changes to
the LSTM timescale resemble those explored in our work and
how our dynamical timescale could inspire new forms of special-
ized units for machine learning purposes.
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