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Different Signal Enhancement Pathways of Attention and
Consciousness Underlie Perception in Humans
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It is not yet known whether attention and consciousness operate through similar or largely different mechanisms. Visual processing
mechanisms are routinely characterized by measuring contrast response functions (CRFs). In this report, behavioral CRFs were obtained
in humans (both males and females) by measuring afterimage durations over the entire range of inducer stimulus contrasts to reveal
visual mechanisms behind attention and consciousness. Deviations relative to the standard CRF, i.e., gain functions, describe the strength
of signal enhancement, which were assessed for both changes due to attentional task and conscious perception. It was found that
attention displayed a response-gain function, whereas consciousness displayed a contrast-gain function. Through model comparisons,
which only included contrast-gain modulations, both contrast-gain and response-gain effects can be explained with a two-level normalization
model, in which consciousness affects only the first level and attention affects only the second level. These results demonstrate that attention and
consciousness can effectively show different gain functions because they operate through different signal enhancement mechanisms.
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Introduction
Attention and consciousness are both major cognitive functions
that determine visual processing. The relationship between atten-
tion and consciousness and their effects on our visual perception
have been strongly debated (Wundt, 1874; Iwasaki, 1993; Posner,
1994; Chun and Wolfe, 2000; Dehaene et al., 2006; Koch and
Tsuchiya, 2007; Mole, 2008; De Brigard and Prinz, 2010; van

Boxtel et al., 2010a; Cohen et al., 2012; Koch and Tsuchiya, 2012;
Prinz, 2012). A commonly held belief is that a tight link exists
between attention and consciousness (Dehaene et al., 2006; De
Brigard and Prinz, 2010; Cohen et al., 2012; Prinz, 2012). How-
ever, other researchers believe that attention and consciousness can
be separated experimentally (Kentridge et al., 2004; Wyart and
Tallon-Baudry, 2008; Brascamp et al., 2010; van Boxtel et al., 2010b;
Watanabe et al., 2011). It should be noted that “attention” here refers
to endogenous directed focal attention, not, for example, exogenous
attention, and “consciousness” refers to perception as gauged by
reported visibility and manipulated through masking.

Evidence that attention and consciousness are separable would
find the strongest support from a double dissociation between these
two functions (Koch and Tsuchiya, 2007; van Boxtel et al., 2010a;
Cohen et al., 2012); that is, when the effects of attention and
consciousness go in opposite directions. A rare behavioral exam-
ple of such a double dissociation comes from a psychophysical
paradigm that investigated how afterimage durations are affected

Received June 13, 2016; revised April 13, 2017; accepted May 11, 2017.
Author contributions: J.J.A.v.B. designed research; J.J.A.v.B. performed research; J.J.A.v.B. contributed unpub-

lished reagents/analytic tools; J.J.A.v.B. analyzed data; J.J.A.v.B. wrote the paper.
This work was supported in part by the Netherlands Organisation of Scientific Research (Rubicon Grant). I thank

Naotsugu Tsuchiya, Jakob Hohwy, and April Kartikasari for feedback on the manuscript and Drisika Acharya for help
with the data acquisition.

The author declares no competing financial interests.
Correspondence should be addressed to Jeroen J.A. van Boxtel, Monash Biomedical Imaging (bld 220), Monash

University, 770 Blackburn Rd, Clayton, VIC 3800, Australia. E-mail: j.j.a.vanboxtel@gmail.com.
DOI:10.1523/JNEUROSCI.1908-16.2017

Copyright © 2017 the authors 0270-6474/17/375912-11$15.00/0

Significance Statement

The relationship between attention and consciousness is still debated. Mapping contrast response functions (CRFs) has allowed
(neuro)scientists to gain important insights into the mechanistic underpinnings of visual processing. Here, the influence of both
attention and consciousness on these functions were measured and they displayed a strong dissociation. First, attention lowered
CRFs, whereas consciousness raised them. Second, attention manifests itself as a response-gain function, whereas consciousness
manifests itself as a contrast-gain function. Extensive model comparisons show that these results are best explained in a two-level
normalization model in which consciousness affects only the first level, whereas attention affects only the second level. These
findings show dissociations between both the computational mechanisms behind attention and consciousness and the perceptual
consequences that they induce.
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by attention and consciousness (van Boxtel et al., 2010b). It was
shown that consciousness increased afterimage durations, whereas
attention decreased afterimage durations.

Although this previous research shows strong support for a
dissociation between attention and consciousness, it does not pro-
vide insight into how this dissociation comes about. To gain such
mechanistic understanding, researchers often map out contrast
response functions (CRFs) (Albrecht and Hamilton, 1982; Reyn-
olds and Heeger, 2009; Carrasco, 2011). Therefore, to determine
whether the effects of attention and consciousness are subserved
by similar or different mechanisms, afterimage durations were
measured over a range of contrasts to determine behavioral CRFs
and investigate the modulations of this curve caused by attention
and consciousness.

CRFs of neuronal responses (Albrecht and Hamilton, 1982),
as well as behavioral performance (Carrasco, 2011), generally
increase in a sigmoidal fashion with increasing stimulus contrast
(see Fig. 1A). Attention generally enhances contrast responses,
but it can do so in different ways (Reynolds and Heeger, 2009; Car-
rasco, 2011). For example, attention can shift the contrast response
curve to the left, thereby effectively boosting stimulus contrast
(Reynolds and Heeger, 2009; Carrasco, 2011). This response mod-
ulation is called a contrast gain function and shows the largest
effects at intermediate contrasts (Fig. 1A,B). Attention has also
been reported to modulate responses multiplicatively. This type
of function is called a response gain function, which shows the
largest effects at high contrasts (Fig. 1A,B). The influence of
consciousness on CRFs is not yet known, although one of the
techniques to modulate conscious perception, interocular sup-
pression, often, but not always, produces contrast gain functions
(Sengpiel et al., 1998; Watanabe et al., 2004; Li et al., 2005; Bah-
rami et al., 2008; Yuval-Greenberg and Heeger, 2013).

Importantly, no study has measured and controlled for the
effects of both attention and consciousness on CRFs. It is there-
fore possible that the previously reported effects in CRFs are a
mixture of both attention and consciousness. Here, a technique is
used that strictly controlled both attention and consciousness
modulations, allowing the study of their separate effects on CRFs.
Gain functions for both attention and consciousness were thus in-
dependently determined to study whether they operate through the
same or distinct signal enhancement mechanisms.

Materials and Methods
Experimental design and statistical analysis
The same stimuli and paradigm were used as described previously (van
Boxtel et al., 2010b).

Participants
Low spatial frequency (SF). Data were obtained from 17 individuals (nine
male/eight female college students). Based on trial inclusion criteria (see
below), two participants were excluded because they had missing data in
more than two parameter combinations. Therefore, the data from 15
individuals (eight males) were analyzed further.

High SF. Nineteen participants participated. Three participants were
excluded because of missing data. Therefore, data from 16 individuals
(6 male, 10 female, mean age 20 years/1 month, SD � 1 year/4 months)
were analyzed further.

Stimuli
The afterimage inducer was a Gabor patch with a contrast that was drawn
from 0.03, 0.06, 0.125, 0.25, 0.50, and 1. The patch was Gaussian win-
dowed (� � 1.43°) and had an SF of 0.23 cycles/° or 3 cycles/°, a random
orientation, and was presented at 4.9° eccentricity. The mask, which was
shown on half of the trials, was of 100% contrast rotated at 120°/s and
consisted of a Gaussian windowed (� � 1.43°) checkerboard (0.78 cycles/°).

It reversed contrast every 67 ms. Presentation location of the inducer and
the mask was shifted by 45° counterclockwise between trials. Background
luminance was 49 cd/m 2. All experiments were performed on a gamma-
corrected monitor.

In the low-attention conditions, the attentional task was a rapid serial
visual presentation (RSVP) of red letters (font Helvetica, 12 point). These
letters were shown for 133 ms, after which they were immediately re-
placed by the next letter.

Procedure
Each trial had three phases. The first phase was the adaptation phase
during which the afterimage inducer was shown in one eye (left and right
eye presentation was counterbalanced over trials). To the other eye, the
mask was shown in invisible trials, whereas no mask was shown in visible
trials. The adaptation phase lasted 4 s. To create conditions in which a low
amount of attention was paid to the inducer, subjects were distracted by
a RSVP in which they counted the number of X’s (n � 2–5; participants
were told there could be 1–5 in any trial) that appeared in an RSVP
stream of nontarget letters (randomly chosen from: M, S, T, A, B, C, D, O,
K, P, Y). Subjects did not report visibility in the low-attention trials,
avoiding the need to deploy attention to the inducer. In the high-
attention trials, the RSVP task was not performed but the letters were
shown. Instead, subjects tracked the subjective visibility of the inducer by
pressing and releasing a keyboard button.

The second phase was the afterimage phase. Participants pressed a
button as soon as they perceived an afterimage and released the button
when the afterimage disappeared. Because afterimages in this experiment
were perceived instantaneously, afterimage duration was recorded from
the start of the afterimage phase until the button was released. Partici-
pants pressed the space bar if no afterimage was perceived (this was
recorded as a 0 s afterimage duration).

In the third phase, the observer was asked to indicate the number of
X’s that were counted. The number was indicated with the keypad. In the
high-attention condition, this question was skipped by pressing the space
bar. All trials were presented in a pseudorandom order and divided over
eight blocks separated by brief rest periods.

Data analysis
For the data analysis, trials were excluded when the reported number of
X’s was off by �1 (except where noted differently). For the trials with the
mask, which should lead to invisibility of the inducer stimulus, trials that
were nonetheless reported as visible for any length of time (i.e., they
broke through suppression) were excluded. These selection criteria led to
the inclusion of the following number of trials (mean � SEM over
participants): in the low SF condition: 47.53 � 0.47 (Visible–High At-
tention), 35.53 � 1.40 (Visible–Low Attention), 41.93 � 2.63 (Invisible–
High Attention), 36.87 � 0.97 (Invisible–Low Attention); and in the high
SF condition: 47.58 � 0.34 (Visible–High Attention), 32.74 � 1.76
(Visible–Low Attention), 28.16 � 3.65 (Invisible–High Attention),
32.79 � 2.16 (Invisible–Low Attention). The lowest mean number of
trials of any of the contrast conditions was as follows: 5.67 � 0.33 (Visi-
ble–Low Attention, contrast � 0.06) for the low SF condition and 4.0 �
0.68 (Invisible–Low Attention, contrast � 0.5) for the high SF condition.

Calculating psychophysical gain functions
The afterimage durations in the condition with invisible trials that were
not attended (Att �/Vis �) were taken as a baseline measure, as this con-
dition has a maximally reduced influence of attention and conscious
visibility in our design. The attention-induced gain function was then
calculated by subtracting, per participant, this baseline from the at-
tended, but invisible conditions (Att �/Vis �): �AI � Att �/Vis � �
Att �/Vis �. The visibility-induced gain function was similarly calculated
by subtracting Att �/Vis � from the visible but less-attended condition:
�AI � Att �/Vis � � Att �/Vis �. �AI-measures were averaged over par-
ticipants, and calculated per contrast value.

Contrast-gain index (CGI) and response gain index (RGI)
CGI and RGI were calculated per individual. The CGI was calculated as
the difference between the average response at the middle two contrasts
minus the average response at the lowest and highest contrast, as follows:
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0.5 � ((�AI0.13 � �AI0.25) � (�AI0.03 � �AI1)), where �AIc refers to
�AI at contrast c. The RGI was calculated as the average response at the
highest two contrasts minus the average response at the lowest two con-
trasts. It was then multiplied by �1 to yield a positive index, as follows:
� 0.5 � ���AI0.50��AI1)�(�AI0.03��AI0.06)). Two subjects missed
data for some of the �AIc values; these participants were removed for this
analysis. CGI and RGI values were analyzed with one-sample t tests ver-
sus 0. Comparisons between experiments for both CGI and RGI were
made using two-tailed paired t tests.

Z-transformed partial correlations and descriptive model fitting
Both the attention and visibility �AI data were fit with predictions from
a contrast gain and response gain model. For the contrast gain model, the
contrast-response curve change is characterized by a shift to the left or
right. For a response gain model, the change is characterized by a multi-
plicative increase in response. Therefore, using the NonLinearModel
class in MATLAB (2014b, 2015b) with default parameters, the average
�AI data were fitted with the following functions:

Contrast gain model :
Rmax � �Cn

�Cn � C50
n �

Rmax � Cn

Cn � C50
n (1)

Response gain model :
� � Rmax � Cn

Cn � C50
n (2)

Where Rmax is the maximum obtainable response, C is the contrast of the
inducer, n is an exponent that determines the steepness of the curve, and
C50 is the contrast at which half-maximum response is reached. The
parameter � is the gain of the process under scrutiny; that is, attention or
visibility. For both high and low SF experiments, we fixed all parameters,
except �. Rmax was set to 150% of the maximum AI duration at 100%
contrast, C50 to 0.25, and the exponent n was set to 2 (Herrmann et al.,
2010).

To remove correlations between the contrast gain and response gain
models themselves, partial correlations were computed (Movshon et al.,
1985; Smith et al., 2005). The partial correlations for contrast-gain (Rc)
and response-gain (Rr) models are as follows:

Rc �
rc � rcrcr

��1 � rc
2	�1 � rcr

2 	
(3)

and

Rr �
rr � rrrcr

��1 � rr
2	�1 � rcr

2 	
(4)

where rc and rr are the correlations between the �AI data and the
contrast-gain and response-gain models, respectively, and rcr is the cor-
relation between the two fitted gain models.

Pearson’s r correlations are not normally distributed, so the Fisher
r-to-Z transformation (shown just for Rc) was used as follows:

Zc �

0.5
�1 � Rc	

�1 � Rc	

�1

df

(5)

where df is the degrees of freedom, which is equal to the number of
contrast values measured minus 3. A Z larger than 1.65 (equal to p �
0.05, one-tailed) was taken as the threshold for significance.

Model fitting
Several models were considered as potentially being able to explain our
data. The models that were considered had a very similar two-level
architecture, with a level 1 (L1) activity feeding into a L2. Both levels
represent the neural activity of that level, with L1 representing a contrast-
polarity sensitive level and L2 representing a contrast-polarity-insensitive
level. Both levels include adaptation. The layout of all models was as
follows:

RespL1(C) � FL1 (6)

RespL2(C) � FL2 (7)

Sp � 1 � m � RespL2�RespL1	 (8)

RespAdapt � s � Sp � RespL2�RespL1	 � O (9)

where RespL1 is the response at L1; RespL2 is the response at L2 and takes
the output of L1 as input; FL1 and FL2 describe the contrast-response
functions of L1 and L2, which are explained below for each of the models
separately; and Sp describes the sensitivity postadaptation at L2, which is
dependent on the preadaptation activity of this level. The parameter m
determines the strength of adaptation at L2. Note that a stronger adapta-
tion at the second level lowers the sensitivity Sp which is analogous to
increasing the contrast detection threshold (cf. Brascamp et al., 2010).
The final response of the model is RespAdapt, which is scaled (with s) and
offset (with O) to best fit the data. It was assumed that the afterimage
duration is directly related to this final response (i.e., a larger response
means a longer time to decay).

Note that the activity in L1 is also dependent on adaptation, but this is only
implicitly present in the model. Specifically, it was assumed that there exist
two populations of neurons at L1, a population L1

� that is responding to the
presented contrast polarity of the inducer and a population L1

� that is not.
Without adaptation, the responses of both populations in L1 would lead to
an unbiased response to a gray screen: L1

� � L1
� � 0. However, adaptation at

L1 leads to a decreased sensitivity for cells in L1
�, but not in cells that are

nonresponsive to the stimulus (L1
�). Therefore, after adaptation, there is now

a biased response (L1
� � L1

� � RespL1 � 0), causing the afterimage.
Models were fitted using the fmincon function in MATLAB. The mod-

els were simultaneously fit to the four contrast-response functions, as
well as to the two �AI curves (the consciousness and attention gain
functions). Both upper and lower bounds were provided on all parame-
ters. Lower and upper bounds for the various parameters were as follows:
n [lower � 0, upper � 3], C50 [0, 1], m [0, 1], s [0, 100], O [0, 2]. The
various multiplicative attention terms (A) were bounded as follows
[1, 100], with 1 being no attentional effect. When the parameter Ccfs was
free to vary, it was limited to [0, 1].

In all models except the full model, Ccfs was set to 0 when no CFS
stimulus was presented and 1 when a CFS stimulus was presented. In the
full model, Ccfs was a free parameter when the CFS stimulus was pre-
sented (independently at L1 and at L2). In all models, multiplicative
attention (A) parameters were set to 1 in low-attention conditions and
were free to vary in the high-attention condition.

Contrast-response functions for the different models
Monocular normalization only model. The monocular normalization-
only model was the base model against which other models were com-
pared. This model consists of two stages, each with a normalization
operation but without attention and consciousness manipulation. Figure
4B shows the model layout. The CRFs, which include the normalization
step, for L1 and L2 are as follows:

FL1 � Cn/�Cn � C50
n 	 (10)

FL2 � Cn/�Cn � C50
n 	 (11)

This model has five free parameters: n, C50, m, s, and O. Parameters m, s,
and O are as explained above. The parameter n controls the steepness of
the tuning curves and it is the same for L1 and L2. C50 determines the
point where the tuning curve reaches half the maximum height; it is also
the same for L1 and L2. The parameters n, C50, s, m, and O are free
parameters in all models.

Attention-first model. The attention-first (and consciousness second)
model includes the influence of attention at L1 and the influence of the
CFS stimulus at L2 (see model architecture in Fig. 4B). The CRFs for L1

and L2 are as follows:

FL1 � A1Cn/�A1Cn � C50
n 	 (12)

FL2 � Cn/�Cn � CCFS
n � C50

n 	 (13)
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where A1 is the multiplicative influence of attention at L1 and CCFS is the
contrast of the CFS stimulus (set to 0 when the CFS stimulus was absent
and to 1 when the CFS stimulus was present).

Consciousness-first model. The consciousness-first (and attention sec-
ond) model includes the influence of CFS at L1 and the influence of
attention at L2 (see model architecture in Fig. 4B). The CRFs for L1 and L2

are as follows:

FL1 � Cn/�Cn � CCFS
n � C50

n 	 (14)

FL2 � A2Cn/�A2Cn � C50
n 	 (15)

where A2 is the multiplicative influence of attention at L2.
Attention-first model with response gain for attention. In this model, the

CRFs for L1 and L2 are identical to the attention-first model apart from
excluding the attentional effects in the denominator (thus resulting in an
attention-induced response-gain) as follows:

FL1 � A1Cn/�Cn � C50
n 	 (16)

FL2 � Cn/�Cn � CCFS
n � C50

n 	 (17)

Parameter definitions are as in the attention-first model.
Consciousness-first model with response gain for attention. In this model,

the CRFs for L1 and L2 are identical to the consciousness-first model apart
from excluding the attentional effects in the denominator (thus resulting
in an attention-induced response-gain) as follows:

FL1 � Cn/�Cn � CCFS
n � C50

n 	 (18)

FL2 � A2Cn/�Cn � C50
n 	 (19)

Parameter definitions are as in the consciousness-first model.
Full model. The full model includes the influence of CFS and attention

at L1 and at L2 (see model architecture in Fig. 4B). Attention is imple-
mented as spatial attention, and therefore boosts both the activity to the
afterimage inducer ( C), and the CFS stimulus (CFS). The CRFs for L1

and L2 are as follows:

FL1 � A1Cn/�A1Cn � A1CCFS1
n � C50

n 	 (20)

FL2 � A2Cn/�A2Cn � A2CCFS2
n � C50

n 	 (21)

Model comparison
The fits were compared using the Bayesian information criterion (BIC),
in which a low BIC is better (a perfect fit leads to a BIC of �
). The BIC
depends on the likelihood, which was calculated as follows:

L � �0.5 � �dfe � N � �log�2�	 � log�MSE			 (22)

Where L is the likelihood, N is the number of data points, dfe is the
degrees of freedom of the error (� N minus the number of parameters
that are estimated), and MSE equals the sum of squared errors of all the fit
residuals divided by dfe.

As a baseline, we took the monocular normalization-only model (N)
that has only monocular normalization, but no influence of attention and
interocular interactions. Models were compared by calculating the differ-
ence in the BIC score (�BIC) relative to the monocular normalization-only
model (N). According to Kass and Raftery (1995), �BIC values not worth
more than a bare mention are 0 � abs(�BIC) � 2; those that show positive
evidence are 2 � abs(�BIC) � 6; those that show strong evidence are 6 �
abs(�BIC) � 10, and those that show very strong evidence are
abs(�BIC) � 10. Note that the �BIC thresholds of 2, 6, and 10 convert to
the Bayes factors (BF10) of 2.7, 20, and 148, respectively. Apart from the
models discussed here, we also considered various other models, which
are not discussed below, but our conclusions remain the same.

Results
Psychophysical data
We measured the complete CRFs under various levels of focused
attention and consciousness (operationalized as visibility) while
using a full-factorial design. This approach allowed us to investi-
gate the independent influences of attention and consciousness
on visual processing (Fig. 1C). Previous research has shown that,
when the influences of attention and consciousness are not
strictly controlled, it may be difficult to attribute experimental
effects to either of these processes (Koch and Tsuchiya, 2007; van
Boxtel et al., 2010a). Masking is a powerful technique to modu-
late conscious perception (Kim and Blake, 2005) and it allows one
to separate the influences of attention from those of conscious-
ness (Dehaene et al., 2006; Kanai et al., 2010; van Boxtel et al.,
2010b). We therefore used the most versatile method to render
stimuli invisible through the process of masking, a method called
continuous flash suppression (CFS) (Tsuchiya and Koch, 2005).
We paired the CFS technique with a stringent control of the
participant’s attention allocation. We minimized attention to the
inducer stimulus in half of the trials by means of a distracting
RSVP task (Rees et al., 1999). On other trials, participants re-
ported the visibility of the inducer stimulus, which resulted in
high levels of attention to the inducer stimulus. By using this
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Figure 1. A, Schematic illustration of contrast-gain (dark solid curve) and response-gain (light solid curve) effects on a CRF (dashed black). A contrast gain is evident as a wholesale rightward shift
of the curve, whereas a response gain is evident as a multiplication of the response. B, Gain functions. Taking the difference between the dashed line and gain-modulated responses will result in a
signature profile for both contrast and response gain, with contrast gain (dark solid curve) identifiable by a bell-shaped curve with the largest effects at intermediate contrasts and response gain
(light solid curve) identifiable by a sigmoidal curve with the largest effects at high contrasts. C, Schematic of our experimental paradigm in which attention was modulated with an RSVP task at
fixation (white dot) and consciousness was modulated by presenting (or not presenting) an interocular mask (see first row, middle, and right).
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design, attention and consciousness were independently modu-
lated, resulting in a 2 � 2 matrix that consisted of four conditions:
low-attention/invisible (i.e., Att�/Vis�), low-attention/visible (i.e.,
Att�/Vis�), high-attention/invisible (i.e., Att�/Vis�), and high-at-
tention/visible (i.e., Att�/Vis�). This design allowed us to derive the
individual contributions of attention and consciousness.

We determined psychometric CRFs, as measured by afterim-
age durations, for all four conditions (Fig. 2A,C). We looked at
the influence of attention and consciousness separately relative to
a baseline condition that lacked both of these influences. There-
fore, to calculate the gain functions for attention and conscious-
ness (Fig. 2B,D), we took the low-attention/invisible condition
(i.e., black dashed lines, Att�/Vis�, Fig. 2A,C) as a baseline be-
cause this condition lacked influences of both attention and vis-

ibility. The gain function for attention was then calculated as the
difference in AI duration (�AI duration) between the high-atten-
tion/invisible condition and this baseline (i.e., �AI � Att�/Vis� �
Att�/Vis�; Fig. 2B,D, red curve). Similarly, the gain function for
visibility was then calculated as the �AI duration between this
baseline and the low-attention/visible condition (i.e., �AI �
Att�/Vis� � Att�/Vis�; Fig. 2B,D, blue curve).

These results show strikingly different gain functions for atten-
tion and consciousness. Attention decreased afterimage durations
(Fig. 2B,D, red curve), whereas visibility increased afterimage dura-
tions (Fig. 2B,D, blue curve) (Suzuki and Grabowecky, 2003;
Tsuchiya and Koch, 2005; Brascamp et al., 2010; van Boxtel et al.,
2010b). Furthermore, attention follows a response-gain function
with small effects at low inducer contrasts and large significant
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high-attention � solid lines, and low-attention � dashed lines (see legend in C). B, Effects of attention (red curve), and visibility (blue curve) for low SF. These curves are the difference between
high-attention/invisible and low-attention/invisible data (for attention), and low-attention/visible and low-attention/invisible data (for visibility). Asterisks indicate significant deviations from zero
(one-tailed t-tests). C, As in A but for high SF. D, As in B for high SF. Note that the y-axes have a different scales in A–D. E, RGI and CGI. Attention shows a significant RGI, whereas visibility shows a
significant CGI. Bars represent the average over all participants; circles are low SF data; and squares are high SF data. Asterisks indicate significant deviations from zero (two-tailed t-tests).
F, Z-transformed correlations between �AI duration data and contrast and response gain functions. The shaded area represents significance. The different symbols are data with different
performance thresholds in the RSVP task. Larger dots correspond to stricter RSVP thresholds (and consequently fewer trials); large to small: 1, 2, 3, 4 items off correct. In all cases, the attention curve
is best fit with a response gain function, whereas the visibility curve is best fit with a contrast gain function. Error bars indicate SEM.
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effects at high inducer contrasts (Fig. 2B,D, red stars), whereas
visibility follows a contrast-gain function, with significant effects
only at intermediate inducer contrasts (Fig. 2B,D, blue stars). We
quantified these effects further by calculating for each subject a
CGI and an RGI (see Materials and Methods; Fig. 2E). These data
revealed that, over all subjects (and both experiments), attention
had a significant RGI (t(29) � 2.92, p � 0.007, Cohen’s d � 0.53),
but no significant CGI (t(29) ��1.30, p�0.20, Cohen’s d��0.24).
Conversely, visibility showed a significant CGI (t(29) � 2.91, p �
0.007, Cohen’s d � 0.53), but no significant RGI (t(29) � �1.36, p �
0.18, Cohen’s d � �0.25). Similar findings are obtained for the
low and high SF experiments separately in that there are positive
RGIs for attention (low SF: t(14) � 1.7, p � 0.10, Cohen’s d �
0.45, ns; high SF: t(13) � 5.83, p � 0.0001, Cohen’s d � 1.56), and
a positive CGI for visibility (low SF: t(14) � 2.75, p � 0.016,
Cohen’s d � 0.71; high SF: t(13) � 1.0235, p � 0.32, Cohen’s d �
0.27, ns), although significance was not always reached. There was
no significant difference between the RGI for attention for the low
and high SF data (t(27) � 0.69, p � 0.50, Cohen’s d � 0.26). There
was a significant difference between the CGI for attention for the low
and high SF data (t(27) � 2.20, p � 0.036, Cohen’s d � 0.83). Nev-
ertheless, the overall data suggest that attention and consciousness
operate through different gain functions.

Interestingly, we find that attention and consciousness also have
opposite effects at 3 cycles/°, which is inconsistent with a previous
report (Brascamp et al., 2010). That report showed that attention
decreased afterimage durations at low and high SFs, but that the
effect of visibility depended on SF: visibility increased afterimage
duration at low SFs (consistent with our findings), whereas it de-
creased the afterimage durations at higher (3 cycles/°) SFs (inconsis-
tent with our findings). This discrepancy could potentially be
explained by the use of different paradigms (i.e., afterimage nulling
versus duration paradigms). However, an alternative explanation is
related to the fact the previous study did not use a 2 � 2 design. For
example, the attention effect was only measured in the visible con-
ditions and the visibility effect was measured without having a
demanding secondary task. Therefore, attention was not strictly
controlled for in the measurements of the visibility effect. Without
this task, participants potentially paid more attention to the stimulus
when it was visible then when it was invisible.

Based on our data, we can estimate the results of this method-
ological difference. To approximate the effects of the previous
study, we looked at the condition that combined the effects of
attention and consciousness. Therefore, we computed the gain
function based on the difference between our standard baseline
condition (i.e., the invisible/low-attention condition, Att�/Vis�)
and the condition with both high visibility and high attention
(i.e., the visible/high-attention condition): Att�/Vis� � Att�/
Vis�. These data are plotted with open circles in Figure 3. We
compared this with the gain function without attention con-
found (open circles in Fig. 3, replotted from Fig. 2).

We found that, at low SFs, the lack of a demanding secondary
task (and the consequent potential for a confounding influence of
attention) has no or little influence of the gain function for visi-
bility. However, at higher frequencies, an increase of attention
(due to poor attentional control) shifts the visibility curve down-
ward, resulting in apparent negative effects of visibility at many
contrasts (being significantly negative at the highest contrast;
t(15) � �2.19, p � 0.045, Cohen’s d � �0.55). Therefore, this
analysis suggests that the negative effects of visibility reported
previously (Brascamp et al., 2010), measured at a contrast of 0.62,
are potentially due to the lack of a stringent control of attention.

Descriptive model fitting
To investigate whether our measured gain functions can be de-
scribed by pure contrast-gain and response-gain functions, we
determined whether single parameter modulations from a base-
line CRF could fit our data (Ling and Carrasco, 2006). We fitted
both response gain and contrast gain models to the visibility and
attention �AI data with one free parameter (see Materials and
Methods). To control for correlations between response-gain
and contrast-gain models, we computed Z-transformed partial
correlations (Movshon et al., 1985; Smith et al., 2005) (see Mate-
rials and Methods for details). The resulting test-statistics, Zc and
Zr, refer to the z-transformed partial correlations for the contrast-
gain and response-gain fit, respectively. A Z of zero means that
there is no correlation between the data and the model. We found
that the attention data was best fit with a response-gain model
(for the low SF data: Zr � 2.26, p � 0.012, one-tailed, whereas
Zc � �0.162, p � 0.56; Fig. 2F). Conversely, visibility was better
fit with a contrast gain model (Zr � �1.09, p � 0.86, Zc � 1.67,
p � 0.047; Fig. 2F). These results are further supported when the
Z-values are converted back into r-values (data not shown). Finally,
using more lenient trial selection criteria on RSVP performance (e.g.,
correct number of items �2 or �3) did not change these results (Fig.
2F, different symbol sizes), showing that our results are not due to
the specific trial selection criterion that we used. The high SF data are
similar to the low SF data (Fig. 2F) and the same conclusions will be
reached. These data show that gain functions of attention and con-
sciousness can be modeled by changes of single parameters of the
baseline response function and can be approximated by pure re-
sponse and contrast gain functions, respectively.

Model comparisons with the BIC
The previous analysis showed that descriptive models of contrast
gain and response gain can describe our data, but to provide a
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better mechanistic account, we constructed several computa-
tional models based on a normalization framework to investigate
which model architecture could best explain our data.

In a normalization framework, the response to a target stim-
ulus in one eye is divided by the activity of a normalization pool
(Heeger, 1992; Reynolds and Heeger, 2009; Carandini and
Heeger, 2011). This normalization pool combines the neural ac-
tivity in response to both the target stimulus and the competing
stimulus in the other eye (Baker and Meese, 2007; Ling and Blake,
2012). In this framework, an interocular mask will result in a
contrast-gain effect.

Using a normalization framework, the modeled influence of
attention on perception could result in both response gain and
contrast gain effects (Reynolds and Heeger, 2009; Ling and Blake,
2012). However, an increase in attention cannot produce a neg-
ative effect on afterimage duration in this model. To explain a
negative effect of attention, other researchers have proposed a
two-level process (Suzuki and Grabowecky, 2003; Wede and
Francis, 2007; Brascamp et al., 2010; van Boxtel et al., 2010b). The
first level (L1) is sensitive to the particular configuration of light
and dark patches; that is, it is contrast-polarity sensitive. After a
prolonged adaptation period, the polarity sensitivity of this level
causes it to produce a negative afterimage when a blank screen is
shown. This process is generally assumed to underlie afterimages.
On top of this first level, the two-stage model assumes that the out-
put of L1 is the input of a second level. This second level is polarity
insensitive, meaning that it is sensitive to the contrast of the stimulus
independently of the light/dark arrangement of luminance. A
change in activity at this level will change the perceived contrast of
the stimulus, but will not generate an afterimage when no input is
received. Here, we implement this conceptual two-level model into a
simple computational model, incorporating the idea of response
normalization (Heeger, 1992; Reynolds and Heeger, 2009; Caran-
dini and Heeger, 2011) at both stages.

We modeled each of the two levels, L1 and L2, by a normaliza-
tion process (see Materials and Methods; Fig. 4A) in which the
output response of each level was modeled as follows:

L1,2��C, a, CCFS	 �
aCn

aCn � aCCFS
n � C50

n (23)

At L1, C is the contrast of the inducer and, at L2, C is the output of
L1. The parameter a is the influence of attention (where a � 1
means unattended and a � 1 means attended). Here, we let at-
tention influence both the processing of the afterimage inducer
and the CFS stimulus because our design mainly manipulated
spatial attention (in fact, feature-based attention would be diffi-
cult to deploy in our stimuli because the orientation and contrast
was randomized over trials). CCFS is the contrast of the mask and
C50 is the contrast at which half-maximum response is reached.
The parameter n controls the steepness of the curves. Note that most
of the models that we considered incorporate only contrast-gain
changes because our stimuli were relatively small compared with the
presumed size of the attentional window (Reynolds and Heeger,
2009). See Materials and Methods for full model descriptions.

To incorporate the differences between L1 and L2 in terms of
their sensitivity to contrast polarity, the effects of adaptation were
modeled differently in both levels. In L1, adaptation is polarity
sensitive, so, after adaptation, when presented with a blank
screen, unadapted neurons will be more active then adapted neu-
rons, resulting in a negative afterimage. Therefore, we modeled
the activity of L1 after adaptation as equal to the activity of the
neurons sensitive to the opposite polarity before adaptation (as

explained in the Materials and Methods). Adaptation at L2 was
incorporated by assuming that L2 was less sensitive to the input
from L1 after adaptation (i.e., similar to threshold elevation) by
an amount proportional to its activity before adaptation (see
Eq. 8 and 9 in the Materials and Methods).

Different model architectures were fitted to the data, differing
in the level at which attention and consciousness took effect (i.e.,
at L1 and/or L2; Figure 4B). As a baseline, we constructed a model
that included monocular normalization only, but no influences
of attention or consciousness through interocular suppression
(the “monocular normalization-only” (N) model). Other models
were an “attention-first” model in which attentional modulated
L1 whereas consciousness modulated L2; a “consciousness-first”
model in which consciousness modulated L1 and attention modu-
lated L2; and a “full model” in which both attention and conscious-
ness could influence L1 and L2. We also included two models in
which attention was explicitly modeled as a response gain. The mod-
els were compared using the BIC (Schwarz, 1978), which weighs the
maximum value of the likelihood function against the number of
free parameters in the model. A low BIC is preferred. All models were
compared with the N model because this model did not incorporate
the effects of our attention and visibility manipulations and there-
fore serves as a good baseline. Models were fit concurrently on both
the afterimage durations (Fig. 2A,C) and attention and conscious-
ness effects (Fig. 2B,D) with equal weights. Fitted model parameters
for the low SF data are given in Table 1.

The BIC analysis revealed that the consciousness-first model
best fits the data for low SF (Fig. 4C) and high SF (Fig. 4G) data.
The attention-first model did not fit the data very well because the
direction of modulation of attention and consciousness were al-
ways in the same direction. The full model fitted the data very well
(Fig. 4D,H), but did not obtain a very low BIC score because of
the added complexity of the model. Interestingly, the optimal fit
parameters (Table 1) of the full model showed that the CFS pa-
rameter was 0.61 at L1, and 0.05 at L2, suggesting that CFS should
only influence L1. In addition, it showed that attention was 2.2 at L1

(where 1 means no attention), whereas it was 100 at L2, showing that
attention mostly influenced L2. Both of these findings conform the
simpler model architecture of the consciousness-first model, sug-
gesting that, indeed, the consciousness-first model is an optimal
model. The models with attention modeled as a response gain, la-
beled Cr and Ar in Figure 4, C, D, G, and H, produced worse fits than
the respective models with attention modeled as a contrast-gain (i.e.,
models C and A). Of these two, the Cr model was significantly better,
but it was unable to show strong increases of attentional effects at
medium contrasts and it did not evidence a plateau effect at high
contrasts, thus its underperformance relative to the consciousness-
first (C) model (�BIC � 3.84 between the two models). Posterior
model comparisons (Wasserman, 2000) showed that the conscious-
ness-first (C) model has a posterior probability of 0.83 of being the
correct model, whereas the second-best model was the Cr model
with a posterior probability of 0.12.

ThesesameanalyseswerealsoperformedforthehighSFdata,result-
ing in the same conclusions (Fig. 4G–J), with the consciousness-first
model fitting the data the best (�BIC � 5.45 between the C and
Cr model). Posterior model comparisons showed that the C-model has
a posterior probability of 0.93 of being the correct model,
whereas the second-best model was the Cr model with a posterior
probability of 0.06.

This model comparison revealed that our data are best explained
by a two-level normalization model in which consciousness operates
at the first level, whereas attention operates at the second level.
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Influence of the mask
One potential explanation of our visibility findings is that they are
due to the presence/absence of the mask, not the visibility/invis-
ibility of the inducer. Past research has shown that the presence/
absence of the mask does not fully determine the strength of the

aftereffects (Tsuchiya and Koch, 2005; Blake et al., 2006; van
Boxtel et al., 2010b), but the mask may have an influence,
through contrast adaptation, at low inducer SFs (Brascamp et al.,
2010). To test for the influence of the mask, we compared linear
mixed models through likelihood ratio tests (Bates et al., 2014).
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Afterimage duration was taken as the dependent variable and
fixed effects were the inducer contrast, the CFS presence/absence,
and the visibility (as indicated by the participants button presses).
Random intercepts per participant were included. The unre-
stricted model included all fixed effects and their interactions,
which we compared with restricted models that excluded either
the factor CFS (and its interaction terms) or visibility (and its
interaction terms). For low SF conditions, visibility had a signif-
icant effect (	(4)

2 � 33.30, p � 0.0001), and CFS had a significant
effect (	(4)

2 � 9.94, p � 0.041). For the high SF condition, visibil-
ity had a significant effect (	(4)

2 � 353.87, p � 0.0001), but CFS
did not (	(4)

2 � 2.57, p � 0.63). The model with the visibility
influence (but not CFS) had a lower BIC than the model with the
CFS influence (but not visibility): �BIC � 23.36 for low SF and
�BIC � 351.31 for high SF). Therefore, the main influence ap-
pears to be visibility, but CFS does influence afterimage durations
for low SF inducers.

Discussion
Modulations of CRFs are one of the most valuable descriptors of
visual function (Reynolds and Heeger, 2009; Carrasco, 2011),
allowing one to investigate the computational mechanisms un-
derlying visual processing (Reynolds and Heeger, 2009). We
measured the modulations of afterimage duration CRFs, or gain
functions, induced by attention and consciousness. We show that
attention and consciousness can have opposite effects on after-
image durations and, more importantly, that attention displays a
response gain function, whereas consciousness displays a con-
trast gain function (which is possibly stronger for low SFs). These
results show that attention and consciousness, arguably the two
most important cognitive functions, operate through different
underlying mechanisms.

These results are consistent with previous demonstrations of a
dissociation between attention and consciousness (Kentridge et
al., 2004; Wyart and Tallon-Baudry, 2008; Brascamp et al., 2010;
van Boxtel et al., 2010b; Watanabe et al., 2011), but additionally
provide an explanation of the processes that underlie this disso-
ciation. Showing such clear dissociations between attention and
consciousness is not always possible. For example, using a
different experimental setup and parameters, attention pro-
duces contrast-gain functions at a behavioral level (Reynolds and
Heeger, 2009; Herrmann et al., 2010), just like consciousness
often does. Attention and consciousness would then appear to
work synergistically. However, even though attention and con-
sciousness show synergistic effects in those experiments, our

findings suggest their computational underpinnings can be dis-
sociated using the current paradigm.

Through extensive model comparisons, we show that the
dissociation is best explained by a hierarchical two-level normal-
ization model, in which attention acts on a late contrast-polarity-
insensitive level, whereas consciousness manipulations, by means
of interocular suppression, act on an early contrast-polarity-
sensitive level. Because contrast-polarity sensitivity is predomi-
nantly found subcortically in LGN and in layer 4 in V1 (Hubel
and Wiesel, 1968; Levitt et al., 2001), our findings are consistent
with the idea that interocular suppression operates at early visual
stages (Blake, 1989; Tong et al., 2006), potentially as early as LGN
or V1 (Sengpiel et al., 1998; Polonsky et al., 2000; Meese and Hess,
2004; Watanabe et al., 2004; Haynes et al., 2005; Li et al., 2005;
Bahrami et al., 2008; Yuval-Greenberg and Heeger, 2013). How-
ever, other research suggests that interocular masking at LGN or
V1 is weak or nonexistent (Lehky and Maunsell, 1996; Leopold
and Logothetis, 1996; Macknik and Martinez-Conde, 2004; Ke-
liris et al., 2010; Watanabe et al., 2011). Our results cannot resolve
this issue because, although we show sensitivity to contrast po-
larity, cells with such sensitivity (Zhou et al., 2000), as well as
(rare) ocularly biased cells (Zeki, 1978; Hubel and Livingstone,
1987), exist in both striate and extrastriate visual areas. However,
most results (including ours) are consistent with neurophysio-
logical (Leopold and Logothetis, 1996) and computational (Free-
man, 2005) findings that suggest that interocular inhibition at
early stages is small and noisy and complete perceptual suppres-
sion builds up over consecutive stages in the visual hierarchy.

Our data further show that attention mainly operates on a
higher contrast-polarity-insensitive level. This is largely consis-
tent with the idea that attention allows for vision with scrutiny
through top-down modulation of neural activity (Hochstein and
Ahissar, 2002; Buffalo et al., 2010), acting more strongly higher
up in the visual hierarchy (Rainer et al., 1998).

Different from our two-stage model, two recent models pro-
posed that attention operates at the same level as interocular
suppression (Ling and Blake, 2012; Li et al., 2015). Although
seemingly at odds, this approach is not inconsistent with ours.
For example, in Li et al. (2015), attention is binocular, consistent
with the higher-level (second) stage in our model. Attention then
influences (presumably through feedback) interocular competition.
Importantly, the attentional influences on interocular suppression
were strong only when competing stimuli were large, but not when
they were small (Ling and Blake, 2012; Li et al., 2015). Because our
stimuli were small, this may have obviated the need to model the
first-level attentional influences for our experiments.

Other data suggest that attention is not merely a modulator of,
but actually a prerequisite for binocular rivalry (Zhang et al., 2011;
Brascamp and Blake, 2012). Although attention generally influ-
ences binocular rivalry minimally (Meng and Tong, 2004; van Ee
et al., 2005), the finding that binocular rivalry may require atten-
tion could suggest that there exists an interaction between our
attention manipulation and our consciousness manipulation
(see also Ling and Blake, 2012; and our Fig. 3), thus potentially
making them not completely independent in our experimental
design. Although this situation is not ideal, the existence of such
an interaction means that, if we were able to better separate at-
tention and consciousness, then the results would probably be
still clearer.

Interestingly, whereas attention may be required for binocular
rivalry, conscious awareness of the visual conflict is not (Bras-
camp et al., 2015; Zou et al., 2016). This finding supports the
proposed dissociation of attention and consciousness. It must be

Table 1. Model fit for the free parameters for the four models

Monocular
normalization
only model

Attention-first
model

Consciousness-first
model

Full
model

n 0.920 0.920 1.567 1.785
C50 1 1 0.276 0.267
O 0.102 0.102 0.567 0.472
s 8.982 8.962 6.686 6.865
m 0 0 0.671 0.665
A1

a 1 2.024
A2

a 7.650 99.999
Ccfs1

b 0.610
Ccfs2

b 0.050
aAttention was set to 1 in the low-attention conditions, the reported value is the fit parameter for the attended
high-attention condition.
bCcfs was fixed to 0 or 1 when the CFS was absent or present in most models; however, it was free to vary in the
�present� condition in the full model; these values are reported here. Subscripts 1 and 2 refer to level 1 and level 2.
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mentioned that recent neurophysiological measurements suggest
that binocular rivalry may occur in the absence of both attention
and consciousness (Xu et al., 2016), meaning that the above con-
cerns about our paradigm are moot.

From a computational perspective, it is interesting that the best-
performing consciousness-first model only included contrast-gain
computations, even outperforming models that explicitly in-
cluded response-gains for attention. It nevertheless produced a
response gain for attention because the modeled contrast-
response function at the second level was not yet at saturation at
high contrasts, so a contrast-gain change induced by attention
translated into increased activity, even at high contrasts. Argu-
ably, this unsaturated response is not consistent with neurophys-
iological data. However, this “true” contrast response behavior of
a neuron cannot be measured in the brain. One can only measure
the contrast response curve at a certain level determined by the
contrast-dependent input from preceding neuronal levels. In
other words, the output of level X is dependent on the contrast-
dependent input it receives from level X � 1. This “observed”
contrast-response curve is the one that is measured in neuro-
physiological experiments. Consistent with these observations,
our model also shows response saturation of the contrast-
response function of L2 given the input of L1 (Fig. 4E). In addition
to this effect, the response gain is then further strengthened by
adaptation (which is effectively a response gain change) that is
dependent on the attention-modulated activity.

Our modeling suggests that both the effects of attention and
consciousness on afterimage duration are the result of a signal
enhancement at the neuronal level. It has been suggested that
these effects could therefore operate through identical or similar
mechanisms (Brascamp et al., 2010; Blake et al., 2014), thus im-
plying a weak separation between attention and consciousness.
This interpretation, however, was based on measurements at just
a single inducer contrast. Here, we have measured the entire con-
trast response curve and analyzed the results with different two-
level models. Our analysis reveals that, even though attention and
consciousness both cause increases in activity, they achieve that
through processes that give rise to different (gain) functions and
by influencing different levels within the visual processing hier-
archy. Our overall set of findings is not consistent with alternative
interpretations based on the assumption that the effects of sup-
pression are purely due to decreasing attention to a stimulus that
is rendered invisible (Blake et al., 2014; Li et al., 2015).

A separate concern is that the effects that we attribute to con-
sciousness may instead be due to a difference in contrast adapta-
tion when the interocular mask is present versus when it is absent
(i.e., it is stimulus dependent) and not due to changes in con-
scious perception per se (Cohen et al., 2012). Consistent with past
findings (Brascamp et al., 2010), we find that, for low SF stimuli,
there is an influence of the mask, but not for high SF stimuli. It is
thus worthwhile to investigate and control for this potential influ-
ence (Brascamp et al., 2010; Watanabe et al., 2011; Yuval-Greenberg
and Heeger, 2013). However, conscious visibility had a significantly
stronger effect in our data, consistent with previous indications that
aftereffect strength is largely determined by the conscious percept
and that the presence/absence of the mask is not (fully) determining
the strength of the aftereffects (Tsuchiya and Koch, 2005; Blake et al.,
2006; van Boxtel et al., 2010b).

It is currently not possible to determine how general our find-
ings are. However, apart from afterimages, attention can decrease
perception or performance in motion-induced blindness (Geng
et al., 2007; Schölvinck and Rees, 2009) and the motion afteref-
fect (Murd and Bachmann, 2011), for Troxler/peripheral fad-

ing (Lou, 1999; De Weerd et al., 2006), visual memory (Voss and
Paller, 2009), SF (Yeshurun and Carrasco, 1998), the attentional
blink (Olivers and Nieuwenhuis, 2005), and visual search (Smilek
et al., 2006). These findings suggest that our conclusions may be
valid beyond the context of afterimages.

In conclusion, our results indicate that signal enhancement
functions differently through attention and consciousness. Be-
cause it is easy to conflate attention and consciousness effects,
future research would gain from carefully controlling parameters
that influence attention and consciousness.
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Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects
models using lme4. Journal of Statistical Software 67:1– 48.

Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96:145–
167. CrossRef Medline

Blake R, Tadin D, Sobel KV, Raissian TA, Chong SC (2006) Strength of early
visual adaptation depends on visual awareness. Proc Natl Acad Sci U S A
103:4783– 4788. CrossRef Medline

Blake R, Brascamp J, Heeger DJ (2014) Can binocular rivalry reveal neural
correlates of consciousness? Philos Trans R Soc Lond B Biol Sci 369:
20130211. CrossRef Medline

Brascamp JW, Blake R (2012) Inattention abolishes binocular rivalry: per-
ceptual evidence. Psychol Sci 23:1159 –1167. CrossRef Medline

Brascamp JW, van Boxtel JJ, Knapen TH, Blake R (2010) A dissociation of
attention and awareness in phase-sensitive but not phase-insensitive vi-
sual channels. J Cogn Neurosci 22:2326 –2344. CrossRef Medline

Brascamp J, Blake R, Knapen T (2015) Negligible fronto-parietal BOLD ac-
tivity accompanying unreportable switches in bistable perception. Nat
Neurosci 18:1672–1678. CrossRef Medline

Buffalo EA, Fries P, Landman R, Liang H, Desimone R (2010) A backward
progression of attentional effects in the ventral stream. Proc Natl Acad Sci
U S A 107:361–365. CrossRef Medline

Carandini M, Heeger DJ (2011) Normalization as a canonical neural com-
putation. Nat Rev Neurosci 13:51– 62. CrossRef Medline

Carrasco M (2011) Visual attention: the past 25 years. Vision Res 51:1484 –
1525. CrossRef Medline

Chun MM, Wolfe JM (2000) Visual attention. In: Blackwell’s Handbook of
Perception (Goldstein EB, ed), pp 272–310. Oxford, UK: Blackwell.

Cohen MA, Cavanagh P, Chun MM, Nakayama K (2012) The attentional
requirements of consciousness. Trends Cogn Sci 16:411– 417. CrossRef
Medline

De Brigard F, Prinz J (2010) Attention and consciousness. In: Wiley inter-
disciplinary reviews: cognitive science (Nadel L, ed), pp 51–59. New York:
Wiley.

Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C (2006) Conscious,
preconscious, and subliminal processing: a testable taxonomy. Trends
Cogn Sci 10:204 –211. CrossRef Medline

De Weerd P, Smith E, Greenberg P (2006) Effects of selective attention on
perceptual filling-in. J Cogn Neurosci 18:335–347. CrossRef Medline

Freeman AW (2005) Multistage model for binocular rivalry. J Neurophysiol
94:4412– 4420. CrossRef Medline

Geng HY, Song QL, Li YF, Xu S, Zhu Y (2007) Attentional modulation of
motion-induced blindness. Chinese Science Bulletin 52:1063–1070. CrossRef

Haynes JD, Deichmann R, Rees G (2005) Eye-specific effects of binocular
rivalry in the human lateral geniculate nucleus. Nature 438:496 – 499.
CrossRef Medline

Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis
Neurosci 9:181–197. CrossRef Medline

Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When
size matters: attention affects performance by contrast or response gain.
Nat Neurosci 13:1554 –1559. CrossRef Medline

Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse
hierarchies in the visual system. Neuron 36:791– 804. CrossRef Medline

van Boxtel • Signal Enhancement by Attention and Consciousness J. Neurosci., June 14, 2017 • 37(24):5912–5922 • 5921

http://www.ncbi.nlm.nih.gov/pubmed/7119846
http://dx.doi.org/10.1068/p5999
http://www.ncbi.nlm.nih.gov/pubmed/19065856
http://dx.doi.org/10.1016/j.visres.2007.08.013
http://www.ncbi.nlm.nih.gov/pubmed/17904610
http://dx.doi.org/10.1037/0033-295X.96.1.145
http://www.ncbi.nlm.nih.gov/pubmed/2648445
http://dx.doi.org/10.1073/pnas.0509634103
http://www.ncbi.nlm.nih.gov/pubmed/16537384
http://dx.doi.org/10.1098/rstb.2013.0211
http://www.ncbi.nlm.nih.gov/pubmed/24639582
http://dx.doi.org/10.1177/0956797612440100
http://www.ncbi.nlm.nih.gov/pubmed/22933458
http://dx.doi.org/10.1162/jocn.2009.21397
http://www.ncbi.nlm.nih.gov/pubmed/19929762
http://dx.doi.org/10.1038/nn.4130
http://www.ncbi.nlm.nih.gov/pubmed/26436901
http://dx.doi.org/10.1073/pnas.0907658106
http://www.ncbi.nlm.nih.gov/pubmed/20007766
http://dx.doi.org/10.1038/nrc3398
http://www.ncbi.nlm.nih.gov/pubmed/22108672
http://dx.doi.org/10.1016/j.visres.2011.04.012
http://www.ncbi.nlm.nih.gov/pubmed/21549742
http://dx.doi.org/10.1016/j.tics.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22795561
http://dx.doi.org/10.1016/j.tics.2006.03.007
http://www.ncbi.nlm.nih.gov/pubmed/16603406
http://dx.doi.org/10.1162/jocn.2006.18.3.335
http://www.ncbi.nlm.nih.gov/pubmed/16513000
http://dx.doi.org/10.1152/jn.00557.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148271
http://dx.doi.org/10.1007/s11434-007-0178-0
http://dx.doi.org/10.1038/nature04169
http://www.ncbi.nlm.nih.gov/pubmed/16244649
http://dx.doi.org/10.1017/S0952523800009640
http://www.ncbi.nlm.nih.gov/pubmed/1504027
http://dx.doi.org/10.1038/nn.2669
http://www.ncbi.nlm.nih.gov/pubmed/21057509
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://www.ncbi.nlm.nih.gov/pubmed/12467584


Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereop-
sis in primate area 18. J Neurosci 7:3378 –3415. Medline

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of
monkey striate cortex. J Physiol 195:215–243. CrossRef Medline

Iwasaki S (1993) Spatial attention and two modes of visual consciousness.
Cognition 49:211–233. CrossRef Medline

Kanai R, Walsh V, Tseng CH (2010) Subjective discriminability of invisibil-
ity: a framework for distinguishing perceptual and attentional failures of
awareness. Conscious Cogn 19:1045–1057. CrossRef Medline

Kass RE, Raftery AE (1995) Bayes factors. Journal of the American Statistical
Association 90:773–795. CrossRef

Keliris GA, Logothetis NK, Tolias AS (2010) The role of the primary visual
cortex in perceptual suppression of salient visual stimuli. J Neurosci 30:
12353–12365. CrossRef Medline

Kentridge RW, Heywood CA, Weiskrantz L (2004) Spatial attention speeds
discrimination without awareness in blindsight. Neuropsychologia 42:
831– 835. CrossRef Medline

Kim CY, Blake R (2005) Psychophysical magic: rendering the visible ‘invis-
ible’. Trends Cogn Sci 9:381–388. CrossRef Medline

Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain
processes. Trends Cogn Sci 11:16 –22. CrossRef Medline

Koch C, Tsuchiya N (2012) Attention and consciousness: related yet differ-
ent. Trends Cogn Sci 16:103–105. CrossRef Medline

Lehky SR, Maunsell JH (1996) No binocular rivalry in the LGN of alert
macaque monkeys. Vision Res 36:1225–1234. CrossRef Medline

Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex
reflects monkeys’ percepts during binocular rivalry. Nature 379:549 –553.
CrossRef Medline

Levitt JB, Schumer RA, Sherman SM, Spear PD, Movshon JA (2001) Visual
response properties of neurons in the LGN of normally reared and visu-
ally deprived macaque monkeys. J Neurophysiol 85:2111–2129. Medline

Li B, Peterson MR, Thompson JK, Duong T, Freeman RD (2005) Cross-
orientation suppression: monoptic and dichoptic mechanisms are differ-
ent. J Neurophysiol 94:1645–1650. CrossRef Medline

Li HH, Carrasco M, Heeger DJ (2015) Deconstructing interocular suppression:
attention and divisive normalization. PLoS Comput Biol 11:e1004510.
CrossRef Medline

Ling S, Blake R (2012) Normalization regulates competition for visual aware-
ness. Neuron 75:531–540. CrossRef Medline

Ling S, Carrasco M (2006) Sustained and transient covert attention enhance
the signal via different contrast response functions. Vision Res 46:1210 –
1220. CrossRef Medline

Lou L (1999) Selective peripheral fading: evidence for inhibitory sensory
effect of attention. Perception 28:519 –526. CrossRef Medline

Macknik SL, Martinez-Conde S (2004) Dichoptic visual masking reveals
that early binocular neurons exhibit weak interocular suppression: impli-
cations for binocular vision and visual awareness. J Cogn Neurosci 16:
1049 –1059. CrossRef Medline

Meese TS, Hess RF (2004) Low spatial frequencies are suppressively masked
across spatial scale, orientation, field position, and eye of origin. J Vis
4:843– 859. CrossRef Medline

Meng M, Tong F (2004) Can attention selectively bias bistable perception?
Differences between binocular rivalry and ambiguous figures. J Vis 4:539–
551. CrossRef Medline

Mole C (2008) Attention and consciousness. Journal of Consciousness Studies
15:86–104.

Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of
moving visual patterns. Pontificiae Academiae Scientiarum Scripta Varia
54:117–151.

Murd C, Bachmann T (2011) Spatially localized motion aftereffect disap-
pears faster from awareness when selectively attended to according to its
direction. Vision Res 51:1157–1162. CrossRef Medline

Olivers CN, Nieuwenhuis S (2005) The beneficial effect of concurrent task-
irrelevant mental activity on temporal attention. Psychol Sci 16:265–269.
CrossRef Medline

Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human
primary visual cortex correlates with perception during binocular rivalry.
Nat Neurosci 3:1153–1159. CrossRef Medline

Posner MI (1994) Attention: the mechanisms of consciousness. Proc Natl
Acad Sci U S A 91:7398 –7403. CrossRef Medline

Prinz J (2012) The conscious brain. Oxford: OUP.
Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant

information by neurons in the primate prefrontal cortex. Nature 393:
577–579. CrossRef Medline

Rees G, Russell C, Frith CD, Driver J (1999) Inattentional blindness versus
inattentional amnesia for fixated but ignored words. Science 286:2504 –
2507. CrossRef Medline

Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neu-
ron 61:168 –185. CrossRef Medline

Schölvinck ML, Rees G (2009) Attentional influences on the dynamics of
motion-induced blindness. J Vis 9:38.1–38.9. CrossRef Medline

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics
6:461– 464. CrossRef

Sengpiel F, Baddeley RJ, Freeman TC, Harrad R, Blakemore C (1998) Dif-
ferent mechanisms underlie three inhibitory phenomena in cat area 17.
Vision Res 38:2067–2080. CrossRef Medline

Smilek D, Enns JT, Eastwood JD, Merikle PM (2006) Relax! Cognitive strat-
egy influences visual search. Vis Cogn 14:543–564. CrossRef

Smith MA, Majaj NJ, Movshon JA (2005) Dynamics of motion signaling by
neurons in macaque area MT. Nat Neurosci 8:220–228. CrossRef Medline

Suzuki S, Grabowecky M (2003) Attention during adaptation weakens neg-
ative afterimages. J Exp Psychol Hum Percept Perform 29:793– 807.
CrossRef Medline

Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends
Cogn Sci 10:502–511. CrossRef Medline

Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative
afterimages. Nat Neurosci 8:1096 –1101. CrossRef Medline

van Boxtel JJ, Tsuchiya N, Koch C (2010a) Consciousness and attention: on
sufficiency and necessity. Front Psychol 1:217. CrossRef Medline

van Boxtel JJ, Tsuchiya N, Koch C (2010b) Opposing effects of attention and
consciousness on afterimages. Proc Natl Acad Sci U S A 107:8883– 8888.
CrossRef Medline

van Ee R, van Dam LC, Brouwer GJ (2005) Voluntary control and the dy-
namics of perceptual bi-stability. Vision Res 45:41–55. CrossRef Medline

Voss JL, Paller KA (2009) An electrophysiological signature of unconscious
recognition memory. Nat Neurosci 12:349 –355. CrossRef Medline

Wasserman L (2000) Bayesian model selection and model averaging. J Math
Psychol 44:92–107. CrossRef Medline

Watanabe K, Paik Y, Blake R (2004) Preserved gain control for luminance
contrast during binocular rivalry suppression. Vision Res 44:3065–3071.
CrossRef Medline

Watanabe M, Cheng K, Murayama Y, Ueno K, Asamizuya T, Tanaka K,
Logothetis N (2011) Attention but not awareness modulates the BOLD
signal in the human V1 during binocular suppression. Science 334:829 –
831. CrossRef Medline

Wede J, Francis G (2007) Attentional effects on afterimages: theory and
data. Vision Res 47:2249 –2258. CrossRef Medline
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