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The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and
complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for
assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only
been tested during wakefulness. Here we investigated, for the first time, the sleeping brain’s capacity to process continuous speech at
different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the
neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words,
phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This
enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible
(scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking
of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility.
In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible
speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results
suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is
severely disrupted, thereby revealing the capacity and limits of language processing during sleep.
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Introduction
Sleep is defined as a reversible state in which external stimuli
rarely affect perception or elicit meaningful behavioral responses

(Nir and Tononi, 2010). Despite such disconnection, it is clear
that some discriminative sensory processing persists during
sleep. Recent studies, particularly in the auditory domain, found
preserved activation of primary sensory cortices during sleep
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Significance Statement

Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as
speech parsing are also preserved. We used a novel approach for studying the depth of speech processing across wakefulness and
sleep while tracking neuronal activity with EEG. We found that responses to the auditory sound stream remained intact; however,
the sleeping brain did not show signs of hierarchical parsing of the continuous stream of syllables into words, phrases, and
sentences. The results suggest that sleep imposes a functional barrier between basic sensory processing and high-level cognitive
processing. This paradigm also holds promise for studying residual cognitive abilities in a wide array of unresponsive states.

7772 • The Journal of Neuroscience, August 9, 2017 • 37(32):7772–7781



(Peña et al., 1999; Portas et al., 2000; Issa and Wang, 2008; An-
drillon et al., 2015). Accordingly, single-neuron responses to
both simple (click or tone) and complex (vocalization) stimuli
are comparable to those in wakefulness, including frequency tun-
ing curves and stimulus-specific adaptation to deviant sounds
(Issa and Wang, 2008; Nir et al., 2015). Therefore, external stim-
uli give rise to robust sensory representations in the sleeping
brain, yet the extent of their processing remains unclear.

The uncertainty regarding the depth of processing is enhanced
with respect to complex stimuli such as speech, which require
both sensory and high-order processing, engaging multiple brain
areas beyond auditory cortex (Peelle et al., 2010; Wylie and Reg-
ner, 2014; Friederici and Singer, 2015). To date, there is limited
and inconsistent evidence regarding the level of processing that
speech undergoes during sleep. Several studies have reported
that, during sleep, activity in high-order language-related regions
such as the superior temporal gyrus (STG), temporal–parietal
junction (TPJ), and the inferior frontal gyrus (IFG) is robustly
attenuated or absent altogether and brain responses to regular
speech and to meaningless control conditions are similar (Portas
et al., 2000; Dehaene-Lambertz et al., 2002; Wilf et al., 2016).
However, other evidence suggests that some level of semantic
information is extracted even during sleep. For example, behav-
iorally relevant stimuli such as one’s name lead to more frequent
awakenings (Oswald et al., 1960; Langford et al., 1974; McDonald
et al., 1975) and induce a spread of cortical activation (Pratt et al.,
1999; Portas et al., 2000; Blume et al., 2017). In addition, studies
measuring event-related potentials (ERPs) during sleep have
demonstrated an N400 response to lexical-level semantic viola-
tions (Brualla et al., 1998; Bastuji et al., 2002; Ibáñez et al., 2006)
and residual neural signatures indicating semantic categorization
of words (Kouider et al., 2014; Andrillon et al., 2016). Notably,
semantic-level responses during sleep are often considerably at-
tenuated and delayed in time compared with those in wakeful-
ness (Brualla et al., 1998; Perrin et al., 2002; Andrillon et al.,
2016), raising important questions as to the nature of residual
high-level language processing during sleep.

A main challenge for addressing this question is how to assess
speech processing depth in lieu of behavioral metrics. Previous
studies have resorted to measuring ERPs. However, during non-
rapid eye movement (NREM) sleep, repetitive presentation of
brief isolated stimuli often elicits a large stereotypical response
known as a “K complex” (Colrain, 2005; Halász, 2016) that masks
the precise neuronal dynamics and limits data interpretation.
Indeed, ERPs recorded during NREM sleep often differ substan-
tially in their time course and morphology from those observed
during wakefulness (Colrain and Campbell, 2007), making it dif-
ficult to assess their functional significance.

Here, we used the newly developed concurrent hierarchical
tracking (CHT) approach (Ding et al., 2016) to assess the depth of
speech processing during sleep. In CHT, stimuli are structured in
a manner that allows distinguishing neural responses to different
levels of linguistic analysis of continuous speech. Specifically,
speech sequences are compiled such that different linguistic levels
(syllables, words, phrases, and sentences) correspond to distinct
frequencies, allowing us to distinguish their neural signatures in
brain activity while refraining from presentation of abrupt stim-
uli. We used this method to test whether hierarchical parsing of
intelligible speech is preserved or disrupted during sleep. This
approach allows examination of the capacity and limits of pro-
cessing during sleep and may afford insights regarding the depth
of speech processing that occurs without attention more gener-
ally. We hypothesized that, during sleep, the neural representa-

tion of higher linguistic levels will be greatly diminished, as has
been shown during wakefulness for unintelligible or unattended
speech (Zion Golumbic et al., 2013; Ding et al., 2016).

Materials and Methods
Participants. Full-night sleep recordings were performed in 29 native
Hebrew speakers (16 females, mean age 28.7 � 3.6 years, range 22–38)
who reported to be healthy and without any history of neuropsychiatric
or sleep disorders. The study was approved by the Medical Institutional
Review Board at the Tel Aviv Sourasky Medical Center. All participants
provided their written consent for participation. Participants underwent
an interview determining their sleep habits and their propensity to fall
asleep in noisy environments. Eight participants (6 females) were ex-
cluded from analysis for either technical issues (n � 3) or lack of suffi-
cient data (n � 5 participants who kept falling asleep during the wake
sessions or experienced difficulties sleeping during the night). Twenty-
one participants were included in the wake analysis (10 females, mean
age 28.2 � 4.0), of which 17 were included in the NREM sleep analysis
(6 females, mean age 28.8 � 4.2) and 13 were included in the REM sleep
analysis (5 females, mean age 28.6 � 4.3).

Hebrew materials. A bank of individually recorded Hebrew syllables
was used to create a set of intelligible speech stimuli, as well as unintelli-
gible (scrambled) control stimuli. Single syllables were uttered in ran-
dom order by a human male voice and recorded at 44,100 Hz. The sound
intensity was manually normalized using Audacity software (version
2.0.5). To prevent biasing of speech perception by prosody, prosodic cues
were removed via pitch normalization using Praat (version 5.4.04)
(Boersma and Weenink, 2016). The length of individual syllables (origi-
nal mean duration 243.6 � 64.3 ms, range 168 –397 ms) was adjusted to
precisely 250 ms by truncation or silence padding at the end. In case of
truncation, a fading out effect was applied on the last 25 ms. Finally,
syllables were concatenated using custom-written scripts in MATLAB
(The MathWorks) to form 25 intelligible Hebrew sentences and 25 un-
intelligible (scrambled) sequences. All intelligible sentences were con-
structed to form hierarchical linguistic structures as follows: every two
syllables formed a 500-ms-long word, every two words formed a 1000-
ms-long phrase, and every two phrases formed a 2000-ms-long sentence
(Fig. 1A). Because syllables were grouped hierarchically into linguistic
constituents with no additional acoustic gaps inserted between them
(Fig. 1B), the linguistic structures appeared at fixed periodicities
throughout the stimuli (syllables at 4 Hz, words at 2 Hz, phrases at 1 Hz,
and sentences at 0.5 Hz). Sentences did not include rhymes, passive form
of verbs, or arousing semantic content. The intelligibility of Hebrew
materials was verified in a pilot study demonstrating that all Hebrew
sentences could be fully repeated after a mean of 1.28 presentations and
most (78.7 � 15.8%) could be fully repeated by participants after a single
presentation. The same Hebrew syllables were scrambled to compose 25
unintelligible pseudo-sentences. Scrambling was performed by shuffling
syllables across sentences while maintaining their original position
within the sequence. Therefore, syllables that tend to occur at the begin-
ning/end of words in natural language retain this position in the control
condition. We also verified that the scrambling procedure did not pro-
duce any real Hebrew words by chance.

Chinese materials. We used sentences in Chinese as an unintelligible
speech control condition. The Chinese materials were constructed and
used by Ding et al. (2015) in a similar manner as the Hebrew materials
and were composed of sequences of individual syllables lasting 250 ms
uttered by a computerized male voice (see Stimuli I in Ding et al., 2016).
The Chinese materials were also compiled such that higher linguistic
structures appeared at fixed frequencies. However, because the Chinese
sentences were composed of monosyllabic words, the syllabic rate of 4 Hz
also represented the word rate. Therefore, only two additional linguistic
levels were formed: phrases at 2 Hz and sentences at 1 Hz. The fact that
the Hebrew materials included an additional linguistic level should not
have interfered with our experimental design because none of the partic-
ipants understood Chinese and it was only used as an unintelligible
speech control condition.

Stimulus presentation. A trial lasted 12 s and was composed of 6 con-
catenated 2-s-long sentences of the same speech type (intelligible, scram-
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bled, or foreign speech; Fig. 1D). In the first 5 s of each trial, sound
intensity increased from zero to full intensity to prevent abrupt onsets.
To assure that the sound intensity of the stimuli fluctuated at the syllabic
rate of 4 Hz, the power spectrum of the mean sound intensity in each
condition was calculated across 50 trials for each condition (Fig. 1C).
Intertrial intervals were distributed pseudorandomly between 1.5 and 4 s
to avoid expectation effects. In addition to the three speech conditions,
we presented a baseline sham condition in which no sound was pre-
sented. Typically, during a full experiment, we presented 200 –500 trials
(mean 406 � 87) for each condition (intelligible, scrambled, foreign, and
sham). Trials were not presented in a discrete block design, but rather in
a continuous manner throughout the experiment. Approximately 20%
of the trials were presented during wakefulness, 10% during REM sleep,
65% during NREM sleep, and an additional 5% were presented during
state transitions (excluded). Only the final 8 s of each trial were used for
analysis to further avoid onset responses (Fig. 1D).

Experimental design. The experiment took place in an acoustically at-
tenuated and electrically shielded sleep laboratory. Auditory stimulation
was delivered through loudspeakers and sound intensity was adjusted
to a convenient level that remained constant throughout the night (see
“Auditory stimulation” section below). Hebrew sentences were con-
firmed to be intelligible before the commencement of the experiment
(see “Intelligibility test” section below). Experiments included stimula-
tion during wakefulness in the evening, stimulation during overnight
sleep, and another block of stimulation in the morning after spontaneous
awakening (see Fig. 3A). The room was dark throughout the entire ex-
periment. During the wakefulness sessions, participants sat on a chair

rather than lying in bed to ensure that they stayed awake and so that we
could observe if any signs of falling asleep (e.g., rolling eye movements,
EEG slowing, or appearance of sleep spindles or K-complexes); if any of these
occurred, participants were woken up immediately (3.85 � 3.21, range
0 –11 awakenings per participant). To minimize differences between
wake and sleep sessions, participants were instructed to keep their eyes
closed and were not required to perform any explicit task. After the
evening wakefulness session, participants were allowed to fall asleep
at their own convenience. Auditory stimulation was paused manually
whenever awakening or movement was detected and resumed shortly
after detection of unequivocal sleep activity in the EEG.

Auditory stimulation. Auditory stimulation was delivered through
speakers situated on both sides of the bed (during sleep) or on both sides
of the chair (during wakefulness). Sound intensity was individually ad-
justed to a relatively low level (range 42.1– 45.9 dB SPL) that allowed
speech comprehension. Importantly, sound intensity was adjusted be-
fore the first experimental session and remained constant throughout all
conditions for each participant.

Intelligibility test. Participants performed an intelligibility test to verify
that they understood the materials used in the intelligible speech condi-
tion. All intelligible and scrambled sentences were presented in random
order and participants were asked to report whether they contained
meaningful speech and were then asked to repeat them.

Data acquisition. High-density EEG was recorded continuously using a
256-channel hydrocel geodesic sensor net with passive electrodes (Elec-
trical Geodesics). Each carbon fiber electrode consists of a silver chloride
carbon fiber pellet, a lead wire, and a gold-plated pin and was injected

Figure 1. Stimuli with hierarchical linguistic structures at fixed frequencies used in the CHT paradigm. A, Example of intelligible (Hebrew) speech composed of 250 ms syllables in which 4 levels
of information are differentiated based on their rate: acoustic/syllabic, word, phrasal, and sentential rates (at 4, 2, 1, and 0.5 Hz, respectively). Translation of the Hebrew sentences in the example:
“Small puppies want a hug” and “A taxi driver turned on the meter.” Control stimuli were unintelligible syllable sequences with similar syllabic rate of 4 Hz forming either “scrambled” Hebrew speech
or speech in a foreign language (Chinese). B, Representative sound wave of a single sentence (2 s). Sound intensity fluctuates at the rate of 4 Hz. C, Power spectrum of mean soundwave envelope
across 50 trials per condition (blue, intelligible; green, scrambled; pink, foreign). Note that, across all conditions, the soundwave envelope exhibits a strong peak at the acoustic rate (4 Hz) with no
significant power at lower frequencies corresponding to higher-order linguistic structures. D, In each 12 s trial, six sentences were concatenated without gaps. Trials began with a gradual increase
in sound intensity to prevent sleep interference.
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with conductive gel (Electro-Cap International). Signals were referenced
to Cz, amplified via an AC-coupled high-input impedance amplifier
(NetAmps 300; Electrical Geodesics), and digitized at 1000 Hz. Electrode
impedance in all sensors was verified to be �50 k� before starting the
recording.

Sleep scoring. Sleep scoring in 30 s epochs was performed manually
according to established guidelines of the American Academy of Sleep
Medicine (Iber et al., 2007) based on EEG, EOG, EMG, and video. To this
end, EEG data from F3/F4, C3/C4, and O1/O2 were referenced to the
contralateral mastoid and two EOG channels were referenced to the
other mastoid. Scoring channels were visualized along with synchronized
EMG in 30 s epochs. Sleep scoring was further verified by inspecting the
time–frequency representation (spectrogram) of the Pz electrode (not
involved in scoring process) superimposed with the hypnogram (as in
Fig. 3 A, B). Each epoch was categorized as N1/N2/N3/REM sleep or
wakefulness. N1 sleep stage epochs (13.4 � 1.4% of sleep time, range
7.6 –30.1%) were excluded from further analysis to avoid uncertainty
regarding precise sleep onset.

EEG preprocessing. Preprocessing was performed in MATLAB (The
MathWorks) using the FieldTrip toolbox (Oostenveld et al., 2011) and
custom-written scripts. Data were segmented (�2 to �14 s) around
stimulus onset, down-sampled to 250 Hz, rereferenced to the average
signal of the mastoids, and linearly detrended. Bad electrodes (�14% in
all participants) were identified as those in which variance and maximal
absolute value constituted outliers relative to adjacent electrodes upon
visual inspection per participant and per state and were replaced with the
weighted average of their neighbors using a linear, distance-weighted
interpolation. Outlier trials (15.3 � 0.3%) were identified manually by
visual inspection and were discarded from subsequent analysis. In the N2
dataset, we additionally excluded trials containing K-complex events.
K-complexes were detected automatically as those trials in which the raw
EEG amplitude was both higher than �40 �V and lower than �40 �V
within a 2.4 s window, sliding at a resolution of 40 ms. Independent
component analysis (ICA) was used for removal of eye movement and
heartbeat traces separately for each state. After cleaning, we randomly
selected the same number of trials from all conditions (intelligible,
scrambled, foreign and sham) for each subject separately. Participants
with fewer than 30 clean trials in any single condition were discarded
from further analysis.

Data analysis during wakefulness. Data were analyzed by two com-
plementary approaches. First, intertrial phase coherence (ITPC) was
calculated as follows: the fast Fourier transform (FFT) was calculated
separately for each trial with 0.125 Hz resolution. Next, the phase com-
ponent at each frequency was used to calculate the ITPC, which is the
sum (absolute value) of the phases across trials, as follows:

ITPC �
1

N �
k�1

N

ei��k

Note that ITPC represents phase consistency across trials, which is the
inverse of response variability across trials (Berens, 2009).

Second, evoked power spectrum analysis was performed as follows:
We averaged the clean preprocessed trials for each condition separately
and computed the power spectrum of the average using FFT with 0.125
Hz resolution. We normalized the power at each frequency by subtract-
ing the mean power level at adjacent frequencies within �0.125 Hz (No-
zaradan et al., 2011).

Comparison of sleep and wakefulness. To reduce the effects of wide-
spread slow waves during sleep (see Fig. 3C) that could preclude analysis
of low frequencies of interest (0.5, 1 and 2 Hz), we applied a spatial
current source density transformation (CSD, also known as surface
Laplacian; Kayser and Tenke, 2015) to the preprocessed EEG data. In-
deed, EEG spectral power after CSD transformation revealed comparable
energy at slow (�4 Hz) frequencies across wakefulness, N2 sleep, and
REM sleep (see Fig. 3D), attesting to the utility of this procedure in
minimizing the potential effect of slow ongoing sleep activities. However,
N3 sleep data were still dominated by robust slow-wave activity (see Fig.
3D) and therefore were excluded from analysis. Furthermore, for com-
paring wakefulness and sleep states, we focused on ITPC analysis because

phase consistency is less affected than power by ongoing slow activities.
Importantly, identical procedures were applied across all states of sleep
and wakefulness (see Fig. 4). Finally, when comparing the results in each
sleep stage with wakefulness, we used the same participants for each
comparison and randomly selected an equal number of trials across
states to ensure similar statistical power. Topographical distribution of
ITPC values in Figure 4 was calculated for intelligible speech after nor-
malizing ITPC at each frequency by subtracting the mean ITPC at adja-
cent frequencies within �0.125 Hz.

SNR estimation. SNR (used as a covariate in subsequent ANCOVA
tests) was quantified in each state and subject separately as follows:

SNR �
SD of ERP, Intelligible condition

SD of ERP, Sham condition

Statistical analysis. Statistical analysis was performed using custom-
written MATLAB scripts (The Mathworks) and SPSS software (version
23.0; IBM). Statistical analyses focused on the average response within a
predefined midcentral region of interest (ROI; see inset in Fig. 2A), which
is typical of auditory responses in EEG (Picton et al., 1974). The ROI
included 92 electrodes that lay within a 6 cm radius from Cz. Fisher’s
z-transformation was applied to individual ITPC values before statistical
analysis. Hypothesis testing consisted of independent comparisons be-
tween each of the speech conditions (intelligible, scrambled, and foreign
language) and the sham (no stimulation) condition. Hypotheses were
tested via paired t tests for all comparisons after verifying normality via
Kolmogorov–Smirnov tests. Otherwise, a Wilcoxon rank-sum test was
used. To ensure that effects in wakefulness were exclusive for the a priori
frequencies of interest (0.5, 1, 2, and 4 Hz), we tested the initial ITPC
results statistically on a wider range of 12 frequencies (every 0.5 Hz
between 0.5 and 6 Hz). To account for multiple comparisons (3 speech
conditions vs sham � 12 frequencies � 36 comparisons), we controlled
the false discovery rate (FDR) using a q value of 0.05 (Benjamini and
Yekutieli, 2001). After confirming that significant responses in wakeful-
ness are only observed at the a priori frequencies of interest, subsequent
comparisons of sleep and wakefulness were restricted to those frequen-
cies and corrected for 12 comparisons (3 speech conditions vs sham � 4
frequencies) via FDR correction at q � 0.05.

Given the differences in ongoing spontaneous activity across states
(which was substantially reduced by the CSD transformation used here,
but not entirely equated; see Fig. 3D), direct comparisons across arousal
states were performed via two-way repeated-measures ANCOVA tests
including the SNR at each state as a covariate. This analysis focused on
the intelligible speech condition comparing the response at each fre-
quency of interest (1, 2, and 4 Hz) across states (wakefulness vs REM/
NREM). We also tested whether the response at the acoustic/syllabic level
(4 Hz) differed across states (wakefulness vs sleep) and speech conditions
(intelligible, scrambled, foreign speech). Note that these ANCOVAs were
performed separately when comparing wakefulness versus REM/NREM
given the lower number of participants with REM sleep.

Results
Neuronal speech tracking during wakefulness is evident in the
entire acoustic–linguistic hierarchy during intelligible speech
To validate the utility of the CHT paradigm with scalp EEG, we
first assessed the ITPC of cortical activity during wakefulness
across a range of 12 frequencies between 0.5 and 6 Hz (0.5 Hz
intervals) within a midcentral ROI. ITPC at the acoustic/syllabic
rate of 4 Hz was significant in all speech conditions (all t tests vs
sham condition p � 10�4) and remained significant after FDR
correction at q � 0.05 (see Table 1 for detailed p-values; Fig. 2A).
ITPC at frequencies corresponding to higher linguistic structures
(2, 1, and 0.5 Hz) was significant only for the intelligible speech
condition (word level: p � 0.001; phrase level: p � 0.007; sen-
tence level: p � 0.001; remained significant after FDR correction;
Fig. 2A). None of the unintelligible speech conditions elicited
significant ITPC at any of these frequencies (Table 1). Impor-
tantly, significant ITPC was only observed at the frequencies of
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interest corresponding to predetermined linguistic structures in
the stimuli (p 	 0.06 at all other frequencies).

We repeated the same analysis for the EEG evoked power
within the same central ROI (Fig. 2B). Similar to ITPC, nor-
malized EEG power at the acoustic/syllabic rate of 4 Hz was

significant in all speech conditions (p � 0.002) and remained
significant after FDR correction, whereas significant power at
frequencies representing linguistic parsing was observed only for
intelligible speech for most linguistic levels (sentence level: p �
0.004; phrase level: p � 0.012) and remained significant after
FDR correction (word level: p � 0.21, n.s.). Corresponding scalp
topographies were consistent with those observed for ITPC (Fig.
2B, bottom).

Overall, our ITPC and power analyses during wakefulness
converge with previous results (Ding et al., 2016), indicating that,
for intelligible speech, neural tracking is evident throughout the
linguistic hierarchy, whereas for unintelligible speech, neural re-
sponses can be attributed to the acoustic structure.

Sleep preserves auditory responses but disrupts high-order
linguistic parsing
Continuous overnight recordings lasted 9 h and 34 min on aver-
age (�75 min). We verified that normal sleep was preserved in
the presence of speech stimulation. Figure 3 illustrates the sleep
architecture and spectral content of EEG activity, demonstrating
all the established hallmarks of the different vigilance states, in-
cluding alpha (8 –10 Hz) activity during quiet wakefulness, sleep
spindle (10 –15 Hz) and slow-wave (�4 Hz) activities during
N2/N3 sleep, and diffuse theta (6 –9 Hz) during REM sleep.
Awakenings associated with speech stimulation were rare (and
even if such events were present and not observed, these trials
would be tagged as wake or N1 sleep, so any differences re-
ported here would constitute a lower bound). Sleep parameters
(Fig. 3E) at the group level were in accordance with typical values
for healthy young adults (Carskadon and Dement, 2005). In the
morning debriefing, all participants reported being well rested
(slept very well, not tired). Most participants vaguely recalled
hearing the stimuli a few times after going to sleep, but all con-
firmed that this did not interfere with sleep quality because they
returned back to sleep immediately. Therefore, intermittent

Figure 2. Neural tracking of hierarchical linguistic structures during wakefulness. A, Top, ITPC of EEG activity at a central ROI (inset, top right) for all speech conditions (blue, intelligible; green,
scrambled; pink, foreign; black, sham). Asterisks represent statistically significant differences ( p � 0.02), which remained significant after FDR correction at q � 0.05, between each speech
condition and the sham condition. Shaded highlights denote SEM across participants (n � 21). All speech conditions elicited greater ITPC at 4 Hz compared with sham, whereas only the intelligible
condition was associated with significant ITPC at frequencies representing linguistic structures (words, phrases, and sentences; 2, 1, and 0.5 Hz, respectively). Bottom, Mean ITPC topographies for
each condition (rows) and frequency of interest (column). B, Top, Evoked power spectrum of EEG activity at a central ROI (same as A) reveals increased power at the syllabic/acoustic rate (4 Hz) for
all speech stimulations and significant power only for the intelligible speech at 0.5, 1, and 2 Hz, corresponding to high-level linguistic structures.

Table 1. Statistical significance of ITPC analyses across states

Sentence
level (0.5 Hz)

Phrase
level (1 Hz)

Word
level (2 Hz)

Syllable
level (4 Hz)

Wakefulness
Intelligible speech vs sham �0.001 0.007 0.001 �0.001
Scrambled speech vs sham 0.125 0.302 0.044 �0.001
Foreign speech vs sham 0.360 0.252 0.351 �0.001

Wakefulness (n � 17, NREM subset)
Intelligible speech vs sham 0.270 0.019 0.004 �0.001
Scrambled speech vs sham 0.945 0.972 0.158 �0.001
Foreign speech vs sham 0.371 0.783 0.654 �0.001

Wakefulness (n � 13, REM subset)
Intelligible speech vs sham 0.462 0.010 0.002 �0.001
Scrambled speech vs sham 0.573 0.238 0.412 �0.001
Foreign speech vs sham 0.992 0.028 0.725 �0.001

NREM sleep
Intelligible speech vs sham 0.967 0.487 0.106 �0.001
Scrambled speech vs sham 0.450 0.427 0.192 �0.001
Foreign speech vs sham 0.351 0.968 0.177 �0.001

REM sleep
Intelligible speech vs sham 0.462 0.906 0.033 �0.001
Scrambled speech vs sham 0.795 0.603 0.138 0.001
Foreign speech vs sham 0.682 0.893 0.069 �0.001

Table includes p-values comparing each speech condition (intelligible/scrambled/foreign) with the sham condition
(no stimulation) separately for each frequency of interest. Comparisons were performed via paired t test (whenever
normality was confirmed) or Wilcoxon (otherwise). Statistically significant p-values after FDR correction at q � 0.05
are marked in bold font; nonsignificant p-values are unbolded. Rows (top to bottom) mark full analysis during
wakefulness (n � 21), wakefulness dataset matched to NREM sleep (n � 17, fewer trials), wakefulness dataset
matched to REM sleep (n � 13, fewer trials), NREM sleep, and REM sleep. Note that the response at the syllabic/
acoustic level (4 Hz) was robustly significant across all conditions, whereas significant responses at frequencies
corresponding to higher-order linguistic structures were only observed for intelligible speech during wakefulness.
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speech stimulation did not exert significant effects on sleep archi-
tecture or subjective measures.

We proceeded to reanalyze EEG activity as a function of sleep
and wakefulness states after applying a CSD spatial filter to re-
duce the effects of slow-wave activity during sleep (see Materials
and Methods and Fig. 4). We focused our analysis on comparing
wakefulness with N2 sleep (n � 17) and comparing wakefulness
with REM sleep (n � 13), equating the number of trials and
participants in each comparison to ensure identical statistical
power. We did not analyze responses during N1 sleep because it
was ambiguous and rare (13.4 � 1.4% of sleep time) or during N3
sleep (in which slow-wave activity precluded analysis; see Mate-
rials and Methods).

Our reanalysis of the wakefulness data (performed after CSD
in the subset of participants with adequate sleep data) confirmed
that, even in these reduced datasets, all speech conditions elicited
a significant acoustic/syllabic-rate response at 4 Hz (p � 10�3 for
both datasets). Moreover, intelligible speech ITPC remained sig-
nificant at the word and phrase levels in these reduced datasets
(Fig. 4, top, Table 1). However, the sentential rate of 0.5 Hz was

no longer significant in either subset, probably due to the lower
power of this analysis and/or the removal of low frequencies by
the CSD.

In the sleep conditions, significant ITPC at the acoustic/
syllabic rate of 4 Hz was observed in both sleep states for all
stimuli (NREM: p � 10�5; REM: p � 10�3) and remained sig-
nificant after FDR correction). Furthermore, we compared the
4 Hz (acoustic/syllabic) response for all audible conditions
during wakefulness versus each sleep state directly using
repeated-measures ANCOVA with SNR differences (sleep–wake)
as a covariate. This comparison did not reveal significant differ-
ences in the acoustic/syllabic response across states (wakefulness
vs REM: F(2,10) � 0.063, p � 0.940, n.s.; wakefulness vs NREM:
F(2,14) � 0.624, p � 0.550, n.s.), suggesting no significant change
in the acoustic response across states.

Importantly, despite robust activity at the acoustic level, none
of the speech conditions during sleep elicited significant ITPC
response versus sham at frequencies corresponding to high-level
linguistic structures (Fig. 4A,B; Table 1). In addition, we com-
pared the responses to intelligible speech during wakefulness ver-

Figure 3. Sleep properties during overnight auditory stimulation. A, Representative hypnogram (n � 1) marking the time course of sleep/wake states (shown on left side of y-axis).
B, Representative time–frequency representation of scalp EEG (Pz) during a full-night sleep study (n � 1). Warm colors mark increased power in specific time–frequency windows (frequency scale
on the right). Superimposed hypnogram (gray trace, same as A). Note that wakefulness is associated with increased alpha power (8 –12 Hz); N2 and N3 NREM sleep are characterized by increased
slow waves (�4 Hz) and spindles (10 –15 Hz); and REM sleep exhibits diffuse theta activity (6 –9 Hz). C, Mean power spectrum of different wakefulness and sleep states (n � 21; yellow, wake;
green, REM; light purple, N2; dark purple, N3). D, Mean power spectrum of different wakefulness and sleep states after performing CSD on the data. Note that the CSD procedure has substantially
reduced the overall power at low frequencies for both REM and N2, but not for N3. E, Overnight measures of sleep (n � 21) indicate that sleep was largely normal for a first night in a sleep laboratory.
All values are expressed as mean � SEM. Percentage values are expressed per total sleep time excluding initial and final blocks of stimulation during wakefulness. Sleep efficiency corresponds to
total sleep time per time in bed. Sleep latency is time to N2 sleep. WASO, Waking after sleep onset; SWS, slow-wave sleep.
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sus each sleep state at frequencies of interest (1, 2, and 4 Hz) using
ANCOVA with SNR difference as a covariate. This analysis re-
vealed significant state � frequency interaction effects (wakeful-
ness vs REM: F(2,10) � 5.21, p � 0.028; wakefulness vs NREM:
F(2,14) � 4.35, p � 0.034), consistent with the comparisons of
each speech condition versus the sham condition performed
within each state (Table 1).

Altogether, our results suggest that, whereas both NREM and
REM sleep preserve acoustic responses, neural tracking of higher-
order linguistic levels within a speech stream is not evident.

Discussion
The main novel result reported here is that, during sleep, basic
neural encoding of acoustic features of speech persists, whereas

Figure 4. Sleep preserves auditory responses but disrupts high-order linguistic parsing. A, ITPC spectrum for wakefulness (top) and NREM sleep (bottom; n � 17) within a midcentral ROI (inset)
for all speech conditions (blue, intelligible; green, scrambled; pink, foreign; black, sham). Asterisks mark statistically significant differences ( p � 0.02), which remained significant after FDR
correction at q � 0.05, between each speech condition and the sham condition. Shaded highlights denote SEM across participants. Below each frequency and state are corresponding normalized
ITPC topographies (see Materials and Methods) in response to intelligible speech. Note that NREM sleep is associated with significant ITPC at the syllabic/acoustic rate (4 Hz) for all conditions, but
disrupted ITPC at frequencies of high-level linguistic structures. B, ITPC spectrum for wakefulness (top) and REM sleep (bottom; n � 13). ROI, colors, gray shading, and topographies as in A. Note that
REM sleep is associated with significant ITPC at the syllabic/acoustic rate (4 Hz) for all conditions, but no significant ITPC at frequencies of high-level linguistic structures. C, Grand-mean ERPs from
the midcentral ROI in wakefulness (top), REM sleep (middle), and NREM sleep (bottom) during 12 s trials and �2 s pretrial and posttrial. Blue, intelligible speech; gray, sham condition. Gray shading
represents the root-mean-square (RMS) of ongoing activity (without stimulation). Note that, in all states, the magnitude of evoked responses exceeds ongoing activity.
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parsing of higher-order linguistic structures, evident for intelligi-
ble speech during wakefulness, is disrupted. These findings fur-
ther our understanding of the capacity and limits of cortical
processing during sleep and demonstrate the effectiveness of the
CHT approach for probing high-level cognitive processes co-
vertly in unresponsive states.

Studying linguistic processing during wakefulness using CHT
Our results in wakefulness are consistent with Ding et al. (2015),
showing that cortical activity concurrently tracks the time course
of linguistic structures at multiple hierarchical levels when speech
is intelligible. For unintelligible speech, cortical responses are
only evident at the acoustic/syllabic rate. Our results extend the
original findings in several ways. First, using bisyllabic words
allowed distinguishing between the syllabic (4 Hz) and word rate
(2 Hz), affording further separation between the acoustic and
linguistic aspects of speech. Second, our design did not include an
explicit task, demonstrating that passive listening is sufficient for
revealing hierarchical neural tracking of linguistic structures.
Third, our results demonstrate that one can effectively quantify
hierarchical linguistic parsing with noninvasive, inexpensive,
portable, and readily available EEG. These extensions pave the
way for using the CHT approach in a wide array of settings,
ranging from language acquisition to studies of residual cognitive
processing in various clinical populations.

Depth of speech processing during sleep
The current findings make a substantial contribution to our un-
derstanding of the extent of language processing during sleep. We
found that the neural response at the syllabic rate, which likely
reflects basic auditory representation of the acoustic envelope,
was comparable across wakefulness, REM, and NREM sleep. This
is consistent with previous studies supporting preserved responses in
low-level auditory cortex during sleep (Issa and Wang, 2008; Nir
et al., 2015). At the same time, parsing of higher-order linguistic
structures is disrupted during sleep, implying the existence of a
functional “bottleneck” precluding full processing of continuous
speech.

Before discussing broader implications, we address an important
methodological caveat: Is the lack of observable low-frequency
peaks during sleep due to increased background noise leading to
poor sensitivity rather than a lack of high-level speech parsing?
This potential criticism applies mainly to NREM sleep because
spontaneous activity during REM sleep is wake-like. Although
applying CSD transformation effectively reduced slow wide-
spread activity in NREM sleep (Fig. 3D), it was nevertheless still
higher than in wakefulness. However, we believe that this does
not account for our results for two reasons. First, our experimen-
tal design deliberately focused on testing different speech condi-
tions within each state, in which SNR and other signal properties
are matched. Second, we conducted several analyses taking into
account SNR differences across states. These showed that, al-
though the 4 Hz acoustic responses did not differ significantly
across states, responses at the word and sentence level were found
for intelligible speech only during wakefulness, as indicated by
significant interactions between state � frequency. Neverthe-
less, we acknowledge that, given the dominance of low-frequency
background activity during NREM sleep (as in other nonrespon-
sive states such as anesthesia and vegetative states), results should
be interpreted with great caution and appropriate controls ap-
plied in future studies.

What is the nature of the functional bottleneck observed dur-
ing sleep between basic auditory processing and high-level lin-

guistic parsing? Previous ECoG results using the CHT paradigm
attribute phrasal and sentential responses to nonsensory areas
involved in language processing; for example, the left IFG and
bilateral TPJ regions. In contrast, syllabic rate responses were
found primarily in auditory cortex (Ding et al., 2016). The lack of
evidence for neural tracking of high-level speech structures dur-
ing sleep suggests that it disrupts efficient signal propagation
from auditory cortex to higher cortical regions. Along these lines,
intercortical connectivity during sleep is restricted upon brief
electromagnetic perturbation (Massimini et al., 2005, 2007; Pig-
orini et al., 2015). Similarly, several fMRI studies demonstrated
robust attenuation of speech responses in IFG and frontal regions
during sleep (Portas et al., 2000; Dehaene-Lambertz et al., 2002;
Wilf et al., 2016). Together with the current findings, these stud-
ies imply that speech processing during sleep is limited to low-
level acoustic processing, with comparable neural responses for
intelligible and unintelligible speech.

However, other studies report evidence of residual semantic
processing during sleep upon presentation of single words
(Kouider et al., 2014; Andrillon et al., 2016), word pairs (Brualla
et al., 1998), and short sentences (Ibáñez et al., 2006; Daltrozzo et
al., 2012), although such processing is generally weaker and with
altered time dynamics compared with wakefulness (Brualla et al.,
1998; Perrin et al., 2002). In an attempt to reconcile these seem-
ingly contradictory results, we suggest that the functional bottle-
neck for speech processing during sleep is not semantic analysis
per se, but rather the mediating process of segmentation. One key
difference between this and previous studies is the use of contin-
uous speech rather than single words or short sentences. This not
only allowed us to overcome serious methodological limitations
such as the pervasiveness of K-complexes, but also to tap into the
process of word segmentation, which constitutes a prerequisite
for continuous speech comprehension. Indeed, speech process-
ing relies critically on accurately parsing the ongoing acoustic
stream input into discrete and meaningful linguistic units
(Hickok et al., 1993; Mattys, 1997; Giraud and Poeppel, 2012;
Doelling et al., 2014). Parsing itself is a hierarchical highly de-
manding cognitive process (Greenberg et al., 2004; Ghitza, 2012)
that involves matching bottom-up cues with existing lexical, syn-
tactic, and semantic representations (Traxler, 2014), as well as
predictive and anticipatory processes (Arnal et al., 2011; DeLong
et al., 2014). The current findings suggest that, at minimum, it is
the process of word segmentation that is compromised during
sleep, a process that requires ongoing analysis of the continuous
global stream of input (Strauss et al., 2015; Tononi et al., 2016). It
thus remains possible that, when phrases or sentences are pre-
sented in a discrete format (as in most previous studies), individ-
ual words can be identified and processed fully up to a semantic
level even during sleep.

Another critical aspect of continuous speech parsing is inte-
grating information across multiple time scales (Rosen, 1992;
Greenberg et al., 2003; Ghitza, 2012; Zion Golumbic et al., 2013),
allowing short-scale information (phonemes/syllables) to be
combined to create lexical units (e.g., words) and higher-
order structures (phrases and sentences). Such integration re-
quires short-term memory buffers to sustain information for
longer durations; for example, to handle larger “temporal recep-
tive windows” (Lerner et al., 2011; Luo and Poeppel, 2012; Chait
et al., 2015). Notably, previous studies have shown that neural
activity during sleep is restricted to short timescales in the range
of hundreds of milliseconds, preventing the emergence of long-
lasting causal interactions (Pigorini et al., 2015; Strauss et al.,
2015). The proposed restriction on brain activity during sleep to
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short time intervals may also contribute to the diminished hier-
archical parsing of continuous speech observed here.

One important limitation of the current study is that prosodic
cues were purposefully removed from the speech material, allow-
ing us to probe grammatical speech parsing regardless of corre-
lated acoustic variations. However, because syntactic parsing of
natural speech also benefits from prosody (Eckstein and Fried-
erici, 2006), it remains to be tested whether prosody can facilitate
continuous speech parsing during sleep.

Sleep and inattention
Analogous results to those found here during sleep have been
reported recently for unattended speech, for which neural track-
ing is robust in auditory cortex, but substantially reduced in
higher-order language areas (Zion Golumbic et al., 2013; Rim-
mele et al., 2015). Along this line, acoustic features of unattended
speech affect behavior more than high-level (semantic) features
(Ellermeier et al., 2015; Wöstmann and Obleser, 2016). Addi-
tional similarities between sleep and inattention exist at the
behavioral level, where unattended speech typically cannot be
overtly recalled (Lachter et al., 2004), although some personally
relevant words occasionally capture attention (Cherry, 1953; Mo-
ray, 1958, 1959; Bentin et al., 1995; Wood and Cowan, 1995), as is
also found during sleep. These similarities between speech
processing during sleep and inattention may carry broader
implications as to the nature of functional “bottlenecks” in
speech processing (Broadbent, 1958; Treisman, 1969), constitut-
ing an intriguing topic for future research.

Conclusions
To the best of our knowledge, this study is the first to investigate
hierarchical parsing of continuous speech during sleep. We
found that bottom-up auditory processing is preserved in sleep
and comparable to that found in wakefulness. In sharp contrast,
neural tracking of high-order linguistic structures—words, phrases,
and sentences—is disrupted in sleep in a manner similar to un-
attended or unintelligible speech during wakefulness. Current
results suggest that parsing of continuous speech, which requires
integration across multiple time scales, matching of bottom-up
input to stored linguistic representations, and top-down predic-
tive coding, may not be possible without overt attention and
consciousness. Our results imply a functional barrier between
auditory sensation and linguistic processing, a barrier that may be
essential to ensure preservation of sleep in the face of external
events and to support its functions. This study sets the ground
toward studying residual speech processing across states of con-
sciousness, anesthesia, neurodegeneration, development, and
language disorders.
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Rimmele JM, Zion Golumbic E, Schröger E, Poeppel D (2015) The effects of
selective attention and speech acoustics on neural speech-tracking in a
multi-talker scene. Cortex 68:144 –154. CrossRef Medline

Rosen S (1992) Temporal information in speech: acoustic, auditory and
linguistic aspects. Philos Trans R Soc Lond B Biol Sci 336:367–373.
CrossRef Medline

Strauss M, Sitt JD, King JR, Elbaz M, Azizi L, Buiatti M, Naccache L, van
Wassenhove V, Dehaene S (2015) Disruption of hierarchical predictive
coding during sleep. Proc Natl Acad Sci U S A 112:E1353–E1362. CrossRef
Medline

Tononi G, Boly M, Massimini M, Koch C (2016) Integrated information
theory: from consciousness to its physical substrate. Nat Rev Neurosci
17:450 – 461. CrossRef Medline

Traxler MJ (2014) Trends in syntactic parsing: Anticipation, Bayesian es-
timation, and good-enough parsing. Trends Cogn Sci 18:605– 611.
CrossRef Medline

Treisman AM (1969) Strategies and models of selective attention. Psychol
Rev 76:282–299. CrossRef Medline

Wilf M, Ramot M, Furman-Haran E, Arzi A, Levkovitz Y, Malach R (2016)
Diminished auditory responses during NREM sleep correlate with the hier-
archy of language processing. PLoS One 11:e0157143. CrossRef Medline

Wood N, Cowan N (1995) The cocktail party phenomenon revisited: how
frequent are attention shifts to one’s name in an irrelevant auditory chan-
nel? J Exp Psychol Learn Mem Cogn 21:255–260. CrossRef Medline
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