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The endogenous opioid system supports a multitude of functions related to appetitive behavior in humans and animals, and it has been
proposed to govern hedonic aspects of feeding thus contributing to the development of obesity. Here we used positron emission tomog-
raphy to investigate whether feeding results in hedonia-dependent endogenous opioid release in humans. Ten healthy males were
recruited for the study. They were scanned with the �-opioid-specific ligand [11C]carfentanil three times, as follows: after a palatable
meal, a nonpalatable meal, and after an overnight fast. Subjective mood, satiety, and circulating hormone levels were measured. Feeding
induced significant endogenous opioid release throughout the brain. This response was more pronounced following a nonpalatable meal
versus a palatable meal, and independent of the subjective hedonic responses to feeding. We conclude that feeding consistently triggers
cerebral opioid release even in the absence of subjective pleasure associated with feeding, suggesting that metabolic and homeostatic
rather than exclusively hedonic responses play a role in the feeding-triggered cerebral opioid release.
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Introduction
Brain �-opioid receptor (MORs) system supports a multitude of
functions related to appetitive behavior and food intake (Henrik-
sen and Willoch, 2008; Pecina and Smith, 2010; Nummenmaa
and Tuominen, 2017). In animals, activation of the MOR in the
shell of nucleus accumbens increases pleasure responses for foods

and may also trigger eating (Peciña and Berridge, 2005). In line
with this, �-opioid receptor antagonists decrease and agonists
increase food intake in both rodents and humans (Glass et al.,
1999; Yeomans and Gray, 2002; Giuliano et al., 2012; Ziauddeen
et al., 2013). Opioid receptor antagonists also decrease the
pleasantness of the taste and smell of palatable foods in healthy
volunteers (Yeomans and Wright, 1991), whereas inverse MOR
agonists reduce the hedonic properties of food and eating (Na-
than et al., 2012). Clinical evidence also shows that chronic opi-
oid exposure is associated with increased sugar intake (Mysels
and Sullivan, 2010). Accordingly, opiate addicts perceive sweet-
ness as more pleasant than drug-naive control subjects, and this
effect is reversible by opioid antagonists (Langleben et al., 2012;
Green et al., 2013). Finally, MORs are also downregulated in
individuals with morbid obesity and binge-eating disorder
(Burghardt et al., 2015; Karlsson et al., 2015; Majuri et al., 2017),
suggesting an opioidergic contribution in the development and
maintenance of obesity.
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Significance Statement

The endogenous opioid system supports both hedonic and homeostatic functions. It has been proposed that overeating and
concomitant opioid release could downregulate opioid receptors and promote the development of obesity. However, it remains
unresolved whether feeding leads to endogenous opioid release in humans. We used in vivo positron emission tomography to test
whether feeding triggers cerebral opioid release and whether this response is associated with pleasurable sensations. We scanned
volunteers using the �-opioid receptor-specific radioligand [11C]carfentanil three times, as follows: after an overnight fast, after
consuming a palatable meal, and after consuming a nonpalatable meal. Feeding led to significant endogenous opioid release, and
this occurred also in the absence of feeding-triggered hedonia. Feeding-triggered opioid release thus also reflects metabolic and
homeostatic responses rather than hedonic responses exclusively.
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Animal studies have established that palatable food consump-
tion leads to endogenous opioid release in the hypothalamus,
anterior cingulate cortex, and nucleus accumbens (Dum et al.,
1983; Colantuoni et al., 2001). Because weight loss normalizes
initially downregulated MOR levels in obese humans, the down-
regulation in the obese state has been proposed to reflect prolonged
overeating leading to perpetual overstimulation and concomitant
downregulation of MORs (Burghardt et al., 2015; Karlsson et al.,
2016). Yet in humans, the evidence for endogenous opioid release
and its relation to hedonic aspects of feeding remains elusive.
Positive mood has been reported to trigger endogenous opioid
release in the amygdala (Koepp et al., 2009), and another early
study reported that amphetamine-induced euphoric feelings cor-
related with increased endogenous opioid release (Colasanti et
al., 2012), suggesting an association between opioidergic activity
and hedonia. Subsequent studies have, however, failed to repli-
cate this finding (Guterstam et al., 2013; Mick et al., 2014). More
recently MOR availability has been shown to decrease immedi-
ately following a liquid meal (Burghardt et al., 2015), reflecting an
increase in endogenous opioid levels. However, this study did not
assess whether the opioid release reflected hedonic aspects of
eating, or whether it is simply triggered by feeding per se.

If opioid release following feeding is related to the hedonic
responses, pleasure caused by eating should increase opioid re-
lease in a dose-dependent manner. Consequently, endogenous
opioid release following food consumption would be a candidate
neurobiological mechanism that reinforces overeating in obese
individuals. This hypothesis has far-reaching implications as
novel treatments for overeating targeting the opioid system are
developed, yet direct evidence for hedonia-related opioid release
following food consumption is lacking in humans. Here we di-
rectly tested whether endogenous opioid release is related to the
hedonic value of the consumed food. We used positron emission
tomography (PET) with the MOR-specific ligand [11C]carfenta-
nil to quantify the MOR availability following a (1) 12 h fast,
(2) a palatable meal (high hedonic value), and (3) a nonpalatable
meal (low hedonic value). We hypothesized that food consump-
tion would lead to endogenous opioid release and that this re-
sponse would be stronger following a palatable rather than a
nonpalatable meal.

Materials and Methods
The study was conducted in accordance with the Declaration of Helsinki
and was approved by the Ethical Committee of the Hospital District of
South-Western Finland. Subjects gave written informed consent before
participating in the measurements and were financially compensated for
their participation in this study.

Subjects. Ten healthy males participated in the study (Table 1). They
were recruited from the local student population in the Turku area via
e-mail advertisements. Inclusion criteria were as follows: (1) male sex, (2)
age 20 –35 years, (3) native Finnish speaker with western Caucasian ori-
gin, and (4) body mass index (BMI) 18.5–25.0 kg/m 2. Only males were
included in the sample because MOR availability differs between sexes
(Zubieta et al., 1999). Exclusion criteria were as follows: (1) regular use of
any medication; (2) recent weight changes of �2 kg in 1 year; (3) prior or
current psychiatric disorder including eating disorders; (4) expected
poor compliance; (5) nicotine use; (6) excessive use of alcohol (�20
portions/month); (7) history of any drug abuse; (8) diabetes or disturbed
glucose metabolism (fasting glucose level, �6.0 mmol/L; or glycated
hemoglobin (HbA1c) level, �6.0%); (9) past dose of radiation (from diag-
nostic imaging or prior research-related PET scans); and (10) presence of
ferromagnetic objects contraindicating magnetic resonance imaging (MRI).
Eligibility based on these criteria was determined during a screening visit
consisting of somatic examination and the Structured Clinical Interview for
DSM-IV Axis I Disorders (SCID-I) interview. Conductance-derived fat

percentages were measured with the Omron BF 400-E scale (Omron
Healthcare Europe). Because the palatable meal consisted of pizza, the
subject candidates were also briefly questioned regarding their meal pref-
erences, and those expressing a dislike for pizza were not enrolled in the
study.

Experimental design. The study was run using a within-subjects design
with the following three PET scan conditions: fasting, palatable food
(pizza) consumption, and nonpalatable liquid meal (nutrient drink)
consumption. Scans were performed on separate days within a 3– 4 week
period and always at the same time of the day for a single participant,
either in the morning (8:00 to 9:00 A.M.) or in the afternoon (12:00 to
13:00 P.M.). The order of the conditions was counterbalanced across
participants. Before each visit, participants refrained from eating for
12–14 h (overnight fast) and were asked to avoid physical and mental
stress and sexual interaction for 2 d. Alcohol consumption was not al-
lowed during the study period. All testing sessions begun with the placing
of an intravenous catheter in the antecubital vein for radioligand injec-
tion and blood sampling for �60 min before the scans.

In the fasting condition, subjects were scanned after a 40 min resting
period, while in the palatable and nonpalatable meal conditions partici-
pants started pizza and diet coke consumption 20 min before the sched-
uled start of the PET scan. The 20 min time frame was based on a pilot
study confirming that 20 min was sufficient for completing the meals. To
ensure that hedonic properties of the pizza matched with individual
preferences, the subjects chose their preferred pizza from three predeter-
mined topping combinations from a pizza chain (Kotipizza), which
makes each pizza with standardized recipe and ingredients. The pizza was
served warm. Caloric content, carbohydrates, fat, other nutrients, and
the number of calories (1040 –1100 kcal per serving; �50 g of protein,
84 g of carbohydrates, 63 g of fat, and 6 g of salt) were matched as closely
as possible between the pizzas and the nutritional drink (see below). The
subjects also consumed a 0.5 L soft drink (Coca-Cola Light; 2 kcal, �0.1
g protein, 0 g carbohydrates, and 0 g fat). The nutritional drink was made
from pure carbohydrate, whey protein flour, canola oil, and salt (1108
kcal of energy, 69.8 g of protein, 84 g of carbohydrates, 63 g of fat, and 6 g
of salt). The raw ingredients were measured with per-gram precision
with a standard kitchen scale. The total volume of the nutritional
drink was 0.9 L, matching the volume of pizza and the soda after
chewing.

Participants reported their feelings of happiness, anxiety, pleasantness,
hunger, irritability, nausea, thirst, and satiation on a visual analog scale
(0 –5) upon arrival, as well as before and after each scan. Participants also
rated the deliciousness, satiety levels, and food craving while consuming
the meals.

Table 1. Subject characteristics, injected doses of radioactivity, and self-reported
tastiness of the foods

Subject characteristics Mean SD

Age (years) 22.4 1.6
Weight (kg) 77.1 8.2
BMI (kg/m 2) 22.9 2.0
Waist circumference (cm) 84.1 8.5
Waist-to-hip ratio 0.8 0.04
Fat percentage ( %) 16.8 3.3
Fasting glucose (mM) 5.3 0.3
HbA1c (%) 4.9 0.2
Total cholesterol (mM) 4.1 0.7
Triglycerides (mM) 0.9 0.5
TSH (mU/L) 2.7 2.0
Free t(4) (pmol/L) 17.2 2.5
Injected �11C�carfentanil doses

Fasting scans (MBq) 257.0 12.1
Palatable meal scans (MBq) 248.5 10.5
Nonpalatable meal scans (MBq) 250.0 9.1

Self-reported tastiness of the foods
Palatable meal 8.4 0.5
Nonpalatable meal 3.8 2.0

TSH, Thyroid-stimulating hormone.
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Laboratory measurements. Plasma samples were obtained before the
meals and after the PET scan via an antecubital catheter that was used for
radioligand injections. Plasma glucose and insulin levels were measured
upon arrival as a control to ensure that the subjects had fasted as in-
structed. On the day of the fasting scan, the blood samples were taken
only once. On meal consumption scans, the plasma samples were taken
immediately before eating and after the scans (20 and 51 min after the
first sample). Glucose and insulin samples were analyzed on site by lab-
oratory technicians using routine procedures. Ghrelin, glucagon-like
peptide-1 (GLP-1), peptide YY (PYY), and leptin samples were pro-
cessed after mixing the sample with an enzyme inhibitor cocktail to be
able to measure active portions of the gastrointestinal hormones. The
samples were frozen and stored before the analysis (below �70°C). The
sample processing and analysis was performed using the provided
instructions of the laboratory kit (MILLIPLEXmap Kit: Human Meta-
bolic Hormone Magnetic Bead Panel, HMHEMAG-34K, Merck Milli-
pore). We were able to obtain the ghrelin, GLP-1, PYY, and leptin
measurements from only 6 of 10 participants due to the unexpected
delivery problems of the enzyme inhibitor cocktails at the beginning of
the study.

PET data acquisition and preprocessing. Data were acquired as de-
scribed previously (Karlsson et al., 2015). Briefly, MOR availability was
measured with the high-affinity agonist radioligand [11C]carfentanil
(Frost et al., 1985), which has high test–retest reliability (Hirvonen et al.,
2009). The radioligand was produced as described earlier (Karlsson et al.,
2015), except that the mobile phase was altered to CH3OH/0.1 M

NH4HCO2 (70:30). After intravenous radioligand injection, radioactiv-
ity in the brain was recorded with the GE Healthcare Discovery 690
PET/computed tomography scanner for 51 min with an in-plane res-
olution of 3.75 mm [effective resolution, 4.7 mm full-width at half-
maximum (FWHM)], using 13 frames of increasing duration (3 � 1 min,
4 � 3 min, 6 � 6 min). The injected radioligand doses were similar across
the scans (Table 1). During scanning, participants were lying in a supine
position with their heads gently strapped to the scanner table to limit
head movement. Participants were monitored throughout the scan.
Researchers ensured wakefulness by regular visits to the scanner room.
T1-weighted anatomical MR reference images (1 mm 3 voxel size) were
acquired with a Philips Ingenuity TF PET/MR 3 T (TR, 8.1 ms; TE, 3.7
ms; flip angle, 7°; scan time, 263 s).

Data were preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software/) running on Matlab 2014b for Mac (MathWorks). To
account for head movements, the images of the first scan session were
coregistered to the eighth frame of that session and summed. Subsequently,
all PET images were realigned to the produced the summed image. Each
subject’s T1-weighted MR image was coregistered to the mean PET im-
ages. Occipital cortex was drawn manually on the MRI images using
PMOD version 3.4 software (PMOD Technologies). Receptor availabil-
ity was expressed in terms of BPND, which is the ratio of specific to
nondisplaceable binding in the brain. Occipital cortex was used as the
reference region, as it is practically devoid of MOR (Hiller and Fan,
1996). BPND was calculated for each voxel with PMOD version 3.4 using
the simplified reference tissue model with reference–tissue time activity
curves as input data (Gunn et al., 1997). This outcome measure is not
confounded by blood flow or radioligand transport (Sander et al., 2014).
Subject-wise parametric BPND images were normalized to the MNI space
using the transformation matrices obtained from the normalization of
the T1-weighted MR images. Finally, 8 mm FWHM Gaussian smoothing
was applied.

Statistical analysis. The study was run using a fully within-subjects
design. Voxelwise differences in MOR availability were analyzed using
SPM12 using directed t contrasts, as follows: fast � nonpalatable meal,
fast � palatable meal, and palatable meal � nonpalatable meal, as well as
the opposite contrasts. Statistical threshold was set at p � 0.05, false
discovery rate (FDR) corrected at cluster level ( p � 0.05). In a comple-
mentary methodological approach, anatomical regions of interest
(ROIs) were automatically generated in the ventral striatum, caudate
nucleus, putamen, insula, amygdala, thalamus, orbitofrontal cortex, an-
terior cingulate cortex, middle cingulate cortex, and posterior cingulate
cortex using the Anatomy and AAL toolboxes (Tzourio-Mazoyer et al.,

2002; Eickhoff et al., 2005). Subsequently, condition-wise BPND values
were extracted for each subject and ROI using the Marsbar toolbox
(http://marsbar.sourceforge.net/download.html). Behavioral, biologi-
cal, and ROI data were analyzed with SPSS Statistics version 22 for Mac
OS X (IBM). The normality assumption was tested with a Shapiro–Wilk
test. We used an appropriate repeated-measures ANOVA to investigate
the changes of the binding potentials and other measures within and
between scan sessions. Within the ANOVA models, nonsphericity was
estimated with Mauchley’s test, and when the criteria were not met, the
Greenhouse–Geisser correction was applied.

Results
Self-reports and laboratory measures
Self-reports and laboratory measures are summarized in Figure 1
and Table 2. During feeding, the palatable meal (pizza) was con-
sistently rated more tasty than the nonpalatable meal (8.4 vs 3.8;
t(9) 	 8.70, p � 0.001). Accordingly, pleasure ratings were com-
parable before eating the palatable versus the nonpalatable meals
(t 	 �0.75, p 	 0.47) but differed at the beginning of the PET scans
following food consumption (F(2,20) 	 5.116, p 	 0.02, �p

2 	 0.36).
Pleasure ratings were higher for palatable versus nonpalatable
foods and for fast versus nonpalatable foods (p values �0.05).
Again, no differences were found after the scan (F(2,20) 	 0.46,
p 	 0.64). Satiety was comparable before eating the palatable
versus nonpalatable meals (t 	 0.45, p 	 0.67) but differed at the
beginning of the PET scans following food consumption (F(2,20) 	
57.58, p � 0.01, �p

2 	 0.88). Both immediately after the meal as
well as after the PET scan, satiety was higher following the palat-
able and nonpalatable meal versus fasting (p values �0.001), but,
importantly, there were no differences between the palatable and
nonpalatable meal conditions (t 	 1.81, p 	 0.10). Plasma insulin
(F(1,7) 	 26.32, p � 0.001, �p

2 	 0.79), GLP-1 (F(1,5) 	 23.04, p 	
0.005, �p

2 	 0.82), ghrelin (F(1,5) 	 6.14, p 	 0.05, �p
2 	 0.58), and

PYY (F(1,5) 	 15.39, p 	 0.01, �p
2 	 0.76) concentrations in-

creased postprandially. However, there were no significant food
type � measurement time interactions (F values �2.55, p values
�0.16). Plasma glucose and leptin levels were comparable
across conditions and were not influenced by food consump-
tion (F values �2.92, p values �0.15).

�-Opioid binding potentials
Full-volume analysis revealed that the consumption of both pal-
atable (pizza) and nonpalatable meals triggered widespread en-
dogenous opioid release (reflected in decreased [11C]carfentanil
BPND) in comparison with the baseline fasting scan (Fig. 2). Non-
palatable food consumption caused a global BPND decrease com-
pared with fasting scans (Fig. 2, left). Palatable food consumption
versus fasting state also decreased MOR binding, but in a more
limited number of regions including caudate nucleus, thalamus,
and cingulate cortex (Fig. 2, middle). Direct comparisons be-
tween nonpalatable versus palatable meal conditions revealed
that decreases in BPND values were significantly larger following
the nonpalatable meal condition (Fig. 2, right).

These effects were corroborated by a complementary ROI
analysis. In a 3 (condition: fast, palatable meal, nonpalatable
meal) � 10 (ROI) repeated-measures ANOVA, we found a main
effect of condition (F(2,22) 	 9.81, p � 0.001, �p

2 	 0.47), reflect-
ing BPND changes across the nonpalatable food versus fasting
condition (p � 0.001) and marginally for the palatable food ver-
sus fasting condition (p 	 0.056), as well as a main effect of ROI
(F(9,198) 	 78.64, p � 0.001, �p

2 	 0.87), resulting from regional
differences in MOR availability. These effects were qualified by a
condition � ROI interaction (F(18,198) 	 5.71, p � 0.001, �p

2 	
0.34). ROI-wise contrast tests revealed that binding potentials
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exhibited a clear pattern of fast � palatable meal � nonpalatable
meal (Fig. 3). MOR binding decreased in all ROIs following non-
palatable meal versus fasting state conditions. For palatable meal
versus fast, a significant effect was observed in dorsal caudate
nucleus. BPND values decreased more following nonpalatable
versus palatable meal in all ROIs (p values �0.05) except
amygdala.

Finally, we tested whether food consumption-triggered re-
gional BPND changes would be associated with pleasantness
ratings with foods. However, these effects were not statistically
significant in either condition (palatable or nonpalatable meal) in
any region.

Discussion
Our main finding was that consuming both palatable and non-
palatable meals led to widespread endogenous opioid release in
the brain. These effects were observed in large clusters, with peaks
in the ventral striatum, thalamus, and anterior cingulate cortex.
Opioid release was significantly stronger following the nonpalat-
able versus palatable meal, and it was independent of the subjec-
tive hedonic value of food. Consequently, even the consumption
of nonpalatable foods may lead to significant postprandial en-
dogenous opioid release in the absence of concomitant hedonic
response, even though hedonia associated with feeding may also
contribute to the response (Dum et al., 1983; Colantuoni et al.,
2001).

Feeding triggers opioid release independently of hedonia
A prominent hypothesis proposes that the brain opioid system
encodes the “liking” component (i.e., the hedonic reaction) of the
reward processing (Berridge, 2009; Berridge et al., 2010), and
previous PET studies in humans have linked the human endog-
enous opioid system with variety of mood and hedonic functions
(Zubieta et al., 2001; Koepp et al., 2009; Nummenmaa et al., 2016).
Consequently, it has been proposed that altered opioidergic func-
tions in conditions involving overeating would reflect alterations in
hedonic processing (Burghardt et al., 2015; Karlsson et al., 2015).
Our findings on postprandial opioid release accord with the gen-
eral role of opioids in feeding (Pecina and Smith, 2010) and sug-
gest that repeated feeding-triggered opioid release is a possible
mechanism leading to MOR downregulation in obesity. The ef-
fects were also consistent across the studied individuals (n 	 10).
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Figure 1. Behavioral ratings and laboratory measurements. A, B, Mean subjective ratings for satiety (A) and pleasure (B) before meal, before scan, and after scan. C, D, Mean plasma insulin (C)
and glucose (D) levels before the meal and after the scans. Error bars show the SEM.

Table 2. Laboratory measurements before and after the meals

Palatable meal Nonpalatable meal

Mean SD Mean SD

Premeal glucose (mmol/L) 5.1 0.4 5.1 0.4
Postmeal glucose (mmol/L) 5.0 0.7 5.2 1.0
Premeal insulin (mU/L) 6.6 3.9 6.5 4.5
Postmeal insulin (mU/L) 20.5 8.1 30.8 19.9
Premeal ghrelin (pg/ml) 42.2 26.7 31.2 13.5
Postmeal ghrelin (pg/ml) 26.8 11.9 22.3 8.0
Premeal GLP-1 (pmol/L) 2.7 0.0 2.7 0.0
Postmeal GLP-1 (pmol/L) 15.3 9.5 16.1 10.9
Premeal leptin (ng/ml) 1.9 0.3 1.9 2.7
Postmeal leptin (ng/ml) 2.1 3.5 1.8 2.7
Premeal PYY (pg/ml) 75.3 43.4 59.2 30.6
Postmeal PYY (pg/ml) 94.3 49.4 85.5 44.6
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In ventral striatum, feeding-induced opi-
oid release was observed in 10 of 10 sub-
jects in the nonpalatable meal condition
and in 7 of 10 subjects in the palatable
meal condition; furthermore, the differ-
ence between nonpalatable and palatable
meals was significant in 7 of 10 subjects.
The corresponding effect sizes (Cohen’s
d) were �1.39, exceeding the conven-
tional limit (0.8) for a large effect (Cohen,
1992).

Against our expectations, the present
study did not reveal an association be-
tween MOR activation and hedonic as-
pects of feeding. Both palatable and
nonpalatable meals induced significant
changes in MOR activity, while only pal-
atable meal consumption induced subjec-
tive pleasurable sensations. However, we
found that the opioid release was stronger
following the nonpalatable meal than the
palatable meal, despite careful matching of
the energy content and nutrients in the
meals and no differences in subjective (self-
report) and hormonal (plasma insulin,
GLP-1, ghrelin, and PYY levels) measures
of satiety, as well as using a subjectively
preferred palatable meal whose feeding
has been found to be modulated by the
opioid system in preclinical studies (for a
review, see Gosnell and Levine, 2009). No
association between endogenous opioid
release and self-reported pleasure could
be established (although this may also
reflect the limited sample size), which accords with some prior
studies showing decoupling between endogenous opioid levels
and acute mood changes (Guterstam et al., 2013; Mick et al.,
2014; Burghardt et al., 2015). Thus, the present evidence sug-
gests that a mere change in the energy homeostasis following
feeding is enough to trigger endogenous opioid release in humans.
Rewarding aspects of feeding may contribute to the opioid release
independently of the homeostatic response, but the present study

cannot directly disentangle the relative magnitudes of the two
effects.

A possible reason for these discrepancies is that whereas prior
preclinical and clinical studies have upregulated or downregu-
lated the MOR system pharmacologically, we instead measured
feeding-triggered endogenous opioid release directly in vivo. The
observed MOR activation may indeed be influenced by numer-
ous factors other than the hedonic response of feeding (for a
review, see Nummenmaa and Tuominen, 2017). One possible

Figure 2. Full-volume analysis. Brain regions where [11C]carfentanil BPND values were different between fasting and the nonpalatable meal (left), fasting and the palatable meal (middle), and
the palatable meal and the nonpalatable meal (right). The data are thresholded at p � 0.05, FDR corrected at cluster level. The color bar shows the t statistic range.
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atable meal, the palatable meal, and fasting conditions. Letters indicate significant differences ( p � 0.05) in the one-way
contrasts between fast � nonpalatable meal (a), fast � palatable meal (b), and palatable meal � nonpalatable meal (c).
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explanation for the larger opioid release following the nonpalat-
able meal is that the nonpalatable liquid meal was digested faster
in both the stomach and intestine, thus resulting in faster hu-
moral and neural gastrointestinal responses. Consequently, the
faster coupling between plasma nutrients and circulating hor-
mones may cause opioid release in the brain via hypothalamus-
mediated mechanisms. Regardless of what mechanism ultimately
underlies the eating-dependent endogenous opioid release, these
results suggest that repeated stimulation of the MOR system due
to overeating can potentially lead to its downregulation, as spec-
ulated in prior studies (Karlsson et al., 2015, 2016). However,
even though eating itself would not always lead to hedonia-depen-
dent changes in opioid release (e.g., in the case of nonpalatable
food consumption), it is possible that the MOR downregulation
following repeated overeating can lead to alterations in mood.
Accordingly, one prior study (Karlsson et al., 2015) has found
that MOR availability was associated with trait anxiety in the
morbidly obese subjects, suggesting that the interaction between
feeding and mood may be mediated by MOR.

All in all, our results suggest that the relationship among opi-
oids, feeding, and pleasure may be more complex than previously
thought. Even though opioid agonists and antagonists increase
and decrease food intake, respectively (Glass et al., 1999; Yeo-
mans and Gray, 2002; Mysels and Sullivan, 2010; Giuliano et al.,
2012; Ziauddeen et al., 2013), the effects of �-opioid agonists in
subjective hedonic feelings in drug-naive subjects are much more
variable (Lasagna et al., 1955; Tedeschi et al., 1984; Zacny and
Gutierrez, 2003, 2009; Riley et al., 2010; Ipser et al., 2013). To-
gether with mixed evidence on endogenous opioid release during
positive moods in imaging studies (Boecker et al., 2008; Koepp et
al., 2009; Burghardt et al., 2015; Manninen et al., 2017; Nummen-
maa and Tuominen, 2017), these data call for a more detailed
investigation of the specific contribution of opioids in affective
and homeostatic processes in humans.

It must be noted that rewarding and motivating effects of
foods likely also act via other neurotransmitter systems, in par-
ticular the dopaminergic system, which interacts intimately with
the opioidergic system (Tuominen et al., 2015). In line with this,
orally consumed foods trigger significant dopamine release in the
striatum (Small et al., 2003), yet similar effects are not observed
with intravenously administered glucose (Haltia et al., 2007,
2008). Consequently, the actual process of consuming the food
(rather than the concomitant changes in blood glucose levels)
might also be critical for the activity changes in the reward sys-
tem. It is thus possible that the dopamine system is critical for the
rewarding aspects of feeding, whereas the opioid release observed
in the present study would be triggered by more general-level
homeostatic signaling (Nogueiras et al., 2012).

Face-to-face individual treatment of obesity is very labor in-
tensive and costly, and, unfortunately, the conventional dieting-
based approach for weight loss has a low success rate (Anderson
et al., 2001). Alterations in the opioid system that controls food
intake (Karlsson et al., 2015) may be partly responsible for main-
taining unhealthy eating habits. The present data provide further
evidence that opioid blockage might be an effective way for pre-
venting overeating and promoting weight loss in humans by
blocking the effects of feeding-induced opioid release. Indeed,
opioid antagonists also prevent food seeking and binge-like eat-
ing (Giuliano et al., 2012; Cambridge et al., 2013). Similarly, it has
been established that weight loss by dieting or by surgical means
normalizes MORs in morbidly obese subjects (Burghardt et al.,
2015; Karlsson et al., 2015), suggesting that both acute and

chronic alterations in the opioidergic system contribute to feed-
ing preferences.

Methodological considerations
We studied only healthy young males, so it remains unknown
whether these results generalize to females and other age groups.
The PET technique does not allow disentangling whether the
BPND changes reflect receptor internalization, altered conforma-
tion, or occupancy by endogenous neurotransmitter. Therefore,
we cannot specify which interpretation is most appropriate.
Nonetheless, all of these changes are thought to reflect endoge-
nous opioid release. Additionally, using the current protocol we
cannot disentangle the exact time course of the MOR activation
changes. As the subjects were scanned �15 min after the meal, it
is possible that the peak effect of nonpalatable meal was reached
sooner than that for the palatable meal, yielding higher BPND

values during the 51-min measurement.
Serving subject-chosen pizza allowed matching the palatable

meal with subject preferences (Small et al., 2003), whereas the
liquid meal provided a compromised macronutrient and volume-
matched nonpalatable control. While resembling everyday food
consumption, this design has two limitations. First, chewing
(required for pizza) could also influence the hedonic and homeo-
static responses of food on the brain (Higgs and Jones, 2013).
Second, the liquid meal may have led to faster humoral and neu-
ral gastrointestinal responses, thus triggering more profound
opioid release. After this initial demonstration with natural feed-
ing conditions, future studies could compare opioid release fol-
lowing directly matched palatable versus nonpalatable meals
such as milkshake (Stice et al., 2008) to provide a finer grained
analysis of the effects of mere palatability of foods on opioid
release under a controlled setting. Nevertheless, we stress that
neither of these limitations counter our argument that feeding
may trigger opioid release in the absence of hedonia.

Conclusions
We conclude that food consumption causes a robust and wide-
spread cerebral opioid release in comparison with the fasted state.
Nonpalatable liquid nutrition, however, caused stronger opioi-
dergic responses than palatable pizza, thus the observed effects do
not reflect the hedonic properties of the meal. These data high-
light the role of the endogenous opioid system in human feeding
but suggest that the opioidergic system contributes to feeding
even in the absence of hedonia.
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