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High rates of relapse to drug use during abstinence is a defining feature of human drug addiction. This clinical scenario has been studied
at the preclinical level using different animal models in which relapse to drug seeking is assessed after cessation of operant drug
self-administration in rodents and monkeys. In our Society for Neuroscience (SFN) session entitled “Circuit and Synaptic Plasticity
Mechanisms of Drug Relapse,” we will discuss new developments of our understanding of circuits and synaptic plasticity mechanisms of
drug relapse from studies combining established and novel animal models with state-of-the-art cellular, electrophysiology, anatomical,
chemogenetic, and optogenetic methods. We will also discuss the translational implications of these new developments. In the mini-
review that introduces our SEN session, we summarize results from our laboratories on behavioral, cellular, and circuit mechanisms of

drug relapse within the context of our session.
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Introduction

A central problem in drug addiction treatment is high rates of
relapse to drug use during abstinence (Wikler, 1973; O’Brien,
2005). Despite many years of intense preclinical and clinical re-
search on relapse to drug use (Kalivas and O’Brien, 2008; Sinha et
al., 2011), relapse rates remained essentially unchanged during
the last 4 decades (Hunt et al., 1971; Sinha, 2011; Fig. 1).

In abstinent human drug users, drug relapse is often triggered
by acute exposure to the self-administered drug (Jaffe et al.,
1989), drug-associated cues and contexts (O’Brien et al., 1986),
stress (Sinha, 2001), or the experience of withdrawal symptoms
or exposure to withdrawal-associated cues (Wikler, 1973). Since
the early 1970s, this clinical scenario has been modeled in mon-
keys (Stretch etal., 1971), rats (Davis and Smith, 1976; de Wit and
Stewart, 1981), and mice (Highfield et al., 2002), using the
extinction-reinstatement model (Stewart and de Wit, 1987). In
this model, nonreinforced drug seeking induced by exposure to a
drug (priming; de Wit and Stewart, 1981), drug-associated cues
and contexts (Meil and See, 1996; Katner and Weiss, 1999; Crom-
bag and Shaham, 2002), stress (Shaham and Stewart, 1995), or
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withdrawal states (Shaham et al., 1996) is assessed after extinction
of the drug-reinforced operant responding (Shaham et al., 2003).
During the last 2 decades, many studies have used the reinstatement
model to identify cellular, receptor, neurotransmitter, and circuit
mechanisms of relapse to drug use and to identify novel pharmaco-
logical treatments (Self, 2004; Kalivas et al., 2009; Bossert et al., 2013;
Mantsch et al., 2016). Some of these led to prospective clinical trials
in human addicts (LaRowe et al., 2013; Kowalczyk et al., 2015;
Schwandt et al., 2016).

From a translational perspective, a potential limitation of the
reinstatement model is that abstinence in humans is not due to
operant extinction and typically is either forced (incarceration or
inpatient treatment) or voluntary due to either the negative con-
sequences of chronic drug use or the availability of alternative
nondrug rewards in the addict’s environment (Marlatt, 1996;
Epstein and Preston, 2003). Thus, more recently investigators
have incorporated these facets of human abstinence into newer
models of drug relapse that do not include an extinction compo-
nent (Marchant et al., 2013; Venniro et al., 2016).

In the sections below, we summarize the results from our
neurobiological studies in which we used three animal models of
drug relapse. In the first two sections, Y.D. and M.E.W. will de-
scribe results from studies using an animal model of relapse after
forced abstinence in which drug seeking progressively increases
after the cessation of cocaine self-administration, a phenomenon
termed “incubation of cocaine craving” (Grimm et al., 2001). In
this model, rats are first trained to self-administer a drug and are
then tested for nonreinforced drug seeking at different time pe-
riods of home-cage forced abstinence. During the relapse tests,
the rats are brought back to the drug self-administration environ-
ment (the operant chambers), and lever presses (or nose-pokes)
lead to contingent presentations of discrete cues previously paired
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Figure 1. Relapse rates in 1971 and 2011. 4, B, Data redrawn from Figure 1 of Hunt et al.
(1971) (A) and Figure 1 of Sinha et al. (2011) (B) on relapse to drug use in addiction clinics.

with drug infusions (Venniro et al., 2016). The preclinical incuba-
tion of drug-craving studies inspired clinical studies demonstrating
that this phenomenon is observed in human addicts exposed to drug
cues during abstinence (Bedi et al., 2011; Wang et al., 2013; Li et al,,
2015a; Parvaz et al., 2016).

In the third section, Y.S. will describe the initial behavioral
and neurobiological characterization of a new variation of the
classical incubation of drug craving model in which the incuba-
tion of drug craving is observed after choice-based voluntary
abstinence in the drug environment (Caprioli et al., 2015). In the
fourth section, J.R.T. will describe studies on the circuit mecha-
nisms of discrete cue-induced reinstatement of drug seeking. In
this model, extinction of the drug-reinforced responding occurs
in the absence of a discrete cue previously paired with drug infu-
sions during the training phase, and during the subsequent rein-
statement tests, lever presses lead to contingent delivery of the cue
(Meil and See, 1996). J.R.T. and colleagues used this model to
investigate the involvement of limbic corticostriatal circuits in
both extinction and reinstatement of alcohol seeking, using a
novel viral methodology for ablating neural projections (Keistler
etal., 2017).

Withdrawal-dependent plasticity leading to incubation of
cocaine craving

Incubation of cue-induced cocaine craving serves as a clinically
relevant rodent model to study mechanisms underlying persis-
tent vulnerability to relapse in abstinent drug users (Lu et al.,
2004; Parvaz et al., 2016; Wolf, 2016). While the expression of
“incubated” cocaine craving involves many brain regions and
several transmitter systems (Pickens et al., 2011), a critical mech-
anism is synaptic accumulation of Ca®"-permeable AMPA
receptors (CP-AMPARs) in excitatory synapses on nucleus ac-
cumbens (NAc) medium spiny neurons (MSNs; Wolf, 2016). In
drug-naive rats or rats tested during the first several weeks after
withdrawal from extended-access cocaine self-administration,
GluA2-containing Ca*"-impermeable AMPARs (CI-AMPARs)
are responsible for the majority of excitatory synaptic transmis-
sion, although ~5% of the evoked EPSC is mediated by CP-
AMPARs. However, after prolonged withdrawal (>30 d), when
incubation of cocaine craving becomes pronounced, the contri-
bution of CP-AMPARs (homomeric GluA1 receptors) to synap-
tic transmission increases and then remains high for at least 2
more months (Conrad et al., 2008; Wolf and Tseng, 2012). Once
this has occurred, the responsiveness of NAc core MSNs to glu-
tamate drive is strengthened (Purgianto et al., 2013), presumably
due to the higher conductance of CP-AMPARs compared with
CI-AMPARs. Consistent with these findings, the incubation of
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cocaine craving is associated with an increase in the firing of NAc
core neurons that encode cocaine-related information (Hol-
lander and Carelli, 2005, 2007; Guillem et al., 2014).

Levels of CP-AMPARs are also elevated in the NAc shell
(NAcSh) after incubation of cocaine craving (McCutcheon et al.,
2011a; Lee et al., 2013; Ma et al., 2014) and CP-AMPARs in both
core and shell play a necessary role in the expression of the incu-
bation of craving. Thus, acute pharmacological inhibition of NAc
core CP-AMPARs or their removal via activation of metabo-
tropic glutamate receptor 1 (mGluR1) reduces the expression of
incubated cocaine craving (Conrad et al., 2008; Loweth et al.,
2014). Similarly, optogenetic internalization of CP-AMPARs
within selected excitatory NAc afferents decreases incubated co-
caine seeking after 45 d of withdrawal (Lee et al., 2013; Ma et al.,
2014). Together, the results summarized above suggest that syn-
aptic incorporation of CP-AMPARs after prolonged withdrawal
enhances MSN activation in response to glutamate released by
cocaine-paired cues and thereby intensifies the drug-seeking
response.

What mechanisms trigger and then maintain elevated CP-
AMPAR levels? We are pursuing several related aspects of this
question, focusing on the NAc core. Based on evidence that NAc
CP-AMPAR levels are normalized in brain slices from “incubated
rats” by acute (1 h) disruption of protein translation (Scheyer et
al., 2014), we are investigating mechanisms regulating protein
translation in NAc MSNs under control conditions and dysregu-
lation of these mechanisms during the incubation of craving. As
part of this, we are testing the hypothesis that disinhibition of
GluAl translation accounts for increased levels of homomeric
GluA1 receptors in incubated rats. However, even if we can ac-
count for the formation of CP-AMPARs within NAc neurons
during the incubation of craving, a distinct question is why they
accumulate in synapses.

An early step in synaptic remodeling associated with incuba-
tion of cocaine craving is an increase in the number of GluN2B-
containing silent synapses in the NAc that is detectable by
withdrawal day 1; these silent synapses are ultimately “filled,” at
least in some projections, with CP-AMPARs (Lee et al., 2013; Ma
et al., 2014). In the NAc core, where CP-AMPAR levels increase
only after ~30 withdrawal days (Wolf and Tseng, 2012), this
leaves a significant temporal gap between silent synapse forma-
tion in NAc and CP-AMPAR insertion. This suggests that inter-
mediate plasticity steps are required. By studying NMDAR
transmission in NAc core over the first 2 months of withdrawal,
we have found that an initial increase in GluN2B-containing re-
ceptors during the first week of withdrawal is followed, ~1-2
weeks later, by the appearance of NMDARs that contain the
GluN3 subunit along with GluN2B (Christian et al., 2017). Sim-
ilar NMDARs have been implicated in cocaine action in the ven-
tral tegmental area (Yuan et al., 2013; Creed et al., 2016). The
presence of GluN3 subunits endows NMDARs with atypical
properties, namely low sensitivity to Mg block, low Ca** per-
meability, and lower conductance (Cull-Candy and Leszkiewicz,
2004; Henson et al., 2010; Pachernegg et al., 2012; Paoletti et al.,
2013). It is possible that GluN3-containing NMDARs emerge as
part of a homeostatic response to decreased membrane excitabil-
ity or decreased activity of excitatory afferents after withdrawal
from cocaine, since their presence will increase transmission at
hyperpolarized potentials due to absence of Mg>" block. How-
ever, their inability to pass Ca®" may have different functional
consequences. Of greatest interest is the tonic suppression of local
protein translation mediated by NMDARs (Sutton et al., 2006;
Autry etal., 2011; Kavalali and Monteggia, 2015), which has been
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shown to depend upon Ca>" entry through the NMDAR channel
(Scheetz et al., 2000; Reese and Kavalali, 2015). We speculate that
synaptic incorporation of GluN3-containing NMDARs disinhib-
its protein translation during the incubation of cocaine craving
and thereby accounts for at least a component of the dysregulated
translation shown to be required for CP-AMPAR maintenance in
NAc synapses.

Another important and better characterized adaptation that
emerges in an intermediate withdrawal time period (detectable
after 25 but not 14 withdrawal days) involves mGluR1. The abil-
ity of pharmacological activation of mGluR1 to remove CP-
AMPARSs from NAc synapses (McCutcheon et al., 2011b; Loweth
etal.,2014) and other synapses (Loweth et al., 2013) suggests that
endogenous glutamate tone at mGluR1 may help to maintain low
CP-AMPAR levels in the NAc core under normal conditions and
conversely that decreased mGluR1 function after withdrawal
could account for CP-AMPAR accumulation. Indeed, we dem-
onstrated that a loss of mGluR1 tone, attributable to reduced
mGluR1 surface expression, precedes and enables CP-AMPAR
accumulation during the incubation of craving (Loweth et al.,
2014). During late withdrawal, the consequences of slowing
CP-AMPAR removal in this manner may be exacerbated by ac-
celerated CP-AMPAR insertion due to enhanced PKA phosphor-
ylation of GluAl (Ferrario et al., 2011). It is important to note
that, despite the reduction in surface mGluR1, sufficient receptor
remains to be activated by exogenous agonists, explaining the
ability of mGluR1-positive allosteric modulators (PAMs) to re-
move CP-AMPARs and reduce incubation of cocaine craving.
These results establish mGluR1 PAMs as potential therapeutic
agents for reducing cocaine craving and prolonging abstinence
(Loweth et al., 2014).

Studies are in progress to investigate the relationships among
homeostatic plasticity, NMDAR transmission, protein transla-
tion, and CP-AMPAR accumulation.

Homeostatic dysregulation in cocaine relapse

Repeated exposure to addictive drugs induces many cellular and
circuit alterations in the brain (Nestler, 2001), some of which
contribute to drug self-administration and relapse, as assessed in
rodent models (Shaham and Hope, 2005; Thomas et al., 2008;
Jonkman and Kenny, 2013; Dong and Nestler, 2014). Among
drug-associated alterations, some are induced with a clear signa-
ture of Hebbian plasticity (i.e., they are induced by drug experi-
ence to promote drug-associated memories and behaviors;
White, 1996; Hyman et al., 2006), while other alterations are
likely drug-induced homeostatic responses (i.e., they are induced
to compensate for the impact of the drug on neurons and neural
networks; Aghajanian, 1978; Nestler and Aghajanian, 1997; Kali-
vas, 2005; Huang et al., 2011). Homeostatic responses play a key
role in maintaining stable neuronal output under most physio-
logical circumstances (Turrigiano and Nelson, 2004; Davis, 2013;
Yee et al., 2017). However, homeostatic responses can also go
awry due to insufficient or excessive compensation, or the in-
volvement of other factors (Turrigiano and Nelson, 2004; Davis,
2013; Yee et al., 2017). In this case, they become homeostatic
dysregulations that may cause adverse consequences to the drug
addict (Huang et al., 2011). It has long been hypothesized that
after drug exposure, homeostatic regulations and dysregulations
are extensively triggered and continuously evolve, a process that
may contribute to the progression of drug addiction (Solomon
and Corbit, 1974; Koob and Le Moal, 1997). It remains poorly
understood under what conditions homeostatic alterations are
formed at the cellular level after drug exposure and how they
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Figure 2. A diagram showing a homeostatic cross talk between excitatory synaptic inputs
and membrane properties in NAc MSNs. Specifically, in NAc MSNs, anincrease or decrease in the
excitatory synaptic strength induces a homeostatic decrease or increase in the intrinsic mem-
brane excitability, and vice versa.

evolve to promote drug self-administration and relapse (Huang
etal., 2011).

Targeting this knowledge gap, we focus on cocaine-induced
homeostatic dysregulation in NAcSh MSNs using a drug-relapse
model: the incubation of cocaine craving (Grimm et al., 2001).
The functional output of MSNs is determined by the integration
of excitatory synaptic input and membrane excitability
(Ishikawa et al., 2009; Huang et al., 2011; Wolf, 2016). Lacking
intrinsic pace-making mechanisms, excitatory synaptic inputs
provide the primary driving force to depolarize the MSNs,
while upon depolarization, the membrane excitability of the
MSNs determines whether to fire action potentials and how
many action potentials to fire (O’Donnell et al., 1999). Our
published (Ishikawa et al., 2009) and unpublished results re-
veal a bidirectional homeostatic plasticity between the excit-
atory synaptic input and membrane excitability of NAcSh
MSNs, which we termed “synapse-membrane homeostatic
cross talk” (SMHC). Through this SMHC, an increase or de-
crease in the excitatory synaptic strength induces a homeo-
static decrease or increase in the membrane excitability, and
vice versa (Fig. 2). As such, the overall functional output of
NAcSh MSNs can be maintained at relatively stable levels.

The excitatory synaptic strength of NAc MSNs is primarily
mediated by AMPARs. Our unpublished results show that syn-
aptic GluN2B-containing NMDARs are the synaptic sensors of
SMHC; they detect alterations in AMPAR-mediated excitatory
synaptic strength, and, through coupling to calcium-calmodulin
protein kinase II, these receptors regulate the membrane proper-
ties of NAc MSNs. During cocaine self-administration and after
short-term withdrawal from cocaine, although the AMPAR-
mediated excitatory synaptic strength in NAc MSNs remains
largely unchanged, synaptic GluN2B NMDAR-mediated trans-
mission is upregulated. This constitutes a false signal of increased
excitatory synaptic strength and triggers the first round of synapse-
to-membrane SMHC to decrease the membrane excitability of
NAcSh MSNs, partially through the expression of SK2-type
calcium-activated potassium channels. Subsequently, the de-
creased membrane excitability initiates the second round of
membrane-to-synapse SMHC, resulting in synaptic accumula-
tion of CP-AMPARs and the strengthening of NAc excitatory
synapses after prolonged withdrawal from cocaine. Thus, a cas-
cade of SMHC-mediated homeostatic dysregulation occurs after
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withdrawal from cocaine to sequentially change two critical neu-
ronal substrates of NAcSh MSNs, the membrane excitability and
excitatory synaptic strength.

To determine the behavioral consequence of homeostatic dys-
regulation cascades after cocaine self-administration, we experi-
mentally prevented cocaine-induced upregulation of GluN2B or
SK2 in NAcSh MSNs. Rats with either of these manipulations did
not develop incubation of cocaine craving, suggesting that the
SMHC-mediated dysregulation cascades gradually change the
functional output of NAcSh MSNs, contributing to the develop-
ment of the incubation of cocaine craving (J. Wang and Y. Dong,
unpublished data).

How do SMHC-mediated dysregulation cascades change the
functional output of NAcSh MSNs? In a hypothetical model, if an
MSN is regarded as a linear electrical unit with an input, a gain, and
an output, cocaine-induced SMHC cascades may progressively in-
crease the input and reduce the gain simultaneously, which keeps the
input—output balanced at the check point. However, low-intensity
excitatory synaptic inputs, which otherwise would trigger action po-
tential firing in drug-naive animals, fail to do so due to reduced
membrane excitability, while high-intensity inputs can pass the bar-
rier of reduced membrane excitability and possibly predominate in
triggering action potential firing. As such, normal, low-intensity in-
puts to NAcSh MSNs are suppressed after withdrawal from cocaine,
while high-intensity inputs, some of which may be activated by
cocaine-associated cues, are prioritized for functional output.

Together, our studies suggest that cocaine self-administration
initiates homeostatic dysregulation cascades to progressively al-
ter the functional output of NAc MSNs, promoting relapse to
cocaine seeking after prolonged withdrawal from the drug.

Incubation of drug craving after voluntary abstinence:
behavioral and neuronal mechanisms

As mentioned in the previous sections, since the publication of
the study by Grimm et al. (2001), we and other investigators have
studied cellular and circuit mechanisms of the incubation of drug
craving (Pickens et al., 2011; Wolf, 2016). However, despite the
translational utility of the established rat incubation of drug crav-
ing model (Li et al., 2016), from the human relapse perspective,
the limitation of the model is that the abstinence period is exper-
imenter imposed or forced (Venniro et al., 2016). In humans,
abstinence is often voluntary due to either adverse consequences
of drug use or the presence of alternative rewards (Marlatt, 1996;
Epstein and Preston, 2003). Based on these considerations, we
recently developed a choice-based rat model of relapse after vol-
untary abstinence (Caprioli et al., 2015). The model is based on
the seminal food versus drug choice studies of Ahmed and col-
leagues (Lenoir and Ahmed, 2007; Ahmed, 2010).

In our first study, we used two established self-administration
models of addiction—escalation of drug self-administration
(Ahmed and Koob, 1998) and a DSM-IV-based addiction model
in which rats are trained to self-administer a drug for many weeks
(Deroche-Gamonet et al., 2004)—to demonstrate that food-
sated rats will voluntarily abstain from methamphetamine self-
administration when given a mutually exclusive choice between
the drug and palatable food, and that incubation of methamphet-
amine craving reliably occurs after the alternative nondrug re-
ward is discontinued (Caprioli et al., 2015; Fig. 3A,B). We also
showed that incubation of methamphetamine craving after forced
or voluntary abstinence is decreased by systemic injections of
AZD8529, a selective positive allosteric modulator of mGluR2.
These data extend the findings of previous studies on the impor-
tant role of glutamate transmission in incubation of drug craving
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(see previous sections; Lu et al., 2005, 2007). In a subsequent
study, we showed that the incubation of methamphetamine crav-
ing after voluntary abstinence generalizes to female rats and that,
unexpectedly, food-choice voluntary abstinence prevents the
emergence of the incubation of heroin craving in both sexes
(Venniro et al., 2017a).

In our first circuit mechanism study on the incubation of
methamphetamine craving after voluntary abstinence, we used
the activity marker Fos (Morgan and Curran, 1991), RNAscope in
situ hybridization (Wang et al., 2012), classical dopamine recep-
tor pharmacology, and the Daun02 chemogenetic inactivation
procedure (Cruzetal., 2013) to determine the role of dorsolateral
striatum (DLS) and dorsomedial striatum (DMS) in this new
form of incubation (Caprioli et al., 2017). We chose this brain
region because we recently found that the incubation of metham-
phetamine craving after forced abstinence is associated with in-
creased Fos in both DLS and DMS and that the blockade of D1
family receptors, which inhibit striatal Fos induction (Valjent et
al., 2000), in these subregions decrease incubated drug seeking
after prolonged forced abstinence (Li et al., 2015b).

The Daun02 inactivation procedure was developed to deter-
mine causal roles of neuronal ensembles in learned behaviors
(Koyaetal., 2009). This method has been used to identify the role
of neuronal ensembles in different brain regions in context-
induced relapse to drug seeking (Bossert et al., 2011; Cruz et al.,
2014; Rubio et al., 2015), incubation of drug craving after forced
abstinence (Fanous et al., 2012; Funk et al., 2016), and reconsoli-
dation of drug reward memories (Xue et al., 2017). In this proce-
dure, selective inhibition of behaviorally relevant activated
neuronal ensembles is performed by injecting the prodrug
Daun02 into specific brain areas of Fos-lacZ transgenic rats (Ka-
sof et al., 1995) that express B-galactosidase (B-gal; the lacZ gene
protein product) in neurons strongly activated during behavior
(Koyaetal., 2009). Daun02 is cleaved into daunorubicin by 3-gal
expressed in strongly activated neurons. Daunorubicin in turn
selectively inhibits the strongly activated neurons (but not the
surrounding nearby neurons) via either cell death (Pfarr et al.,
2015) or the inhibition of calcium-dependent action potentials
(Engeln et al., 2016).

We found that methamphetamine seeking was higher after
21 d of voluntary abstinence than after 1 d (incubation of meth-
amphetamine craving). We also found that the incubated re-
sponse was associated with increased Fos expression in DMS but
not DLS and that Fos was colabeled with both Drdl and Drd2.
Additionally, DMS injections of SCH39166 or raclopride selec-
tively decreased methamphetamine seeking after 21 abstinence
days. Finally, in Fos-lacZ transgenic rats, selective inactivation of
relapse test-activated Fos neurons in DMS on abstinence day 18
using the Daun02 procedure decreased incubated methamphet-
amine seeking on day 21 (Caprioli etal., 2017; Fig. 3C). Together,
the results of our initial circuit mechanism study demonstrate a
role of DMS dopamine D, and D, receptors in the incubation of
methamphetamine craving after voluntary abstinence and that
DMS neuronal ensembles play a critical role in this incubation.

In conclusion, we have developed a new rat model that allows
us and other investigators to study brain mechanisms of relapse
and incubation of drug craving after prolonged choice-based vol-
untary abstinence. We have recently used the model to study the
role of central amygdala and glutamatergic projections to this
region in relapse after voluntary abstinence (Venniro et al., 2017b).
We also currently are developing an extension of our voluntary
abstinence-relapse model by using a social peer as the nondrug
alternative operant reward instead of palatable food to achieve
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Figure 3. Incubation of methamphetamine craving after choice-based voluntary abstinence: behavioral characterization and role of DMS neuronal ensembles. A, B, Voluntary abstinence and
incubation of methamphetamine craving after forced or voluntary abstinence in food-sated in rats with a history of food self-administration (five 45 mg palatable food pellets per lever press) and
either short-term extended daily access or long-term limited daily access to methamphetamine (0.1 mg/kg/infusion) self-administration. During voluntary abstinence, the rats were given 20
discrete trials every 10 min, during which they could earn either the food reward or the drug reward, but not both. During the drug relapse tests, only the drug lever was available, and lever presses
on the previously methamphetamine-paired lever led to the delivery of a cue previously paired with drug infusions (extinction conditions). C, Role of DMS neuronal ensembles in the incubation of
methamphetamine craving after voluntary abstinence. On abstinence day 18, the rats were exposed to the methamphetamine self-administration context and cues associated with methamphet-
amine injections in a 15 min extinction session to induce Fos in DMS. Next, 75 min after the induction session, a time of strong Fos and [3-gal expression, the rats were injected with Daun02 (to
inactivate the Fos-positive activated neurons) or vehicle. Three days later, the rats were tested for relapse to methamphetamine seeking as described above, and 90 min later the brains were taken
for immunohistochemistry analysis of Fos and 3-gal. Daun02 injections on abstinence day 18 decreased incubated methamphetamine seeking on abstinence day 21 and decreased relapse-
associated neuronal activity in DMS, as assessed by 3-gal. The data in A and B are from Caprioli et al. (2015), and the data in C are from Caprioli et al. (2017).

long-term abstinence before the relapse tests (M. Venniro and Y.
Shaham, unpublished data). Data from these recently published
and unpublished studies will be presented in our Society for Neu-
roscience symposium.

Role of corticostriatal, corticoamygdalar, and
amygdalostriatal projections in drug relapse

Relapse to alcohol seeking can be driven by environmental or sen-
sory cues that were previously associated with alcohol intake (Weiss,

2005; Heinz et al., 2009). In both recovering alcoholics and rodent
models, cue-induced relapse can occur even after the instrumental
response has been extinguished (Ciccocioppo et al., 2001; Field and
Duka, 2002; Sinha and Li, 2007). Improved understanding of the
circuit mechanisms mediating both extinction and cue-induced re-
lapse to alcohol seeking is critical for the development of effective
behavioral and pharmacological treatments for alcoholism.

Studies have shown that cue-induced alcohol seeking depends
on the activity of limbic—striatal structures, including basolateral



10872 - J. Neurosci., November 8, 2017 - 37(45):10867—10876

Dong et al. ® Mechanisms of Drug Relapse
A
S - ; _ }ﬁ%\
CAG WPRE > pA
v
e AAVE Cre
4y - 1 + Cre recombinase
NAG
} WPRE

Tosin doss (uoR
Saline " 30ugkg 2 doss {1glkg)

[72]
F 2 500

Cleaved Caspase-3

O 400
@
8 300
- 200
e
& 100
R
o 0
Saline 30 ug/kg DT 0 30
Toxin dose (ug/kg)
Self-administration > Extinction Cue-induced
(20 days total training} training reinstatement test
G Day 19: H "

8 1209 DT or Saline injection 3 100 @ saline 40 O Last Extinction

g 100 2 80 O Toxin 230 O Reinstatement

s ol0=e=0 7 ol 1]

[ o

3 40 B 40 3

2 o @ To-Be Saline ) 010

g O To-Be Toxin g bt

< < O < 0

18 19 20 12 3 4 5 Saline  Toxin
Training session Extinction session
J
No effect
mPFC
Drives cue*induced Drives  BLA
reinstatement extinction
NAc & regulates
reinstatement

Figure4. Circuitablation techniquesand circuitry of extinction and reinstatement of alcohol seeking. A—F, Strategy for target-specific ablation of mPFC afferents. A, AAVrh10-DI0-DTR-FLAG was
injected into the mPFC, and AAV6-Cre was injected into either the NAc (to target the mPFC — NAc pathway) or other pathways such as the mPFC — BLA pathway. B, Representative micrographs
taken after targeting the mPFC — NAc pathway. Scale bar, 100 um. ¢, Immunohistochemical staining with a FLAG-directed antibody (red) shows a reduction in the percentage of total fluorescent
cells that are FLAG-positive after diphtheria toxin injection (*p << 0.05). D, Cre-directed antibody shows local expression of AAV-Cre in NAc shell and medial core. Scale bars, 300 wm. E, F, Cleaved
caspase-3 staining 48 h after injection revealed an increased expression of this apoptosis marker in DT-vs saline-treated rats (*p << 0.05). G-/, Rats were injected with viruses to target the mPFC —
NACpathway as described in A and then were trained to self-administer oral alcohol (10%). G, The final 3 d of self-administration show equal levels of responding for both groups. H, /, Circuit ablation
did not affect extinction training (H), but blocked cue-induced reinstatement (/; *p << 0.05). (Data are from Keistler et al., 2017). J, Hypothesized role of a circuitry-mediating extinction and
reinstatement of alcohol seeking. Our data suggest that the mPFC — NAc projections, but not the mPFC — BLA projections, are necessary for cue-induced reinstatement of alcohol seeking.
Additionally, BLA — NAc projections regulate both extinction and reinstatement (reprinted from Keistler et al., 2017, Yale University Ph.D. “Elucidating the neural circuitry underlying cue-
motivated behavior for food and alcohol”).



Dong et al. ® Mechanisms of Drug Relapse

amygdala (BLA) and NAc (Chaudhri et al., 2010; Sinclair et al.,
2012; Chaudhri et al., 2013; Millan et al., 2015). It is also known
that alcohol-paired cues induce activity in mPFC (Dayas et al.,
2007), and alcohol seeking can be perpetuated by alterations in
mPFC (Abernathy etal., 2010). While it is thought that the loss of
behavioral regulation in addiction results from dysfunction in
mesocorticolimbic circuitry (Jentsch and Taylor, 1999), how spe-
cific afferents in these pathways control cue-induced alcohol
seeking is unknown.

Limitations exist for circuit-based studies that use lesion and
inactivation approaches, including those that use contralateral
disconnection of specific projections (Setlow et al., 2002). First,
disconnections disrupt communication between structures in
both directions, making it impossible to dissociate directionality
within interconnected circuits. Second, the timing of lesions to
target specific behavioral processes that contribute to alcohol
seeking can be problematic. These limitations can be addressed
by using temporally and directionally controlled neural manipu-
lation techniques, such as viral optogenetic or chemogenetic de-
signer receptor exclusively activated by designer drugs (DREADD)
strategies. Despite the specificity of these approaches, there are
some issues with regard to studies of drug relapse. Optogenetic
stimulation methods are invasive and can be stressful to the be-
having animal. This is problematic when studying relapse to al-
cohol seeking, which is susceptible to stress effects (Lé and
Shaham, 2002; Mantsch et al., 2016). Regarding DREADDs, pre-
cisely titrating the CNO (clozapine N-oxide) dose necessary to
affect behavior can be a challenge (MacLaren et al., 2016), and
compensatory receptor upregulation after chronic inhibitory
DREADD stimulation is also a possibility.

Based on the above considerations, we recently developed a
novel viral approach to selectively ablate subpopulations of neurons
defined by their projection target (Fig. 4A—F). To accomplish this,
we combined a retrogradely transported Cre virus (AAV6-Cre) with
a floxed diphtheria toxin (DT) receptor (DTR)-encoding virus
(AAVrh10-DIO-DTR-FLAG; Xu et al., 2016; Fig. 4A). By infus-
ing floxed DTR into mPFC and retrograde Cre virus into either
NAc or BLA, DTRs are selectively expressed in mPFC neurons
projecting to either of these subcortical structures. Since rodents
do not endogenously express DTRs (Middlebrook and Dorland,
1977), only the targeted pathway is subject to ablation via sys-
temic injection of DT. Other studies have accomplished direc-
tionally specific chemogenetic inhibition using floxed DREADDs
instead of floxed DTR (Carter et al., 2013; Marchant et al., 2016),
but our method allows for permanent ablation to be achieved
before behavioral assessments to reduce stress of acute systemic
injections. Immunohistochemical staining with a FLAG-directed
antibody allows the labeling of the targeted circuits to confirm
that they had been ablated after systemic DT injections (Fig.
4B,C), and Cre-directed antibody shows local expression of
AAV-Cre in NAc (Fig. 4D). Staining with a cleaved caspase-3
antibody demonstrates apoptosis (Fig. 4E, F), further validating
the specificity of our projection- and direction-specific abla-
tion approach (Keistler et al., 2017).

We used this projection-specific ablation method to examine
how limbic corticostriatal projections regulate extinction and
cue-induced reinstatement of alcohol seeking. Specific targeted
pathways were mPFC — NAc, mPFC — BLA, BLA — NAg, and
BLA — mPFC. After targeted viral infusions (AAVrh10-DIO-
DTR and AAV6-Cre), we trained rats to self-administer oral al-
cohol. Next, we ablated the projections by DT injections and then
tested the effect of the projection-specific ablations on both ex-
tinction and cue-induced reinstatement of alcohol seeking (Fig.
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4G-I). We found that ablating mPFC — NAc blocks cue-induced
reinstatement (Fig. 4I) without altering extinction responding
(Fig. 4H), whereas ablating mPFC — BLA had no effects (data
not shown). Additionally, ablating the BLA — NAc pathway in-
hibits both extinction and cue-induced reinstatement (summa-
rized in Fig. 4]). Our new unpublished data to be presented in the
SEN symposium show that ablation of the BLA — mPFC path-
way increases the breakpoint for alcohol self-administration on a
progressive ratio reinforcement schedule, indicating that the nor-
mal function of this projection is to constrain alcohol seeking.

Together, our data provide insight into the role of specific
circuits in the regulation of alcohol seeking and complement
studies showing that the mPFC and NAc are activated by expo-
sure to alcohol-paired cues after extinction (Dayas et al., 2007),
that inactivating NAc decreases cue-induced alcohol seeking
(Chaudhri et al., 2010; Millan et al., 2015), and that inactivating
mPFC does not disrupt the expression of extinction (Willcocks
and McNally, 2013). Our data also align with a recent study by
Kerstetter et al. (2016), who used an analogous DREADDs-based
technique to show that inhibiting the mPFC — NAc pathway
decreases cocaine priming-induced reinstatement of drug seeking.
Given our finding that the mPFC — NAc pathway, a predominantly
glutamatergic projection, is necessary for cue-induced reinstate-
ment and the evidence that striatal glutamate levels are increased
in recently detoxified alcoholics (Bauer et al., 2013), our results
suggest that input from mPFC provides a hyperglutamatergic
tone in NAc, which could contribute to increased alcohol cue
sensitivity. Thus, therapies that dampen the activity of mPFC —
NAc neurons may be effective in preventing relapse by reducing
the motivational effects of alcohol-paired cues.

In conclusion, our novel combinatorial viral approach allows
for directional selectivity: DTR expression is Cre dependent and
restricted to cells projecting from the AAVrh10-DIO-DTR-
FLAG infection region to the AAV6-Cre infection region. Impor-
tantly, our method also has temporal control, since DT can be
injected systemically and noninvasively at any behavioral time
point to achieve permanent pathway ablation. This technique for
ablating pathways in a target-specific manner with temporal
specificity could be used to delineate neural circuits hypothesized
to underlie behavior in other animal models of addiction, such as
incubation of craving, escalation, and choice-based abstinence
models, as well as other psychiatric disorders.
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