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Baseline Levels of Rapid Eye Movement Sleep May Protect
Against Excessive Activity in Fear-Related Neural Circuitry

Itamar Lerner,* Shira M. Lupkin,* Neha Sinha, Alan Tsai, and Mark A. Gluck
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102

Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear condi-
tioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and
persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly
examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these
studies have been restricted to analyzing the effects of a single night of sleep—thus assuming a state-like relationship between the two. In
the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like varia-
tions in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during
fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity
between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were
weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that
REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser
extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as
biomarkers for resilience, or lack thereof, to trauma.
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Introduction
Posttraumatic stress disorder (PTSD) is a clinical disorder caused
by experiencing or witnessing a traumatic event. However, only a
subset of people who experience a trauma go on to develop PTSD.

As such, the identification of potential biological risk factors has
become a topic of particular interest in the scientific community.
Accumulating evidence from human and animal studies has sug-
gested that sleep may contribute to both the development and
maintenance of the disorder (Germain et al., 2008). To date,
however, the exact mechanisms remain elusive.

A common model for studying PTSD is fear conditioning, in
which a neutral stimulus serving as the conditioned stimulus (CS;
e.g., a light) is repeatedly paired with an aversive stimulus (un-
conditioned stimulus (US); e.g., an electric shock) until subjects
learn to associate the CS with the US. This association is then
often extinguished by repeatedly presenting the CS without the
US. Previous studies have pointed to a bidirectional relationship
between sleep, and particularly rapid eye movement (REM)
sleep, and various aspects of the conditioning process whereby
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Significance Statement

Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous
work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on
the acquisition itself. The current study provides the first evidence in humans of such an effect. Specifically, the results of this study
suggest that baseline rapid eye movement (REM) sleep may serve a protective function against enhanced fear encoding through
the modulation of connectivity between the hippocampus, amygdala, and the ventromedial PFC. Building on this finding, baseline
REM measurements may serve as a noninvasive biomarker for resilience to trauma or, conversely, to the potential development of
posttraumatic stress disorder following trauma.
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conditioning itself affects subsequent REM, which, in turn, in-
creases both extinction recall and the generalization of extinction
to similar stimuli (Fu et al., 2007; Pawlyk et al., 2008; Pace-Schott
et al., 2009, 2015; Spoormaker et al., 2012).

In addition to behavioral findings, rodent in vivo recordings
and functional neuroimaging in humans have pointed to three key
brain regions associated with the conditioning process: the amygdala,
the ventromedial prefrontal cortex (vmPFC), and the hippocampus
(Pace-Schott et al., 2015). Previous studies have implicated both
sleep in general and REM in particular in the modulation of activ-
ity in and between these three regions. This modulation is theo-
rized to result in the reduction of emotional tone attached to a
memory (for review, see Pace-Schott et al., 2015; Walker and van
Der Helm, 2009).

While the aforementioned studies concentrated on the way
sleep affects—and is affected by—the processing and consolida-
tion of fear learning, a much neglected question is whether regu-
lar sleep patterns prior to initial fear exposure also play a role. The
ability of sleep to influence subsequent emotional learning is well
recognized (Yoo et al., 2007), but few studies have examined this
question in regard to associative fear learning in humans, and
those that have did not find substantial effects (Marshall et al.,
2014; Peters et al., 2014). However, emerging evidence from ro-
dent studies indicates that the number of REM episodes in the
24 h before fear conditioning predicts the subsequent degree of
startle response to a CS (Polta et al., 2013). The lack of data concern-
ing the effects of sleep on conditioning in humans is especially sur-
prising given that several studies have shown self-reported measures
of sleep before a trauma to be predictive of future PTSD symptom-
atology (Mellman et al., 1995; Wright et al., 2011; Gehrman et al.,
2013).

Additionally, existing studies have primarily restricted their
analyses to a single night of sleep. Thus, findings linking sleep to
fear learning have been treated as state-dependent effects, reflect-
ing the way the sleeping brain processes newly formed fear asso-
ciations. An alternative account, however, is that these effects are
the result of a trait-like relationship between sleep and fear learn-
ing. Indeed, in a previous study (Lerner et al., 2016), we found
that across subjects, baseline REM sleep levels measured over
multiple days were better predictors of individuals’ emotional
reactivity than the daily variations in REM.

In light of these previous findings, the current study sought to
investigate whether baseline sleep parameters, especially REM,
obtained before the experimental procedures, are predictive of
fear learning measures. Given the direct relevance of fear learning
to the development of PTSD, such results would suggest that
pretrauma sleep patterns could serve as biomarkers for resilience
(or a lack thereof) to trauma.

Materials and Methods
Experiment 1
Methods
Participants. Seventeen healthy students (n � 5 females) from
Rutgers University and the New Jersey Institute of Technology
participated in this study for monetary compensation. Exclusion
criteria included personal or family history of sleep problems,
neurological or psychiatric disorders, drug or alcohol abuse,
and/or intake of medications that have any effect on sleep. Three
additional participants that passed the criteria were nevertheless
dismissed from the study: one for failing to appear for a scanning
session, one due to a lack of reliable use of equipment resulting in
three or more experimental days of unusable sleep data, and one
whose structural scan revealed severe hydrocephalus. Through-

out the experiment, participants were asked to not increase their
daily caffeine intake, to maintain their regular sleep schedule, and
to refrain from alcohol consumption and daytime napping (see
demographic information and average sleep measures in Table 1).
All participants provided informed consent in line with the pro-
cedures approved by the Institutional Review Board of Rutgers
University.

Experimental design. The study consisted of two phases: a
baseline sleep-monitoring phase and an experimental phase.
During the sleep-monitoring phase, participants monitored their
sleep at home for approximately 1 week (mean, 7.88 d; range,
5–13 d). Before beginning this phase, participants were given
detailed instructions and demonstrations on the care and use of
all sleep-monitoring devices. In addition, they were instructed to
keep a sleep log noting their sleep/wake times and any known
nocturnal awakenings. Last, they were instructed to send both the
data from the monitoring devices and a picture of their log to a
secure email address, monitored daily by experimenters. Together,
these data were used to assure that participants adapted to the usage
and operation of the devices as well as to assess participants’ reliabil-
ity in following the sleep-monitoring protocols (i.e., consistently
emailing data, ensuring that no data were missing because of the
sleep-monitoring devices malfunctioning, etc.).

The experimental phase, which followed immediately after,
included two functional brain-imaging scans, separated by 24 h
(for illustration, see Fig. 1). During this phase participants under-
went a fear conditioning procedure with concurrent skin conduc-
tance response (SCR) recording and functional imaging. Detailed
procedures for these scanning sessions are presented below.

Mobile sleep-monitoring system. The mobile sleep-monitoring
system included an automated wireless sleep-monitoring headband
(Zeo), an actigraphy bracelet (Micro MotionLogger sleep watch,
Ambulatory Monitoring), and an Android tablet (Amazon).

The sleep-monitoring headband is equipped with a single bi-
polar fabric sensor that transmits data wirelessly to the Android
tablet, which acts as a base station. The sensor is fitted with three
silver-coated electrodes used to detect brain waves (EEG), eye
movements (EOG), and the movement of the frontalis muscle
(EMG). The signals from these electrodes are analyzed in real
time to produce sleep staging in 30 s epochs. This sleep staging,
the accuracy of which was validated for nocturnal sleep compared
to polysomnography (PSG) in multiple studies (Shambroom et
al., 2012; Griessenberger et al., 2013) is a reduced version of the
official staging criteria by the American Association of Sleep
Medicine (Iber et al., 2007) and differentiates between four stages
of sleep: wake, N1/N2 (combined N1 and N2 stages, termed
“light sleep”), slow-wave sleep (SWS) (“deep sleep”), and REM
sleep.

The actigraphy bracelet is a research-grade device that con-
tains a built-in accelerometer used to infer sleep/wake decisions

Table 1. Participant demographics and sleep parameters (Experiment 1)

Demographics/sleep Mean (SD)

Age (years) 22.6 (2.1)
Education (years) 16.0 (1.5)
TST (minutes) 416.02 (36.72)
N1/N2 (minutes) 200.34 (35.75)
%N1/N2 out of TST 0.45 (0.070)
SWS (minutes) 81.50 (20.93)
%SWS out of TST 0.20 (0.055)
REM (minutes) 134.2 (21.56)
%REM out of TST 0.32 (0.050)
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in 1 min epochs based on participants’ arm movements using the
Cole–Kripke algorithm (Cole et al., 1992; Ancoli-Israel et al.,
2003; de Souza et al., 2003). Participants wore the actigraph on
the nondominant wrist throughout the entire study. Data were
extracted from the devices at the end of the experiment and used
to assess the sleep/wake validity of the sleep-monitoring head-
band (for details, see Lerner et al., 2016). Only data that were
consistent across the headband, the actigraph, and the subjects’
sleep logs were used for further analysis (94% of the total data).
Finally, data for each participant were averaged over all valid
nights to create a trait-level sleep profile of that participant, in-
cluding average time in each sleep stage as well as percentage of
time in a sleep stage out of total sleep time (TST).

Fear learning paradigm and stimuli. The fear learning para-
digm was split into three phases across the two scanning sessions
(following Milad et al., 2007a,b). The first day included both
conditioning and extinction phases, and the second day consisted
of a recall phase. The CS across the two days was comprised of
images of three differently colored lamps (blue, yellow, and red)
presented in two different contexts (Fig. 2). For each subject, two
of the CSs were paired with the US. One, denoted as CSE�, was
later extinguished; the other, denoted as CSU�, remained unex-
tinguished for the rest of the experiment. The third CS, referred
to as CS�, was not paired with the US. All phases contained 32
stimulus presentation trials. Each trial began with the presenta-
tion of the context, alone, for three seconds, followed by a CS for
an additional six seconds. Following CS offset, mild electrical
stimulation (serving as the US) was administered for 500 ms for
select trials (see Experimental procedure for details). By avoiding
temporal overlap between the CS� and the US, potential con-
founding of the anticipatory response to the US and the physio-
logical responses to the electric stimulation was minimized (cf.
Fullana et al., 2016; Table 1, Study 16 of Milad 2007b, which used
the same methodology as ours). The intertrial interval was a black
screen that lasted 12, 15, or 18 s.

In the conditioning phase, all three CS
types were presented in context A. Both
the CSE� and the CSU� (eight trials in
total for each) were paired with the US at a
partial reinforcement rate of 60%. The CS�
(16 trials) was never paired with the US.
Next, participants underwent the extinc-
tion phase in which the CSE� was pre-
sented in context B along with the
CS� (16 presentations of each). During
extinction, neither stimulus was paired
with the US, thus extinguishing the re-
sponse to the CSE�. The CSU� was not
presented during the extinction phase and
was therefore left unextinguished. During
the recall phase, all three CSs (CSE�,
CSU�, CS�) were presented in context B
without the US.

The presentation of the CSE� and the
CSU� in the conditioning and recall
phases was blocked such that during the
first half of the session, only one of them
was presented interspersed with the CS�
(eight trials of each), whereas during the
second half, the other was interspersed
with the CS� (eight trials of each). This
type of blocking was shown by Milad et al.
(2007a) to improve the conditioning re-
sponse to each of the respective CS�’s.

The identities of each of the CSs were counterbalanced across
colors and participants, as was the order in which the blocks were
presented (i.e., whether the block containing the CSU� or the
CSE� came first in conditioning and recall).

The data from each of the conditioning, extinction, and recall
phases were organized into four contrasts that were used in sub-
sequent analysis: conditioning, extinction, fear recall/extinction
retention, and generalization. Contrasts were defined following
Milad et al. (2007a): for conditioning, the first four trials of each
CS� versus the CS� during the conditioning phase (CSE�,
CSU� � CS�); for extinction, the last 12 CSE� trials versus
the CS� during the extinction phase (CSE� � CS�); for fear
recall/extinction retention, the first four CSE� trials versus the
CS� during the recall phase (CSE� � CS�); and for generaliza-
tion of fear of the unextinguished stimulus, the first four CSU�
versus the CS�, also during the recall phase (CSU� � CS�).

Experimental procedure. After monitoring their sleep for at
least 5 consecutive days, subjects arrived to the scanning facility
between 4:00 P.M. and 5:00 P.M. Subjects were placed in the
scanner where SCR and stimulation electrodes were attached to
their hands (for details, see below, Skin conductance analyses).
Next, subjects underwent an incremental titration procedure to
select their individual electric stimulation threshold (Milad et al.,
2007a). Increasing intensities of a 0.5 s mild electric shock (from
0.2 to 4.0 mA across up to 8 increments) were administered to the
index and middle fingers of each subject’s dominant hand using a
Coulbourn Transcutaneous Aversive Finger Stimulator until the
subject chose a level that was deemed “highly annoying but not
painful.” Shock increments were then stopped, and subjects were
informed that the level they had selected would be used through-
out the subsequent experiment. Before beginning the condition-
ing protocol, subjects went through a habituation phase during
which they were presented with all three CSs (i.e., colored lights)
in both the conditioning and the extinction contexts, in the ab-

Figure 1. Illustration of study design.

Figure 2. Schematic of the experimental paradigm. CSE� is the conditioned stimulus that was to be extinguished, CSU� is the
conditioned stimulus that was never extinguished, and CS� is the stimulus that was never conditioned, which served as a control.
Pairing with the US is denoted by lightening bolts.

Lerner, Lupkin et al. • REM Sleep Predicts Fear-Related Neural Activity J. Neurosci., November 15, 2017 • 37(46):11233–11244 • 11235



sence of any US. Each stimulus– context pairing was presented
four times, counterbalanced across both the stimuli and the con-
texts. Following habituation, subjects were administered the con-
ditioning and extinction procedures (as described above), after
which they went home for the night. Subjects returned the fol-
lowing day between 4:00 P.M. and 5:00 P.M. to undergo the recall
protocol.

Statistical analyses
Skin conductance analyses
SCR was recorded using two 11 mm (sensor diameter) Ag/AgCl
electrodes, with isotonic electrolyte gel (Biopac Systems). The
electrodes were attached to the anterior surface of the medial
phalanx on the subject’s index and middle fingers of their non-
dominant hand. Skin conductance was recorded using the
GSR100c amplifier on the MP150 data acquisition unit (Biopac
Systems). Square pulse event markers were transmitted from the
stimulus presentation software (Superlab 5.0, Cedrus), on a PC,
via a PCI-DIO24 digital input/output card to the MP150 and
AcqKnowledge version 4.4.2 software using a BIOPAC STP100C
optical interface (Biopac Systems). Skin conductance levels were
measured in microsiemens and collected at a sampling rate of
2 kHz. Due to equipment failure, Session 1 (conditioning and
extinction phases) of one subject and Session 2 (recall phase) of
another subject were unavailable for analysis and treated as miss-
ing data. In the second case, imaging data were also unavailable
for that session.

Following Milad et al. (2007a), for each trial, of each phase, the
SCR was calculated by taking the square root of the mean SCR
value in the two seconds before stimulus onset, subtracted from
the peak SCR value in the six seconds following stimulus onset. If
the difference between the mean SCR and the peak SCR was less
than zero, the square root of the absolute value was taken and then
multiplied by negative one, to preserve the direction of the relation-
ship after the initial subtraction. Contrasts were then computed by
subtracting the mean of one type of stimulus (i.e., CS�) from an-
other (i.e., CSE�), to be entered as covariates in the imaging analyses
(see below, Imaging parameters and preprocessing).

Imaging parameters and preprocessing
Functional imaging was conducted at the National Science Foun-
dation–funded Rutgers University Brain Imaging Center. Images
were obtained using a Siemens Trio 3T full-body scanner with a
32 channel head coil. First, anatomical images were acquired
using a T1-weighted protocol (MPRAGE, 176 1 mm isotropic
sagittal slices). These images were used for spatial normalization
during analyses. Next, functional images (i.e., BOLD) were acquired
using a single-shot gradient echo EPI sequence (TR, 2000 ms; TE, 23
ms; FOV, 192 cm; flip angle, 90°; bandwidth, 4340 Hz/px; echo spac-
ing, 0.51 ms). In total, 37 contiguous oblique-axial slices (3 mm
isotropic voxels) were obtained for all BOLD sequences.

Analysis of imaging data was conducted using FSL (FMRIB
Software Library; Dégenètais et al., 2003). Skull stripping was
conducted using the FSL brain extraction (BET; Smith, 2002)
with the center of gravity of each image as a reference point. For
each participant, BOLD images were registered to their structural
images and then to a standard MNI-152 2 mm template (degrees
of freedom, 9; cost function, normalized mutual information;
interpolation, sinc function) using FSL’s linear registration tool
(Jenkinson and Smith, 2001; Jenkinson et al., 2002).

Individual- and group-level whole-brain general linear model
(GLM) analyses were conducted using the fMRI Expert Analysis
Tool utility with motion correction, 5 mm FWHM spatial smooth-

ing, and high-pass temporal filtering. A trial averaging window of
12 s (6 TR) was used beginning from trial onset. At the group
level, one GLM analysis was performed for each of the four con-
trasts (conditioning, extinction, recall, and generalization, as de-
fined above). For each GLM analysis, demeaned values of skin
conductance contrasts (as defined earlier) and sleep parameters
(raw averages, over the baseline monitoring period, of the total
time in each of the three sleep stages per night) were entered as
four simultaneous covariates of interest. The FLAME 1 (FMRIB’s
Local Analysis of Mixed Effects) mixed-effects model was used,
resulting in 12 degrees of freedom for each GLM analysis. Group
level Z statistic maps were generated for each of the main effects
of the contrasts, as well as for the effects of each of the covariates,
with the FSL cluster correction at Z � 2.3 and a familywise error
threshold of p � 0.05. Additional group-level analyses were run
using total sleep time. Finally, if any of the sleep parameters
proved significant, another GLM analysis was run, using, as a
single sleep covariate, the percentage of the time in that sleep
stage out of total sleep time.

Evidence of significant activity for the main effects as well as
the effects of the covariates was examined in three a priori regions
of interest (ROIs; amygdala, hippocampus, vmPFC) chosen based
on their established roles in fear learning. Z statistics are reported
for the peak voxel for each effect along with the corresponding
Bonferroni-corrected p values.

Effective connectivity analysis
To estimate potential causal relationships among relevant brain
areas, an effective connectivity analysis was conducted using graph-
ical causal modeling with independent multiple sample greedy
equivalence search (IMaGES) and linear non-Gaussian orientation,
fixed structure (LOFS) algorithms (Ramsey et al., 2010, 2011, 2014;
Mumford and Ramsey, 2014), implemented using Tetrad IV (ver-
sion 5.0.0–1; http://www.phil.cmu.edu/projects/tetrad) software.

The timing files for the CS presentation were weighted by
CS� identity (1 for CS� and �1 for CS�) and convolved with a
double gamma hemodynamic response function. This convolved
time series was then multiplied, elementwise, by the mean time
series for each ROI. These new time series were entered into the
IMaGES algorithm with each ROI representing a node in the
network. The IMaGES algorithm searches for all potential con-
nections and produces directed acyclic graphs (DAGs) contain-
ing all statistically significant connections. These DAGs are then
fed to the LOFS algorithm to determine the orientation of each
connection. For each subject, parameter values are assigned to
each connection indicating the strength of that connection
(termed “edge coefficients”). Correlations between these values,
SCRs, and sleep parameters were carried out using Matlab 2016a
(MathWorks).

Table 2. Participant demographics and sleep parameters (Experiment 2)

Demographics/sleep Mean (SD)

Age (years) 21.82 (3.29)
Education (years) 15.10 (2.02)
TST (minutes) 325.41 (145.88)
N1 (minutes) 8.06 (5.14)
%N1 out of TST 0.033 (0.027)
N2 (minutes) 194.74 (93.91)
%N2 out of TST 0.59 (0.11)
SWS (minutes) 59.59 (27.60)
%SWS out of TST 0.21 (0.11)
REM (minutes) 63.03 (55.98)
%REM out of TST 0.17 (0.10)
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Image presentation
The statistical maps generated as part of the ROI GLM analyses
were thresholded and overlaid onto a three-dimensional render-
ing of the MNI-152 using Surf Ice (McCausland Center for Brain
Imaging, Columbia, SC; see Figs. 4, 8). Scatter plots for the ROI
analyses were created for illustration purposes by plotting the
mean parameter estimates across the thresholded and overlap-
ping voxels of a given effect as a function of percentage REM or
SCR contrast values for each subject.

Experiment 2
Methods
Participants. Seventeen healthy students (n � 5 females) from
Rutgers University and the New Jersey Institute of Technology
participated in this study for monetary compensation (see demo-
graphic information and average sleep measures in Table 2). Ex-
clusion criteria were the same as in the first study. All participants
provided informed consent in line with the procedures approved
by the Institutional Review Board of Rutgers University.

Study design. Participants came to the lab at approximately
8:00 P.M. the evening before the scan. During this visit, experi-
menters applied the PSG montage and instructed participants on
how to remove it at home in the morning. Participants subse-
quently slept at home and returned to the lab the following eve-
ning at approximately 5:00 P.M. for the scanning session. At this
time, participants returned the PSG montage to experimenters.
The scanning procedure was similar to that in the first experi-
ment, with one small exception: The incremental titration proce-
dure to select the individual electric stimulation threshold started
at 0.4 mA and went up in increments of two steps (again up to a
maximum of 4.0 mA), to encourage higher thresholds.

Fear conditioning paradigm and stimuli. Stimuli for the second
study were similar to the first experiment and were comprised of
two colored lights (CS) in one of two contexts, resulting in four
stimulus– context pairings. During conditioning, one of the CS–
context pairings (i.e., blue light in the office context) was paired
with shock (US) at a partial reinforcement rate of 75%. No US
was administered for any of the other three CS– context pairings.
Like the first experiment, there were 32 trials in the conditioning
paradigm (eight of each CS–context pairing). However, unlike the
first experiment, the trials were not blocked. To examine condition-
ing, the analyses presented here were restricted to two of the four
CS–context pairings, the one that included the US (CS�) and the
one in the same context that was never paired with the US (CS�).

Polysomnographic recording montage. Polysomnographic re-
cording was performed using the Somte PSG mobile recording
system (Compumedics). The recording montage included six
EEG channels (F3, F4, C3, C4, O1, and O2) referenced to con-
tralateral mastoids (A1, A2), as well as two EOG channels (both
outer canthi, one above and one below the eye) and two channels

of submental EMG (referenced to a third submental electrode).
The full montage was applied in the lab by experimenters, and
subjects were subsequently sent home to sleep. In the morning,
participants removed the PSG montage and returned it to the lab.
Sleep scoring was conducted by a licensed sleep technician (Sleep
Scoring Services) using standard American Academy of Sleep
Medicine criteria (Iber et al., 2007).

Data processing. Behavioral and imaging analyses were con-
ducted in the same manner as in the first study. As in the first
experiment, the conditioning contrast was defined as the first
four CS� compared with all eight of the CS� trials. In accor-
dance with the a priori hypotheses derived from the first ex-
periment (i.e., that REM should be associated with reduced
fear-related activity), only SCR and REM were entered into the
GLM analysis as covariates. For the SCR analyses, one subject was
excluded due to a mechanical failure during the scanning session.

Figure 3. A–C, Comparison of SCR between CS types for the conditioning (A), extinction (B), and recall (C) phases. **p � 0.01. Error bars indicate SEM.

Table 3. Region of interest analysis for Experiment 1

MNI coordinates
Number
of voxelsSession/region/effect x y z Z value p value

Conditioning
Amygdala

Activation only 58 65 28 95 2.91 0.002
Activation � SCR 33 65 29 32 2.12 0.017
Activation � REM 57 66 27 29 �2.41 0.008
Activation � %REM 58 65 28 12 �1.91 0.028

Hippocampus
Activation only 61 47 27 433 �3.48 �0.001
Activation � REM 26 55 25 55 �2.39 0.008
Activation � %REM 26 55 25 15 �2.58 0.005

vmPFC
Activation only 45 81 28 721 �3.59 �0.001
Activation � REM 40 81 28 42 �2.29 0.011
Activation � %REM 45 89 25 167 �2.98 0.001

Extinction
Amygdala

Activation only 61 62 21 — 2.18 0.015
vmPFC

Activation only 54 76 29 2 2.65 0.004
Recall (CSE� � CS�)

Hippocampus
Activation only 35 41 36 — �2.25 0.012

vmPFC
Activation only 52 84 28 2 2.65 0.004

Generalization (CSU� � CS�)
Hippocampus

Activation only 62 58 25 3 �2.43 0.008
vmPFC

Activation only 51 84 27 — 2.02 0.022

The table shows results for the GLM analysis in Experiment 1, for each session, ROI, and contrast. Reported above are
the MNI coordinates, z values, and uncorrected p values for the peak voxel within the cluster, as well as the size of
cluster. Corrected p values are noted in the text. The number of voxels is calculated based on a cluster-forming
threshold of activation of z � 2.3. In cases where peak activation did not reach this threshold, the number of voxels
is not indicated.
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Results
Experiment 1
Skin Conductance Recordings
Average shock intensity was 1.51 � 0.25 mA (�SEM; range, 0.6 –
4.0 mA). Paired t tests revealed that during conditioning, the SCR
values for the CS� were significantly larger than those for the

CS� (t(15) � 3.0168; p � 0.0087; Fig. 3A), indicating subjects
learned to discriminate between the two cues. [CS� was defined
here as the average across both the CSE� and the CSU� because
at this point in the experiment, the two CS�’s were not yet dif-
ferentiated in the subject’s view; this was verified by the lack of
differential SCR between them (t(15) � �0.3658, p � 0.7196).] In

Figure 4. Results of ROI analysis for amygdala (A) and the vmPFC and hippocampus (B) in conditioning. Blue indicates activation only; green indicates activation that covaried with REM; red
indicates activation that covaried with SCR; yellow indicates activation covarying with both REM and SCR. The scatter plots depicted in this figure (and Fig. 8) were created by obtaining the average
parameter estimates for each subject (across the significant overlapping voxels) and plotting them against either the percentage REM or SCR response.
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the extinction phase, the difference between the CSE� and the
CS� disappeared (t(15) � 0.4966, p � 0.6267, Fig. 3B), suggesting
that the CSE� was successfully extinguished.

An ANOVA for the three CS types during the recall phase
showed no significant effect (F(2,30) � 1.061, p � 0.359, Fig. 3C).
Nevertheless, since there was a numerical difference between the
CS types, we wanted to examine how those values compared with
the original conditioning effect. A 2 � 3 ANOVA with Session
(conditioning, recall) and CS type (CSU�, CSE�, CS�; in the
conditioning phase we differentiated the CS� trials into the “to-
be” CSE� and “to-be” CSU� trials, although they were not dif-
ferentiated from the subject’s point of view) as within-subject
factors showed that only the effect of CS-type was significant
(F(2,32) � 3.648, p � 0.044); neither the effect of session nor the
interaction between the two factors was significant (F(1,16) �
0.655, p � 0.430 and F(2,32) � 0.670, p � 0.519, respectively). This
indicates that the difference acquired during conditioning was
regained to some degree in the recall session (i.e., there was some
fear recall), but there were no indications of generalization ef-
fects, that is, no differentiation between CSE� and CSU� with
respect to the CS�.

ROI analyses
We examined whether fear response modulated activation in
three brain regions, the amygdala, the hippocampus, and the
vmPFC, chosen a priori based on their established roles in fear
learning (Pace-Schott et al., 2015). Activity, as well as its covari-
ation with SCR and sleep measurements, was assessed for each
contrast of interest in each session (see above, Methods). Cova-
riance between sleep parameters and/or SCR with the activation
data was considered only for voxels that overlapped with the
activation-only data. Results are summarized in Table 3.

For the conditioning phase, all three a priori ROIs showed
significant activation. Specifically, the amygdala showed increased
activity for the CS� (combined CSE� and CSU�) compared to
the CS� (z � 2.91, p � 0.008; Fig. 4A), whereas the hippocampus
(z � �3.48, p � 0.001) and the vmPFC (z � �3.58, p � 0.001)
showed the inverse pattern (i.e., more activity for the CS� than
the combined CS�; Fig. 4B). The contrast in amygdala activity
between the CS conditions covaried positively with the SCR con-
trast at a trend level (z � 2.12, p � 0.066), and negatively with the
average amount of time in REM (z � �2.41, p � 0.032). A
complementary analysis with percentage of time spent in REM as
the covariate showed that the effect remained significant (z �

�1.91, p � 0.028; Fig. 4A). These results suggested that the less
REM sleep the subject had, and the higher the SCR-based fear
response, the more the amygdala differentiated between threat-
ening and nonthreatening stimuli. The average duration of
REM also covaried negatively with hippocampal and vmPFC ac-
tivity (z � �2.39, p � 0.032 and z � �2.29, p � 0.011, respec-
tively). Furthermore, the percentage of REM also covaried
negatively with both hippocampal and vmPFC (z � �2.58 p �
0.005; z � �2.98, p � 0.001; Fig. 4B), indicating that more REM
was associated with smaller vmPFC and hippocampal differenti-
ation between threatening and nonthreatening stimuli.

During the extinction phase, only the vmPFC showed signif-
icant activation, with increased activity for the CSE� compared
to the CS� (z � 2.65, p � 0.016). Amygdala activity showed a
similar effect at a trend level (z � 2.18, p � 0.059). Neither SCR
nor any of the sleep parameters modulated these effects.

In the recall session, fear-recall-related activation was exhib-
ited in the vmPFC with increased activity for the CSE� compared
to the CS� (z � 2.65, p � 0.016) and decreased activity in the
hippocampus for the same contrast (z � �2.25, p � 0.047). The
generalization contrast showed the same pattern of activation:
There was a trend toward increased activity in the vmPFC for the
CSU� compared to the CS� (z � 2.02, p � 0.085) and a signif-
icant decrease in hippocampal activity (z � �2.43, p � 0.032). As
with the extinction phase, neither the SCR nor any of the sleep
parameters covaried significantly with these ROI activations.
Given that there were no significant correlations with REM sleep
during the extinction and recall phases, and given that these

Figure 5. A, Graphical causal model of connectivity. The model suggests that the hippocampus mediates both amygdala and vmPFC activity (average strength of each connection is noted near
the corresponding arrow). B, Correlations across subjects between average percentage of REM out of total sleep time and hippocampus–amygdala (primary foreground) and hippocampus–vmPFC
(inset) edge coefficients.

Table 4. Correlations (values and significance levels) between sleep and IMaGES
edge coefficients

Hippocampus–Amygdala Hippocampus–vmPFC

Sleep parameters r p r p

SCR contrast (�S) 0.0944 0.7279 �0.0447 0.8694
TST (minutes) �0.3745 0.1386 0.4089 0.1466
N1/N2 (minutes) 0.1176 0.6530 0.4589 0.0989
%N1/N2 0.4464 0.0725 0.2785 0.2791
SWS (minutes) �0.0515 0.8444 0.4350 0.1201
%SWS 0.0425 0.8712 0.2324 0.3694
REM (minutes) �0.7823 0.00021 �0.6910 0.0021
%REM �0.6747 0.0030 �0.6486 0.0049

Presented are uncorrected p values. Significant effects after the application of Bonferroni corrections for multiple
comparisons are emphasized in bold.
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phases also produced far less activity
compared to conditioning, subsequent
analyses were restricted to the condition-
ing phase.

Effective connectivity analysis
To detect causal relationships between the
three regions of interests during fear con-
ditioning, we ran an effective connectivity
analysis using graphical causal modeling
with the IMaGES and LOFS algorithms, as
described in Methods. The results of this
analysis are presented in Figure 5A. The
graph reveals that the hippocampus mod-
ulated the activity of both the amygdala
(edge mean � SD, 1.03 � 0.15) and the
vmPFC (edge mean � SD, 0.61 � 0.22).
To determine whether these connections
were associated with sleep or SCR mea-
sures, we computed Pearson’s correla-
tions across participants between the edge
coefficients of the connections and the
(1) SCR conditioning contrast, (2) the baseline time spent in each
of the sleep stages as well as the total sleep time, and (3) the percent-
age of time in these stages out of the total sleep time. Values for
each of these correlations and (uncorrected) significance values
are presented in Table 4. We again took a conservative approach
and applied Bonferroni corrections to each p value for the eight
comparisons. The analysis revealed that the average time spent
in REM was negatively correlated with both the hippocampus–
amygdala and the hippocampus–vmPFC connections (r(16) �
�0.7823, p � 0.001 and r(16) � �0.6910, p � 0.0112, respectively;
Figure 5B). Additionally, the average percentage of REM was also
negatively correlated with both the hippocampus–amygdala and
hippocampus–vmPFC connections (r(16) ��0.6747, p � 0.008 and
r(16) � �0.6486 p � 0.020, respectively; Figure 5B). No correla-
tions were found between the SCR and either of the connections.

Finally, one question arising from these results is whether the
relationship between REM sleep and fear acquisition is a trait-
level effect, whereby individuals with ordinary high levels of REM
sleep (as measured by averaging over multiple nights) also tend to
have smaller conditioning effects, or, alternatively, the influence
may be more temporal, with REM sleep in the night(s) just before
conditioning attenuating subsequent fear acquisition. In our pre-
vious study (Lerner et al., 2016), we found that daily measures of

overnight sleep were less reliable in predicting cognitive effects
compared to sleep measures averaged over multiple days. To
study this question, we reexamined the correlations between the
edge coefficients and REM sleep in each of the last five nights
before conditioning. This analysis revealed a pattern similar to
that of our previous study (Fig. 6, left): No single night yielded an
effect as strong as the one achieved from averaging over multiple
nights. Nevertheless, while effects did not reach statistical signif-
icance for most nights, they did come closer to significance as the
experimental session drew nearer (Fig. 6, right).

To conclude, consistent with previous findings in the litera-
ture (Milad et al., 2007a), our results corroborate that contextual
fear learning in humans is modulated by the activity in, and con-
nectivity between, the amygdala, hippocampus, and vmPFC.
However, importantly, we also found that average levels of REM
sleep prior to fear conditioning were a reliable predictor of acti-
vation in these three regions during initial fear acquisition, a
finding that was previously reported only in rats (Polta et al.,
2013). This effect suggests that REM sleep may not only contrib-
ute to fear processing following exposure to threat, as was shown
in the past, but is also involved in modulating the brain circuitry
responsible for the initial fear learning itself.

To further substantiate our conclusions from Experiment 1,
we next analyzed data collected in our lab from a different but

Figure 6. Daily correlations between percentage of REM sleep out of total sleep time and the edge coefficients of the hippocampus–amygdala and hippocampus–vmPFC connections. Left,
Correlations for each of the five nights preceding the conditioning session (in reverse order, from the earliest night to the night just before the session). Right, The average p value over the two
connections as a function of night. †p � 0.1; ††p � 0.07; *p � 0.02.

Figure 7. Comparison of SCRs between CS types for the second experiment. **p � 0.01. Error bars indicate SEM.
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related study. In this second study, subjects slept with a full
mobile polysomnography device for a single night before under-
going a fear conditioning paradigm during a functional brain-
imaging scan. The analyses conducted for this second experiment
mirrored those of the first, using the polysomnography data in
place of the averaged data from the wireless sleep-monitoring de-
vice. Based on the results from Experiment 1, we hypothesized that
REM and the percentage of REM sleep would reliably predict the
degree of activation in and connectivity between the amygdala, hip-
pocampus, and vmPFC during the ensuing conditioning session,
though to a smaller degree given that only a single night of sleep was
measured.

Experiment 2
SCR analysis
Average shock intensity was 2.13 mA � 0.25 SEM (range, 0.6 – 4.0
mA). Raw SCR values were higher in this experiment compared
to the first (0.11 vs 0.55 �S in Experiments 1 and 2, respectively),
likely the result of the difference in titration procedures yielding
marked differences in stimulation thresholds. To examine con-
ditioning, a paired t-test revealed that the SCR values for the
CS� were significantly larger than the CS� (t(15) � 3.3581; p �
0.0053; Fig. 7), indicating subjects learned to accurately discrim-
inate between the threatening and the nonthreatening stimuli.

ROI analysis
Analysis of activation revealed that, similar to the first experi-
ment, the amygdala showed increased activation for the CS�
compared to the CS� (z � 3.79, p � 0.01), and this activity
negatively covaried with the amount of time in REM sleep (z �

�2.86, p � 0.01; Fig. 8) as well as with the percentage of time
spent in REM sleep out of total sleep time (z � �3.06, p � 0.01).
Furthermore, the hippocampus and vmPFC again showed de-
creased activity for the CS� compared to the CS� (z � �2.75,
p � 0.01 and z � �2.77, p � 0.01, respectively). Like the first
experiment, both the average duration of REM and the percent-
age of REM covaried negatively with hippocampal activity (z �
�2.88, p � 0.01 and z � �2.64, p � 0.01, respectively; Fig. 8) and
the vmPFC (z � �2.36, p � 0.01 and z � �2.34, p � 0.01,

Figure 8. Results of the ROI analysis for Experiment 2. Blue indicates activation only; red indicates activation that covaried with SCR; green indicates activation that covaried with REM.

Table 5. Region of interest analysis for Experiment 2

MNI coordinates
Number
of voxelsSession/region/effect x y z z value p value

Conditioning
Amygdala

Activation only 54 62 27 309 3.79 �0.001
Activation � REM 31 67 27 56 �3.18 0.001
Activation � %REM 37 63 30 103 �3.06 0.001

Hippocampus
Activation only 30 49 26 16 �2.75 0.003
Activation � REM 33 42 41 14 �2.88 0.002
Activation � %REM 29 49 26 5 �2.64 0.010

vmPFC
Activation only 41 86 24 18 �2.77 0.003
Activation � SCR 43 88 30 14 �2.65 0.004
Activation � REM 42 76 26 1 �2.36 0.010
Activation � %REM 50 88 28 1 �2.34 0.010

The table shows results for the GLM analysis in Experiment 2 for ROIs. Reported above are the MNI coordinates, z
values, and p values for the peak voxel within the cluster, as well as the size of cluster. Number of voxels is calculated
based on a cluster-forming threshold of activity of z � 2.3.

Lerner, Lupkin et al. • REM Sleep Predicts Fear-Related Neural Activity J. Neurosci., November 15, 2017 • 37(46):11233–11244 • 11241



respectively; Fig. 8). Unlike in the first experiment, there was no
significant covariation with the SCR in the amygdala. However,
there was significant (negative) covariation between the SCR data
and vmPFC deactivation (z � �2.65, p � 0.01; Fig. 8). Last, it is
interesting to note that although the hippocampal covariation
with REM was bilateral in the first experiment, it was lateralized
to the right hemisphere in the second experiment. Activity in the
amygdala was bilateral in both experiments. Results are summa-
rized in Table 5.

Effective connectivity analysis
Analysis of the effective connectivity between the three brain re-
gions using IMaGES and LOFS revealed relations that were partly
consistent with the first experiment. Like before, the amygdala
was modulated by the hippocampus (edge mean � SD, 1.00 �
0.23; Fig. 9A); however, in contrast to the first experiment, rather
than the hippocampus modulating the vmPFC, the graph re-
vealed that the vmPFC modulated the amygdala as well (edge
mean � SD, 0.15 � 0.24; Fig. 9A). Furthermore, replicating the
results from the first experiment, percentage of time spent in
REM was negatively correlated with the edge coefficients of the
hippocampus-amygdala connection (r(16) � �0.4965, p � 0.05;
Fig. 9B). Correlation with the raw time spent in REM also showed
a weak trend (r(16) � �0.4038, p � 0.11). The vmPFC–amygdala
connection, however, did not correlate with REM sleep.

Discussion
The current study sought to examine the effects of baseline levels
of sleep on neurobehavioral measures of fear learning. Across
Experiments 1 and 2, we found that the typical time spent in REM
sleep before conditioning predicts fear-related brain activity dur-
ing conditioning, such that the more REM sleep the subject had,
the weaker the fear-related effect was reflected in the activity of
the amygdala, hippocampus, and vmPFC, as well as the degree of
modulation of the amygdala by the hippocampus. As such, our
results suggest that baseline REM sleep may act as a protectant
against excessive activation in fear-related neural circuits.

On the molecular level, our results are consistent with current
theories of the role of REM in the reduction of norepinephrine
(NE) in limbic areas and its subsequent effects on learning. A
principle function of NE is the modulation of amygdala activity
in response to emotionally salient stimuli. NE is secreted by the
locus coeruleus (LC) throughout both wakefulness and non-
REM sleep; during REM, however, the LC is silent, reducing net
NE concentrations (Aston-Jones and Bloom, 1981). According to
the REM recalibration hypothesis (Goldstein and Walker, 2014),

this reduction “resets” baseline levels of NE, countering its accu-
mulation during the previous waking period. These low levels of
NE allow for more selective and less sensitive amygdala activity
in response to emotionally salient stimuli. Furthermore, lower
levels of NE activate �-1 receptors in the vmPFC, allowing the
vmPFC to send inhibitory signals to the amygdala and thus fur-
ther reduce fear responding. Extrapolating from this theory, our
results suggest that higher levels of baseline REM create relatively
lower baseline NE levels and, in turn, reduce conditioned fear
responses through a simultaneous decrease in amygdala and in-
crease in vmPFC activity.

Though the results across the two studies were largely analo-
gous, some differences did exist. Whereas Experiment 1 showed
SCR to be positively correlated with amygdala activity, it was
negatively correlated with the vmPFC in Experiment 2. Addition-
ally, in Experiment 1, the connectivity analyses showed hip-
pocampal modulation of both the amygdala and the vmPFC,
whereas in Experiment 2 it modulated only the amygdala (the
amygdala was also modulated by the vmPFC). One possible rea-
son for these differences is the relatively small sample size in each
experiment. In such cases, only the strongest effects tend to re-
peat, whereas weaker ones (e.g., the correlation between SCR and
activity) may vary. Another option, though speculative, is that the
two experiments tap slightly different processes. According to
existing models, the amygdala generates a fear response when
specific cues consistently predict threat, whereas the vmPFC
detects safety signals that violate these predictions and inhibits
amygdala activity, thereby reducing the fear response (Pape and
Pare, 2010; Andrade et al., 2011; Spoormaker et al., 2011, 2012;
Moustafa et al., 2013). The addition of a second, nonshocked
context in Experiment 2 may have served as a partial safety signal,
and therefore prompted a more safety-signal-driven modulation
of neural activity. In Experiment 1, where safety signals were less
conspicuous, the vmPFC may have not modulated the amygdala,
and thus the amygdala activity positively correlated with SCR. In
Experiment 2, where detection of safety signals was emphasized
with the addition of a nonshocked context, the amygdala may
have been inhibited by the vmPFC and thus the vmPFC activa-
tion correlated negatively with SCR.

Whereas both REM sleep and SCR covaried with neural activ-
ity, there was no direct correlation between REM and SCR in
either experiment. One interpretation of this result is that REM
sleep modulates fear-learning circuitry without modulating the
actual acquisition of fear response during the experiment. An-
other possibility is that SCR and neural measurements capture

Figure 9. A, B, Correlations across subjects in Experiment 2 between average percent of REM out of total sleep time and hippocampus–amygdala edge coefficients.
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different aspects of the fear learning process. An intuitive analogy
for the latter interpretation can be found in the relationship be-
tween weight, height, and eating habits: while both eating habits
and height are correlated with weight, the two are not necessarily
related to each other. Similarly, if neural activity during condi-
tioning reflects the strength of the formed association between
the CS and US, it may be influenced by both one’s individual level
of stress (reflected in SCR) and by the NE-modulated sensitivity
levels in the amygdala (affected by REM sleep according to the
REM recalibration hypothesis; Goldstein and Walker, 2014).
Thus, while stress and REM may both contribute to neural activ-
ity, they are not necessarily related to each other (for discussion of
the strengths and weaknesses of SCR as a measure of fear re-
sponses, see also Figner and Murphy, 2011). Ultimately, more
studies are required to distinguish between these two possible
interpretations.

Two previous human studies did not find correlations be-
tween sleep parameters and subsequent conditioning. Neverthe-
less, key differences distinguish these studies from ours. Marshall
et al. (2014) correlated conditioning with the difference in REM
between an adaptation night and a subsequent night. Therefore,
their null result speaks more of adaptation effects rather than
baseline sleep. Also, critically, no brain activation was measured
in that study. Peters et al. (2014) found no effects of partial sleep
deprivation on subsequent conditioning-related brain activation.
However, the authors admit that their single-night manipulation
may not have been sufficient to elicit an effect (cf. Lerner et al.,
2016), and, moreover, functional connectivity between relevant
areas was not examined at all.

Our results suggest that while it is possible to identify associ-
ations between REM and subsequent markers of fear acquisition
based on a single night of measuring, effects are substantially
stronger when assessing REM over multiple nights. This might
suggest a trait-level relation whereby the regular amount of REM
sleep characterizing the individual sets the tone to any future level
of conditioning. On the other hand, when single nights were
compared, there seem to have been a weak trend toward higher
correlations the closer the night was to the fear learning session
(Fig. 6). It is thus possible that both trait-level and state-level
effects contribute to the results, a conclusion that would be con-
sistent with previous findings from our lab (Lerner et al., 2016).
Trait versus state effects may also play a role when considering
that, unlike some prior studies, we did not find any relationship
between sleep and measures of fear extinction (Day 1) or recall
(Day 2). With few exceptions, nearly all previous studies reporting
such effects were based on sleep measures taken after conditioning. It
is therefore possible that these results are predominantly condition-
ing driven (i.e., state-like) and would not be present in looking at
baseline, preconditioning sleep. Moreover, the literature about
the effects of REM on the various components of fear learning is
equivocal; some studies show that REM sleep increases recall of
previously encoded fear (Menz et al., 2013), others shows that
REM decreases fear recall (Fu et al., 2007), and yet others suggest
that REM increases the rate of extinction learning and its later
preservation (Silvestri, 2005; Spoormaker et al., 2012). Failing to
take under consideration both trait- and state-level effects of
sleep, and their possible interaction, may have contributed to
these contradicting findings if, for example, baseline levels of
REM sleep affect fear acquisition, which, in turn, affects subse-
quent sleep, which affects subsequent extinction, and so on.

The results of our first experiment are based on sleep staging
data from an automated sleep-monitoring system. This device,
though repeatedly validated against PSG (Shambroom et al.,

2012; Griessenberger et al., 2013), has been reported to occasion-
ally inflate (systematically) the number of REM epochs toward
the beginning of the night. This may have been reflected in our
results, showing the average time in REM sleep reached 32% of
total sleep time across subjects, compared to the roughly 25%
typically reported for that age group (Gillin et al., 1981). On the
opposite end of the spectrum, the average percentage of REM out
of total sleep time in the second experiment was lower than the
norm (17%). This low percentage is likely due to first night effects
(Le Bon et al., 2001), a phenomenon characterized by alterations
in sleep due to a new and/or uncomfortable environment (e.g.,
wearing the PSG montage). Nevertheless, despite the marked dif-
ference in average REM percentage, the effects of REM on fear
learning were similar across experiments.

Ultimately, our results may suggest that baseline REM sleep
could serve as a noninvasive biomarker for resilience, or suscep-
tibility, to trauma. Current studies of sleep in individuals with
PTSD have shown REM abnormalities such as low levels of REM
and REM fragmentation (Mellman et al., 1997). Our results raise
the possibility that these REM deficiencies actually predate the
trauma and are not a consequence of the disorder. In line with
this prediction, several studies have suggested that self-reported
sleep abnormalities exist before trauma in individuals who later
go on to develop PTSD (Mellman et al., 1995; Wright et al., 2011;
Gehrman et al., 2013). As such, collecting accurate baseline mea-
sures of sleep architecture may be useful in determining suitabil-
ity for occupations that have higher rates of trauma exposure.
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Czisch M (2011) Sleep spindles and hippocampal functional connectiv-
ity in human NREM sleep. J Neurosci 31:10331–10339. CrossRef Medline

Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing lo-
cus coeruleus neurons in behaving rats anticipates fluctuations in the
sleep-waking cycle. J Neurosci 1:876 – 886. Medline

Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC (1992) Automatic
sleep/wake identification from wrist activity. Sleep 15:461– 469. CrossRef
Medline
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