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Mitochondria Maintain Distinct Ca2� Pools in Cone
Photoreceptors
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Ca 2� ions have distinct roles in the outer segment, cell body, and synaptic terminal of photoreceptors. We tested the hypothesis that
distinct Ca 2� domains are maintained by Ca 2� uptake into mitochondria. Serial block face scanning electron microscopy of zebrafish
cones revealed that nearly 100 mitochondria cluster at the apical side of the inner segment, directly below the outer segment. The
endoplasmic reticulum surrounds the basal and lateral surfaces of this cluster, but does not reach the apical surface or penetrate into the
cluster. Using genetically encoded Ca 2� sensors, we found that mitochondria take up Ca 2� when it accumulates either in the cone cell
body or outer segment. Blocking mitochondrial Ca 2� uniporter activity compromises the ability of mitochondria to maintain distinct
Ca 2� domains. Together, our findings indicate that mitochondria can modulate subcellular functional specialization in photoreceptors.
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Introduction
Vertebrate retinal photoreceptors are specialized neurons that
initiate vision by transducing light into an electrical signal. These
highly polarized cells are composed of three physiologically dis-
crete regions: the outer segment containing phototransduction
machinery, the cell body where proteins are synthesized and traf-
ficked, and the synapse that releases neurotransmitter onto
downstream neurons (Dowling, 1987).

Calcium ions (Ca 2�) regulate key pathways in each photore-
ceptor compartment. At the outer segment, extreme changes in
intracellular free Ca 2� concentration ([Ca 2�]i) mediate photo-
transduction response recovery that causes a change in mem-
brane potential (Kawamura and Murakami, 1991; Gorczyca et
al., 1995; Dizhoor, 2000). In the cell body, Ca 2� is stored in
mitochondria and endoplasmic reticulum (ER), where it can in-
fluence metabolism (Wan et al., 1989; Jouaville et al., 1999;
Glancy et al., 2015; Du et al., 2016) and protein trafficking (Beck-
ers and Balch, 1989; Booth and Koch, 1989). At the synapse, Ca 2�

influx is critical for release of glutamate-containing synaptic ves-
icles (Rieke and Schwartz, 1996; Thoreson et al., 2004; Heidel-
berger et al., 2005; Schmitz, 2014). Given the distinct roles of
Ca 2� in each photoreceptor compartment, tight control of Ca 2�

domains is crucial for normal cell function.
Mitochondrial Ca 2� uptake results in variety of physiological

outcomes, including fundamental processes such as protein acet-
ylation in endothelial cells (Marcu et al., 2014). In neurons, mi-
tochondria buffer Ca 2� in areas of high axonal firing to produce
ATP (MacAskill et al., 2009) and mitigate excitotoxicity via the
mitochondrial Ca 2� uniporter (MCU) (Qiu et al., 2013; Wang et

Received Aug. 24, 2016; revised Jan. 10, 2017; accepted Jan. 12, 2017.
Author contributions: M.M.G., W.M.C., J.B.H., and S.E.B. designed research; M.M.G. and W.M.C. performed re-

search; M.M.G., W.M.C., S.R.S., J.B.H., and S.E.B. analyzed data; M.M.G., W.M.C., J.B.H., and S.E.B. wrote the paper.
This work was supported by the National Science Foundation (GRFP Grant 2013158531 to M.M.G.) and the

National Institutes of Health (National Eye Institute Grants 5T32EY007031 to W.M.C. and M.M.G. and EY026020 to
J.B.H. and S.E.B.). We thank Ed Parker for generating serial block-face scanning electron microscopy images, Ralph
Nelson for guidance in preparing adult zebrafish retinal slices, and Eva Ma and Gail Stanton for assistance generating
mito-GCaMP and mito-cpYFP transgenic zebrafish.

The authors declare no competing financial interests.
*M.M.G. and W.M.C. contributed equally to this work.
Correspondence should be addressed to Susan E. Brockerhoff, Department of Biochemistry, University of Wash-

ington, 750 Republican St., E261, Seattle, WA 98109. E-mail: sbrocker@uw.edu.
DOI:10.1523/JNEUROSCI.2689-16.2017

Copyright © 2017 the authors 0270-6474/17/372061-12$15.00/0

Significance Statement

Ca 2� homeostasis is essential for the survival and function of retinal photoreceptors. Separate pools of Ca 2� regulate phototrans-
duction in the outer segment, metabolism in the cell body, and neurotransmitter release at the synaptic terminal. We investigated
the role of mitochondria in compartmentalization of Ca 2�. We found that mitochondria form a dense cluster that acts as a
diffusion barrier between the outer segment and cell body. The cluster is surprisingly only partially surrounded by the endoplas-
mic reticulum, a key mediator of mitochondrial Ca 2� uptake. Blocking the uptake of Ca 2� by mitochondria causes redistribution
of Ca 2� throughout the cell. Our results show that mitochondrial Ca 2� uptake in photoreceptors is complex and plays an essential
role in normal function.
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al., 2015). In muscle, mitochondrial Ca 2� couples metabolic out-
put to contraction (Kwong et al., 2015) and influences muscle
size (Mammucari et al., 2015). Past studies have indicated that
photoreceptor mitochondria can act as a Ca 2� sink, particularly
in cones, and it has been suggested that mitochondria may shield
the cell body and synapse from potentially harmful high [Ca 2�]i

in the outer segment (Szikra and Krizaj, 2007).
Photoreceptor mitochondria are spatially and biochemically

poised to regulate cellular Ca 2�. Electron microscopy of cones
reveals abundant mitochondria within the ellipsoid region of the
cell body, just below the outer segment (Tarboush et al., 2012;
Masuda et al., 2016). Mitochondria in other tissues are capable of
storing large amounts of Ca 2� as inorganic phosphate salts
(Greenawalt et al., 1964). The MCU is thought to be the primary
entry point for Ca 2� into the mitochondrial matrix in all cells
(De Stefani et al., 2011), although this has not been shown for
photoreceptors.

We evaluated the role of mitochondria in maintaining distinct
Ca 2� domains. We used serial block-face scanning electron mi-
croscopy to assemble the 3D morphology of the zebrafish cone
ellipsoid. A dense cluster of mitochondria extends to the plasma
membrane directly between the outer segment and cell body.
We further developed a method to visualize Ca 2� dynamics in
live retinal slices from adult zebrafish. By manipulating [Ca 2�]i

in the presence of a genetically encoded fluorescent Ca 2� re-
porter, we found that cone mitochondria act via the MCU to
segregate outer segment and cell body Ca 2� pools. This finding
suggests a significant role for cone mitochondria in the Ca 2�

compartmentalization that is required for proper function and
regulation of core cellular processes such as phototransduction
and metabolism.

Materials and Methods
Zebrafish maintenance. Research was authorized by the University of
Washington Institutional Animal Care and Use Committee. Transgenic
heterozygotes in the AB or Roy �/� genetic background were maintained
in the University of Washington South Lake Union aquatics facility at
27.5°C on a 14 h/10 h light/dark cycle. Fish used for experiments were
male and female siblings between 9 and 20 months old.

Generation of transgenic zebrafish. The transgenic lines Tg(gnat2:
GCaMP3) (Ma et al., 2013; RRID:ZDB-FISH-150901–1755), Tg(gnat2:
ER-GFP) (George et al., 2014; RRID:ZDB-FISH-150901–7809), and
Tg(gnat2:EGFP) (Kennedy et al., 2007; RRID:ZDB-FISH-150901-6625)
have been described previously. DNA constructs expressing mito-
GCaMP3 (Esterberg et al., 2014) or mito-cpYFP (Wang et al., 2008)
downstream of the zebrafish cone transducin promoter gnat2 were gen-
erated using the Gateway-Tol2 system (Kwan et al., 2007). These con-
structs were injected into embryos at the 1- to 2-cell stage with Tol2
transposase mRNA. Mosaic larvae isolated at 5 d after fertilization were
raised to adulthood and a germline carrier with a single insertion was
identified for each strain, Tg(gnat2:mito-GCaMP3) and Tg(gnat2:
mito-cpYFP).

Zebrafish retinal slice preparation. Transgenic adult zebrafish were dark
adapted �1 h, killed, enucleated, and the retinas immediately dissected
away under red light into cold oxygenated Ringer’s solution containing
the following (in mM): 133 NaCl, 2.5 KCl, 1.5 NaH2PO4, 2 CaCl2, 1.5
MgCl2, 10 HEPES, 10 D-glucose, 1 sodium lactate, 0.5 L-glutamine, 0.5
reduced glutathione, 0.5 sodium pyruvate, and 0.3 sodium ascorbate, pH
7.4. Isolated retinas were mounted on filter paper (0.45 �m pore, mixed
cellulose; Millipore), flattened with gentle suction, stained 10 min at
20 –22°C with dilute BODIPY 558/568 C12 (Invitrogen), and washed
with excess Ringer’s solution. Flat-mounted retinas were either imaged
directly or sliced into 400 �m slices using a tissue slicer (Stoelting). Slices
were rotated 90° and the filter paper edges buried in strips of wax on a
coverslip for imaging experiments. To assay cell viability, retinal slices

without BODIPY were stained with 7.5 �M propidium iodide (PI) (In-
vitrogen) 20 min at 20 –22°C and washed 3 times before imaging.

Ca2� imaging. Retinal slices were imaged in either static Ringer’s so-
lution or in a flow chamber attached to an injection apparatus and per-
fusion system flowing freshly oxygenated Ringer’s solution at 20 –22°C.
Experiments involving Ca 2�-free conditions were conducted with a
modified Ringer’s solution containing 0.4 �M EGTA instead of CaCl2,
pH 7.4. Experiments involving Na�-free conditions were conducted us-
ing another modified isotonic Ringer’s solution containing the following
(in mM): 147 Tris, �120 HCl, 1 KCl, 2 CaCl2, 1.5 MgCl2, 1.5 KH2PO4, 10
HEPES, 10 D-glucose, 0.5 L-glutamine, and 0.5 reduced glutathione, pH
7.4. Flat mounts and slices were imaged on either an Olympus FV1000 or
a Leica LSP8 confocal microscope with a 40� water objective; excitation/
emission wavelengths were 488/510 nm for fluorescent proteins and 559/
594 nm for BODIPY and PI. Olympus FluoView (RRID:SCR_014215) or
Leica LAS-X (RRID:SCR_013673) software was used to acquire images
and time-lapse images were taken every 10 s. For quantification of abso-
lute mito-GCaMP fluorescence, z-stacks of retinal sections were gener-
ated from 10 –20 1 �m slices.

Pharmacological treatments. Ca 2� modulators were injected into the
perfusion chamber after 2 min of baseline time-lapse imaging, followed
by a single pump of the syringe to aid mixing. For KCl depolarization
experiments, a concentrated solution of KCl in Ringer’s solution was
injected into perfusion chamber to reach a final concentration of 10 mM.
Sildenafil citrate (Sigma-Aldrich) was stored in DMSO at 20 mM and
used at a working concentration of 25 �M. Thapsigargin (Sigma-Aldrich)
was stored in DMSO at 10 mM and used at a working concentration of 1
�M. 50 mM KB-R7943 mesylate (Tocris Bioscience) was prepared fresh
each day in DMSO and used at final concentration of 100 �M. Ru360
(Millipore) was prepared fresh for each experiment, first dissolved in
cold deoxygenated water to 5 mM, and then stored on ice for �3 h;
immediately before incubation, it was diluted in Ringer’s solution to 10
�M. Where indicated, retinal slices were incubated 1 h in 10 �M Ru360 at
20 –22°C before imaging and maintained in 10 �M Ru360 throughout the
duration of experiments.

Electron microscopy. Adult zebrafish eyes were enucleated, the anterior
half was dissected away, and the eyecup was cut in half. Tissue was fixed
in 4% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2, at room
temperature (RT), then stored overnight at 4°C. Samples were washed 4
times in sodium cacodylate buffer, postfixed in osmium ferrocyanide
(2% osmium tetroxide/3% potassium ferrocyanide in buffer) for 1 h on
ice, washed, incubated in 1% thiocarbohydrazide for 20 min, and washed
again. After incubation in 2% osmium tetroxide for 30 min at RT, sam-
ples were washed and en bloc stained with 1% aqueous uranyl acetate
overnight at 4°C. Samples were finally washed and en bloc stained with
Walton’s lead aspartate for 30 min at 60°C, dehydrated in a graded eth-
anol series, and embedded in Durcupan resin. Serial sections were cut at
60 nm thickness and imaged with 6 nm pixel size using a Zeiss Sigma VP
scanning electron microscope fitted with a Gatan 3View2XP ultrami-
crotome apparatus. Imaged stacks were concatenated and aligned using
TrakEM2 (RRID:SCR_008954). Unless stated otherwise, five washes
with water were used for all wash steps.

Image processing and analysis. Time-lapse images were analyzed using
ImageJ software (RRID:SCR_002285). Time lapses were corrected for
X–Y drift using the MultiStackReg plugin and regions of interest (ROIs)
selected around individual cell compartments. Separate red and green
kymographs were generated as described previously (Ma et al., 2013)
from ROIs for the synapse, cell body, and outer segment or ellipsoid
regions and were used to quantify fluorescence changes in single cells.
Data were compiled using Microsoft Excel. To account for focal plane
variance and drift in the z-direction, the green GCaMP fluorescence
signal was divided by the red BODIPY fluorescence signal at each time
point. Fold change was calculated from t � 0 using the equation F/F0 �
(510t/594t)/(5100/5940). For z-stacks, absolute mito-GCaMP fluores-
cence was measured from frames at the widest part of individual mito-
chondrial clusters. Brightness and contrast were adjusted equally in the
presented images to ease visualization.

Statistics. Results are reported as mean 	 SEM. R (RRID:SCR_001905)
with R Commander (Fox, 2005) was used to perform one-way ANOVA
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for multiple comparisons or two-tailed t tests with a 99% confidence
interval for pairwise comparisons.

Results
Genetically encoded Ca 2� reporter senses cytosolic [Ca 2�] in
zebrafish cones.
Larval zebrafish cones display cytosolic Ca 2� transients hetero-
geneous in magnitude and duration (Ma et al., 2013). To under-
stand normal Ca 2� dynamics in adult zebrafish cones, we
analyzed [Ca 2�]i changes using fresh retinal slices from adult
zebrafish stably expressing the genetically encoded Ca 2� sensor
GCaMP3 in cone photoreceptor cytosol (cyto-GCaMP) (Fig.
1A). Photoreceptors in retinal slices do not take up the stain PI for
at least 4 h, indicating that the cells remain viable (data not
shown). Confocal time-lapse imaging of slices revealed that adult
cones undergo Ca 2� transients in the synapse and cell body sim-
ilar to larval cones (Fig. 1B,C).

To determine whether [Ca 2�]i is sensitive to extracellular
Ca 2� concentration ([Ca 2�]ex), we time-lapse imaged cyto-

GCaMP retinal slices while using perfusion to exchange the sur-
rounding 2 mM Ca 2� Ringer’s solution with Ca 2�-free solution
containing 0.4 �M EGTA (Fig. 1E,F). Initial removal of extracel-
lular Ca 2� transiently, but robustly, increased cyto-GCaMP flu-
orescence, indicating possible Ca 2� release from internal stores
(Fig. 1E, arrowheads). When [Ca 2�]ex was returned to 2 mM,
Ca 2� influx into the synapse and cell body increased cyto-
GCaMP fluorescence 1.5 	 0.2-fold and 2.7 	 0.3-fold, respec-
tively (15 min time point; Fig. 1E,F). A second washout and
return to 2 mM Ca 2� raised [Ca 2�]i in all compartments (at 22
min, outer segment, 2.5 	 0.3-fold; cell body, 2.9 	 0.3-fold;
synapse, 1.6 	 0.2-fold). Further, each cell compartment re-
sponded with unique kinetics and amplitude, indicating that
Ca 2� in cones is not one continuous pool. To confirm that
changes in cyto-GCaMP fluorescence report [Ca 2�]i, we showed
that fluorescence of cones expressing cytosolic eGFP (cyto-GFP;
Fig. 1D) (Kennedy et al., 2007) is not sensitive to fluctuations in
[Ca 2�]ex (Fig. 1E, dashed lines).
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Figure 1. Cone photoreceptors undergo transient Ca 2� flashes and are sensitive to extracellular Ca 2� flux. A, Representative confocal image of in situ retinal slice from transgenic dark-adapted
zebrafish expressing cyto-GCaMP in cones (left) and overlaid with BODIPY membrane stain (right). Areas of bright cyto-GCaMP fluorescence in the outer segment layer appear to be the zebrafish
accessory outer segment. B, Montage of confocal images depicting spontaneous cyto-GCaMP Ca 2� flash in a single cone. C, Graphs showing discrete and spontaneous Ca 2� flashes in the synapse
and cell body of a single cone over 20 min. D, Representative confocal image of retinal slice from transgenic dark-adapted zebrafish expressing cyto-GFP in cone PRs (green) stained with BODIPY
membrane stain (magenta). E, Mean fluorescence responses of cone compartments during consecutive washouts of extracellular Ca 2� with buffer containing 0.4 �M EGTA. Solid lines, cyto-GCaMP
(3 experiments; n for OS � 27, CB � 31, synapse � 40); dashed lines, cyto-GFP control (1 experiment; n for OS � 15, CB � 15, synapse � 18); blue bars, presence of 2 mM extracellular Ca 2�.
Arrowheads indicate transient burst of Ca 2� in all compartments after initial Ca 2� washout. One-way ANOVA was performed at 12:00, 22:00, and 27:00 for cyto-GCaMP versus cyto-GFP; *p �0.05;
**p � 0.001; –, not significant. F, Montage of confocal images depicting cyto-GCaMP responses to Ca 2� washout quantified in E. Error bars indicate SEM; n represents number of single cells
analyzed. Scale bars, 5 �m; timescale � min:sec. OS, Outer segment; CB, cell body.
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[Ca 2�] in the mitochondrial matrix is influenced by cytosolic
[Ca 2�].
Mitochondria can buffer Ca 2�, an activity vital to homeostasis in
neurons (Qiu et al., 2013; Esterberg et al., 2014). To monitor free
Ca 2� concentration within the mitochondrial matrix ([Ca 2�]m)
of cones, we used transgenic zebrafish that stably express
GCaMP3 targeted to the matrix of cone mitochondria (mito-
GCaMP; Fig. 2A). Under basal time-lapse imaging conditions,
mito-GCaMP retinal slices and flat mounts displayed no fluctu-
ation of fluorescence (data not shown) and mitochondria re-
mained clustered at the base of the outer segment. Alternating
[Ca 2�]ex from 2 to 0 mM induced modest but significant changes
in [Ca 2�]m throughout the entire cluster (Fig. 2C,D). Given that
identical conditions elicit large changes in cyto-GCaMP, these
data suggest that mitochondria can take up free cytosolic Ca 2�,
although mito-GCaMP responses were generally slower. In con-
trast, zebrafish retinas expressing circularly permuted YFP in
cone mitochondria (mito-cpYFP; Fig. 2B), which is not directly
sensitive to Ca 2� (Wang et al., 2008), did not respond to altering
[Ca 2�]ex (Fig. 2C, dashed lines).

In other cells, Ca 2� flows into mitochondria through the
MCU (Williams et al., 2013), so we investigated whether the
MCU is responsible for mitochondrial Ca 2� uptake in cones. We
imaged 3D stacks of mito-GCaMP retinal slices incubated for 1 h
in either Ringer’s solution or 10 �M Ru360, a specific inhibitor of
the MCU (Matlib et al., 1998; Kirichok et al., 2004; Baughman et
al., 2011). Mito-GCaMP fluorescence of individual cells was mea-
sured at the center of the mitochondrial cluster (Fig. 2E). Ru360
treatment decreased absolute GCaMP fluorescence of mitochon-
drial clusters by 25.4 	 7.1% (Fig. 2E). Similar to other cells,
Ca 2� uptake into cone mitochondria appears to occur through
the MCU. One hour of Ru360 incubation also altered baseline

fluorescence of cyto-GCaMP retinal slices, decreasing outer seg-
ment signal 20.1 	 11.0% and increasing cell body and synaptic
fluorescence 56.9 	 6.9% and 16.2 	 12.5%, respectively (Fig.
2E). This suggests that Ca 2� homeostasis throughout the cell is
influenced by mitochondrial Ca 2� uptake.

Cone ellipsoid contains a tight cluster of mitochondria.
In photoreceptors, the unique morphology and localization of
mitochondria (Tarboush et al., 2012, 2014) suggest that they can
influence Ca 2� homeostasis even more than in other cells. To
understand the 3D arrangement of mitochondria within the el-
lipsoid region of cones, we performed serial block-face scanning
electron microscopy of adult zebrafish retina (Fig. 3A). Mito-
chondria in zebrafish cones form a tight cluster in the ellipsoid
just below the connecting cilium and outer segment. The mito-
chondrial cluster is comprised of �80 individual mitochondria
densely packed together with the outer membranes of individual
mitochondria directly adjacent to one another (Fig. 3B). A 3D
reconstruction shows that the cluster occupies the majority of the
cell volume between the outer segment and cell body (Fig. 3C).
The abundance and very tight juxtaposition of the mitochondria
supports the hypothesis that the mitochondrial cluster in ze-
brafish cones can act as a barrier to diffusion between the outer
segment and cell body.

Contacts between ER and mitochondria facilitate mitochon-
drial Ca 2� uptake in many cell types (Rowland and Voeltz, 2012).
ER in photoreceptors is confined to the synapse and cell body
(Mercurio and Holtzman, 1982) and we evaluated the extent of
interactions between ER and mitochondria in the cell body. Us-
ing adult zebrafish from a transgenic line expressing GFP targeted
to cone ER (ER-GFP) (George et al., 2014), we found that the ER
forms a basket-like network under the mitochondrial cluster, but
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does not appear to enter into the tight cluster of mitochondria
(Fig. 3D). Furthermore, in scanning electron microscopy images
used for 3D reconstruction, we did not find evidence of ER within
the mitochondria cluster nor between the outer segment and
apical face of the mitochondrial cluster (Fig. 3B).

Ca 2� confinement to the inner segment is mediated
by mitochondria
To evaluate Ca 2� compartmentalization, we used two strategies
to increase inner segment [Ca 2�]I specifically. We depolarized
cones by perfusing retinal sections with Ringer’s solution con-
taining elevated [KCl] while time-lapse imaging (Fig. 4A, top).
Depolarization of the plasma membrane activates L-type voltage
gated Ca 2� channels at the synapse and cell body (Taylor and
Morgans, 1998; Kourennyi and Barnes, 2000; Lee et al., 2015),
allowing Ca 2� to flow into those compartments. We found that
increasing extracellular [KCl] from 2.5 to 10 mM evoked a �2-
fold rise in cyto-GCaMP fluorescence in the synapse and cell

body but, notably, no increase in fluorescence in the outer seg-
ment (Fig. 4B, light solid lines). A modest 13 	 3% increase in
mito-GCaMP fluorescence persisted 5 min after increasing extra-
cellular [KCl] (Table 1), suggesting that mitochondria are capa-
ble of Ca 2� uptake from the cell body pool, perhaps via the ER.
Cyto-GFP (Fig. 4B, dashed lines) and mito-cpYFP (Table 1) ret-
inal slices were insensitive to KCl.

We hypothesized that reducing Ca 2� uptake into cone mito-
chondria could attenuate Ca 2� compartmentalization and lead
to increases in outer segment [Ca 2�]i, so we preincubated cyto-
GCaMP retinal slices in Ru360, then depolarized them with
10 mM KCl (Fig. 4A, bottom arrowheads). Outer segment fluo-
rescence increased transiently 1.80 	 0.04-fold compared with
untreated slices (Fig. 4B, dark solid lines), but synapse [Ca 2�]i

was unaffected by Ru360. This is consistent with the absence of
mitochondria at the zebrafish cone synaptic terminal (Fig. 2A),
unlike in other teleost ribbon synapses (Zenisek and Matthews,
2000). Ten minutes after KCl depolarization, Ru360 treatment
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Figure 3. Cone mitochondria densely pack the interface between the inner and outer segments. A, Scanning electron microscopy image of two zebrafish cones showing dense packing of the
mitochondrial cluster. B, Magnification of boxed region in A showing the center of the mitochondrial cluster. The ER is indicated with arrowheads; matrices of six individual mitochondria are colored.
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Giarmarco, Cleghorn et al. • Mitochondria Maintain Distinct Ca2� Pools J. Neurosci., February 22, 2017 • 37(8):2061–2072 • 2065



decreased cell body fluorescence slightly
(1.41 	 0.09-fold vs 1.18 	 0.03-fold, p �
0.045), perhaps indicative of enhanced
cell body Ca 2� extrusion through now-
accessible rapid Na�/K�-Ca 2� exchang-
ers on the outer segment. Redistribution
of Ca 2� into the outer segment after
Ru360 treatment suggests that compart-
mentalization requires efficient uptake of
Ca 2� by mitochondria through the MCU.

Given the distinct localization of cone
ER in the cell body and synapse (George et
al., 2014), we hypothesized that blocking ER
Ca 2� uptake would increase cytosolic
[Ca2�]i in those compartments. Whereas
time-lapse imaging, cyto-GCaMP retinal
slices were treated with thapsigargin, a
sarco-endoplasmic reticulum Ca2� ATPase
(SERCA) inhibitor that blocks pumping of
Ca2� into the ER (Fig. 4C, top) (Lytton et
al., 1991). Thapsigargin caused rapid and
sustained apparent [Ca2�]i increase in the
synapse, where ER regulates Ca2� levels that
mediate synaptic vesicle release (Chen et al.,
2015) and in the cell body (Fig. 4D, light
solid lines). Thapsigargin also increased
mito-GCaMP fluorescence 14 	 7% 5 min
after treatment (Table 1). However, there
was no change in outer segment cyto-
GCaMP fluorescence, indicating that, con-
sistent with ER localization presented in
Figure 3D, ER does not directly affect outer
segment [Ca2�]i.

We again wondered whether mitochon-
drial Ca2� uptake was insulating the outer
segment from cell body [Ca2�]i fluctua-
tions. When mitochondrial Ca2� uptake is
reduced with Ru360, we detected modest
but steady apparent increases in outer seg-
ment [Ca2�]i after thapsigargin treatment
(Figs. 4C, bottom arrowheads, 4D, dark
solid lines). Thapsigargin did not elicit fluo-
rescence changes in our control indicators,
cyto-GFP (Fig. 4D, dashed lines) and mito-
cpYFP (Table 1). Together, these results
suggest that MCU enables mitochondria to
sequester cell body Ca2� and prevent its
flow to the outer segment.

Na�/K�-Ca 2� exchanger activity
maintains low outer segment [Ca 2�]i

At the cone plasma membrane, ion ex-
changers release intracellular Ca 2� and
bring in extracellular Na�. The Na�/K�-
Ca 2� exchanger NCKX has high activity
and is localized exclusively at the outer
segment to support rapid Ca 2� clearance
during phototransduction. A lower-affi-
nity Na�-Ca 2� exchanger, NCX1, localizes to cone inner seg-
ments, but most Ca 2� extrusion from the inner segment and
synapse happens through plasma membrane Ca 2�-ATPases
(PMCA) confined to those compartments (Krizaj and Copenha-
gen, 1998; Johnson et al., 2007). We investigated whether mito-

chondrial Ca 2� buffering plays a role in the functional disparity
of extrusion mechanisms, contributing to Ca 2� compartmental-
ization in cones, and used two strategies to address this.

First, we inhibited Ca 2� efflux through the plasma membrane
exchangers by using perfusion to bathe GCaMP retinal slices in
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Ringer’s solution devoid of Na� (Schnetkamp et al., 1991) while
time-lapse imaging (Fig. 5A). Isotonic depletion of Na� from the
bath caused robust and very rapid increases in cyto-GCaMP flu-
orescence that initiated at the outer segment and propagated
gradually into the cell body, with only a modest and very slow
increase in the synapse (Fig. 5B, solid lines). These findings indi-
cate that outer segment [Ca 2�]i can be maintained at high levels
independently of inner segment [Ca 2�]i. Na� depletion also in-
creased fluorescence of both mito-GCaMP and mito-cpYFP ret-
inal slices (Table 1), indicative of changes in mitochondrial
membrane potential.

Second, we treated cyto-GCaMP retinal slices with an inhibi-
tor of Na�/Ca 2� exchangers, KB-R7943 (Iwamoto et al., 1996;
Vinberg et al., 2015) while time-lapse imaging (Fig. 5C). Similar
to Na� depletion, blocking Ca 2� extrusion from the exchangers
elicited a rapid and sustained increase in outer segment cyto-
GCaMP fluorescence, followed by a slower increase in the cell
body and only a small, transient response at the synapse (Fig. 5D,
solid lines). Consistent with reports of KB-R7943 promoting mi-
tochondrial Ca 2� retention (Wiczer et al., 2014), mito-GCaMP
fluorescence rose 7 	 3% after 5 min in KB-R7943, a small but
significant increase compared with DMSO alone (Table 1). Cyto-
GFP retinal slices were unaffected by Na� depletion and KB-
R7943 (Fig. 5B,D, dashed lines). Together, these results suggest
that extrusion is compartmentalized and demonstrate that flow
of cytosolic Ca 2� between the outer segment and the cell body is
regulated.

Cone mitochondria buffer Ca 2� from the outer segment.
To establish whether mitochondria buffer outer segment Ca 2�,
we used sildenafil, an inhibitor of the phosphodiesterase PDE6
(Zhang et al., 2005), to increase outer segment [Ca 2�]i selec-
tively. PDE6 inhibition causes cGMP to build up in the outer
segment, opening more cGMP-gated channels and allowing
outer segment Ca 2� accumulate. Accordingly, treating cyto-
GCaMP retina slices with sildenafil brought on a sustained in-
crease in outer segment fluorescence (Fig. 6A, top). The addition
of sildenafil also causes transient increases in both cell body and
synapse [Ca 2�]i because influx of cations into the outer segment
depolarizes the cell (Fig. 6B, solid lines). This Ca 2� burst dimin-
ishes in the cell body and synapse within 5 min, but outer segment
[Ca 2�]i remains elevated �2-fold. Sildenafil had no effect on the
fluorescence of cyto-GFP retinal slices (Fig. 6B, dashed lines).

When mito-GCaMP or mito-cpYFP retinal slices were treated
with sildenafil, we noticed an apparent elongation of mitochon-
drial clusters (Fig. 6A, bottom), similar to morphological changes
brought on by retinomotor movements in prolonged darkness

(Burnside et al., 1993). Mito-GCaMP fluorescence of a region at
the center of the cluster increased slightly (Fig. 6F, light solid
line), but this change was not significant compared with the ve-
hicle DMSO alone (p � 0.07; Table 1). Mito-cpYFP fluorescence
was insensitive to sildenafil.

To address the possibility of elevated outer segment [Ca 2�]i

simply being extruded via NCKX, we performed two-step perfu-
sion experiments. While time-lapse imaging, we first treated ret-
inal slices with the Na�/Ca 2� exchanger inhibitor KB-R7943,
allowed [Ca 2�]i to stabilize for 5 min, and then applied sildenafil
(Fig. 6C, top row). Subsequent application of sildenafil resulted
in larger overall fold changes in cyto-GCaMP fluorescence for all
compartments (Fig. 6D, dashed lines) and a sustained increase in
the cell body consistent with inhibition of Ca 2� extrusion.

In a similar experiment, mito-GCaMP retinal slices were pre-
treated with KB-R7943 for 10 min and then treated with sildenafil
(Fig. 6E, top). This caused a dramatic increase in mito-GCaMP
fluorescence (Fig. 6F, dashed line), suggesting that cone mito-
chondria can accumulate Ca 2� when outer segment [Ca 2�]i is
very high. To determine whether this Ca 2� uptake is mediated by
MCU, we repeated this experiment using retinal slices first pre-
incubated in Ru360 (Fig. 6E, bottom). One hour of Ru360
preincubation followed by 10 min of additional KB-R7943 pre-
incubation abolished mitochondrial Ca 2� uptake (Fig. 6F, solid
dark line), suggesting that this pool of Ca 2� enters mitochondria
via the MCU.

Finally, we investigated how MCU activity was mediating cy-
tosolic Ca 2� pools. Using cyto-GCaMP retinal slices preincu-
bated in Ru360, we again performed two-step perfusion
experiments with KB-R7943 and sildenafil (Fig. 6C, bottom row).
With both mitochondrial Ca 2� uptake and plasma membrane
Ca 2� extrusion blocked, cyto-GCaMP fluorescence depicted
rapid and large increases of [Ca 2�]i in all compartments of the
cell (Fig. 6D, solid lines). Despite their magnitude, these large
Ca 2� bursts were cleared from the cytosol of all compartments,
including the outer segment, within minutes. Considering that
similar conditions elicit no increase in mito-GCaMP fluores-
cence (Fig. 6F, solid dark line) when Na�/Ca 2� exchange is in-
hibited and [Ca 2�]i is very high, activation of PMCA could
provide an exit route for cytosolic Ca 2�. Although PMCA local-
izes at the inner segment and synapse (Krizaj et al., 2002), absent
MCU activity outer segment Ca 2� appears to redistribute
throughout the cell.

These data suggest that mitochondrial Ca 2� buffering can
insulate the inner segment from a high [Ca 2�]i pool in the outer
segment. Under extreme conditions [Ca 2�]i may become high
enough to activate MCU in cones and the ER may facilitate Ca 2�

uptake into a subset of mitochondria. Altogether, our findings
show that mitochondria can take up Ca 2� from both the outer
segment and cell body, effectively separating the two compart-
ments from each other.

Discussion
Compartmentalization of Ca 2� has functional implications (Au-
gustine et al., 2003; Yang et al., 2016). In photoreceptors, Ca 2�

has distinct roles and concentrations in different parts of the cell
(Krizaj and Copenhagen, 1998; Sampath et al., 1999). Ca 2� in-
fluences phototransduction in the outer segment, where [Ca 2�]i

ranges from 20 –50 nM in light to 300 –500 nM in darkness (Krizaj
and Copenhagen, 2002). In the adjacent cell body, [Ca 2�]i is in
the tens of nanomolar range (Krizaj and Copenhagen, 1998) and
Ca 2� regulates vital cellular processes such as metabolism (Wan
et al., 1989; Satrústegui et al., 2007; Glancy and Balaban, 2012; Du

Table 1. Mitochondrial fluorescence changes of retinal slices after 5 min treatment
with Ca 2� modulators

Condition Mito-cpYFPa Mito-GCaMP p-valueb

KCl 0.86 	 0.02 (n � 61) 1.13 	 0.03 (n � 28) 0.005
Thapsigargin 0.86 	 0.03 (n � 31) 1.14 	 0.07 (n � 65) 0.038
Na � depletion 1.64 	 0.06 (n � 21) 1.40 	 0.04 (n � 72) —
KB-R7943 0.74 	 0.04 (n � 20) 1.07 	 0.03 (n � 42) 0.002
Sildenafil 0.86 	 0.08 (n � 37) 1.10 	 0.05 (n � 60) 0.072
KB-R7943c � sildenafil — 1.38 	 0.06 (n � 72) 0.0002
KB-R7943c � Ru360c �

sildenafil
— 1.09 	 0.05 (n � 30) 0.003

DMSO — 0.89 	 0.04 (n � 9) —
an � number of single mitochondrial clusters. Values are shown as F/F0 	 SEM.
bPaired t test for mito-GCaMP treatment versus DMSO, two-tailed, 99% confidence interval.
cPreincubation.
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et al., 2013; Llorente-Folch et al., 2013).
How Ca2� concentrations under different
physiological conditions are maintained in
functionally distinct compartments in polar-
ized neurons, such as photoreceptors, is not
understood.

Here, we report direct experimental
evidence that mitochondria can create
functionally and spatially restricted do-
mains of Ca 2� in photoreceptors. Using
serial block-face scanning electron mi-
croscopy and confocal microscopy we es-
tablish that within the ellipsoid region of
zebrafish cones, a large and tight cluster of
many individual mitochondria forms a
diffusion barrier between the cell body
and outer segment. The cluster is partially
surrounded but not permeated by the ER,
known to facilitate Ca 2� transfer into mi-
tochondria. We show that mitochondria
take up Ca 2� in response to changes in
[Ca 2�]i in both the cell body and outer
segment. Preventing Ca2� uptake by block-
ing MCU function disrupts the formation of
distinct cellular Ca2� domains.

Mitochondria of zebrafish cones are
poised to buffer Ca 2� from either the
cell body or the outer segment
Photoreceptor mitochondria are large
(Kim et al., 2005; Masuda et al., 2016) and
heterogeneous (Tarboush et al., 2014).
Our 3D reconstruction of the ellipsoid re-
gion of a zebrafish cone shows that the
mitochondrial cluster consists of �80
tightly packed mitochondria extending
nearly to the plasma membrane. This type
of structure could act as a physical barrier
that restricts flow of ions between the cell
body and outer segment; our findings
support this idea. We demonstrate that
mitochondrial Ca 2� levels increase when
we increase either outer segment or cell
body [Ca 2�]i selectively and that this
transfer of Ca 2� into mitochondria is at
least partially mediated by the MCU.
Blocking MCU activity reduced the ability of cone mitochondria
to buffer Ca 2� and led to a redistribution of cytosolic Ca 2�

throughout the cell.
The MCU is a complex consisting of the pore-forming MCU

subunit and a number of Ca 2�-sensitive regulatory proteins that
tightly control Ca 2� uptake into mitochondria (for review, see
Kamer and Mootha, 2015). This protein complex is thought to be
the primary route by which Ca 2� enters mitochondria and, when
it is knocked out, Ca 2� uptake into mitochondria is greatly re-
duced (Pan et al., 2013). From studies in other tissues, the affinity
of the MCU for Ca 2� appears weak, reported to be between 10
and 25 �M [Ca 2�]i (Gunter and Gunter, 2001; Williams et al.,
2013). Expression of activating and deactivating MCU subunits
can influence MCU activity and varies widely among cell types
(Geiger et al., 2013; Murgia and Rizzuto, 2015), but the stoichi-
ometry of these key regulators in the photoreceptor MCU com-
plex is not known.

ER may facilitate Ca 2� uptake into cone mitochondria facing
the cell body
In many cell types, a dynamic and extensive network of ER-
mitochondrial contacts enables mitochondrial Ca 2� uptake by
concentrating Ca 2� at these junctions (Hamasaki et al., 2013;
Rutter and Pinton, 2014). IP3 receptors on the ER surface release
Ca 2� immediately adjacent to mitochondria (Rowland and
Voeltz, 2012), generating high localized Ca 2� concentrations.
Ca 2� then passes through voltage-dependent anion channels in
the outer mitochondrial membrane, generating domains of high
[Ca 2�]i that are sufficient for activation of the MCU (Contreras
et al., 2010; Qi et al., 2015).

We found that the ER of zebrafish cones surrounds only the
basal and lateral parts of the mitochondrial cluster, but does not
appear to penetrate the cluster or extend between the apical side
and outer segment. This finding is generally consistent with a
previous analysis of ER in amphibian cones (Mercurio and
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Holtzman, 1982). For the subset of cone mitochondria facing the
cell body, where [Ca 2�]i is tens of nanomoles, Ca 2� uptake likely
occurs at or near ER contact sites. Consistent with this, when we
depolarized cones with KCl or block ER Ca 2� uptake via SERCA,
there was no effect on outer segment [Ca 2�]i, whereas synaptic,
inner segment, and mitochondrial Ca 2� levels increased. Fur-
ther, recent work showed that Ca 2� moves freely through the ER,
enabling bidirectional flow of Ca 2� between the cell body and the
synapse (Chen et al., 2015). This would provide a potential route
for synaptic Ca 2� to enter mitochondria via MCU.

Mitochondrial Ca 2� uptake insulates the cell body from high
outer segment [Ca 2�]i

The physiological range of free [Ca 2�]i in the outer segment
under peak signaling conditions is in the range of tens to hun-
dreds of nanomoles (Krizaj and Copenhagen, 2002), below the
affinity of MCU. In addition, plasma membrane Ca 2� extrusion
from the outer segment via NCKX is significantly faster than
extrusion of Ca 2� out of the cell body via NCX or PMCA (Krizaj
and Copenhagen, 1998). This would suggest that, under normal
physiological conditions, outer segment Ca 2� is removed pri-
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marily through outer segment NCKX (Krizaj and Copenhagen,
2002) and may not depend on mitochondrial Ca 2� buffering.
Our results suggest that mitochondria mediate high outer seg-
ment [Ca 2�]i that might occur during photoreceptor disease.

We found a large capacity for mitochondrial Ca 2� buffering
under pharmacological conditions that both blocked Ca 2� ex-
trusion and forced outer segment Ca 2� influx to mimic darkness.
These conditions elicited an outer segment [Ca 2�]i increase that
approached saturation of our cytosolic Ca 2� sensor and in-
creased fluorescence of the mitochondrial Ca 2� sensor nearly
twofold, the largest change seen in this study. Higher-resolution
imaging methods and detailed information about MCU loca-
lization across the mitochondrial cluster are needed to address
whether outer segment Ca 2� enters mitochondria directly near
the base of the ciliary stalk or must first diffuse laterally toward
the ER to be taken up into mitochondria.

Course of retinal degeneration could be influenced by
mitochondrial Ca 2� uptake
Our results suggest that mitochondrial Ca 2� buffering plays an
integral role in photoreceptor survival during degenerations
marked by elevated outer segment [Ca 2�]i. The pde6cw59 ze-
brafish model, which lacks cone PDE6 (Stearns et al., 2007), un-
dergoes retinal degeneration that was predicted to occur via
increased cytosolic [Ca 2�]i. Interestingly, cytosolic [Ca 2�]i was
not increased during cell death (Ma et al., 2013) and our results
suggest that elevated outer segment [Ca 2�]i brought on by the
mutation may have been buffered by mitochondria. Examination
of Ca 2� uptake by mitochondria in retinal disease models will
define the contributions of mitochondrial Ca 2� buffering to dis-
ease progression and degeneration.

Photoreceptors of Nckx1� / � mice, which lack rod outer seg-
ment NCKX, degenerate very slowly, showing thinning of retinal
layers over the course of a year (Vinberg et al., 2015). These mice
exhibit a delayed recovery of rod photoresponse. Absent an efflux
route at the plasma membrane, Ca 2� can still slowly leave the
outer segment. A recent study of Nckx2� / � mice lacking cone
outer segment NCKX demonstrated a similar delay in recovery of
cone photoresponse, but cones do not degenerate (Sakurai et al.,
2016). Together, these studies are consistent with a previous ob-
servation that cone mitochondria may have more Ca 2�-
buffering capacity than rods (Szikra and Krizaj, 2007). We found
that cone mitochondria can accumulate Ca 2� via MCU, which
could contribute to photoresponse recovery in these mutants.
Knock-out models lacking the MCU and modulators of mito-
chondrial Ca 2� uptake will help to determine whether Ca 2� up-
take by mitochondria influences photoresponse recovery.

In summary, cone photoreceptor mitochondria can influence
[Ca 2�]i in the cell body and outer segment. This is important for
isolating functional information within distinct photoreceptor
compartments. Ca 2� buffered by mitochondria located on the
cell body side of the cluster may regulate protein synthesis and
metabolic processes through protein acetylation and NADH pro-
duction. Mitochondrial Ca 2� buffering from the outer segment
may be a small but important component of light adaptation
because recovery of photocurrent after sustained increases in
light could be influenced by mitochondrial uptake of outer
segment Ca 2�. Ca 2� buffering via mitochondria could also
influence the health and survival of photoreceptors during de-
generation due to disease-causing mutations. Future studies
should evaluate the contributions of mitochondrial Ca 2� import
to photoreceptor metabolism, light adaptation, and disease.
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