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Age-related changes in human functional neuroanatomy are poorly understood. This is partly due to the limits of interpretation of standard
fMRI. These limits relate to age-related variation in noise levels in data from different subjects, and the common use of standard adult brain
parcellations for developmental studies. Here we used an emerging MRI approach called multiecho (ME)-fMRI to characterize functional brain
changes with age. ME-fMRI acquires blood oxygenation level-dependent (BOLD) signals while also quantifying susceptibility-weighted trans-
verse relaxation time (T2*) signal decay. This approach newly enables reliable detection of BOLD signal components at the subject level as
opposed to solely at the group-average level. In turn, it supports more robust characterization of the variability in functional brain organization
across individuals. We hypothesized that BOLD components in the resting state are not stable with age, and would decrease in number from
adolescence to adulthood. This runs counter to the current assumptions in neurodevelopmental analyses of brain connectivity that the number
of BOLD signal components is a random effect. From resting-state ME-fMRI of 51 healthy subjects of both sexes, between 8.3 and 46.2 years of
age, we found a highly significant (r � �0.55, p �� 0.001) exponential decrease in the number of BOLD components with age. The number of
BOLD components were halved from adolescence to the fifth decade of life, stabilizing in middle adulthood. The regions driving this change were
dorsolateral prefrontal cortices, parietal cortex, and cerebellum. The functional network of these regions centered on the cerebellum. We
conclude that an age-related decrease in BOLD component number concurs with the hypothesis of neurodevelopmental integration of func-
tional brain activity. We show evidence that the cerebellum may play a key role in this process.
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Introduction
Characterizing brain development from adolescence to adult-
hood is critical for understanding neuropsychiatric disease and

healthy brain function. However, the trajectories of changes in
functional organization during brain development are not yet
well characterized. Developmental studies of white matter
structural change based on diffusion weighted MRI report
nonlinear trajectories involving faster changes at earlier ages,
followed by stabilization at later ages (Wallace et al., 2006).
Microstructural changes in white matter are also known to be
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Significance Statement

Human brain development is ongoing from childhood to at least 30 years of age. Functional MRI (fMRI) is key for characterizing
changes in brain function that accompany development. However, developmental fMRI studies have relied on reference maps of
adult brain organization in the analysis of data from younger subjects. This approach may limit the characterization of functional
activity patterns that are particular to children and adolescents. Here we used an emerging fMRI approach called multi-echo fMRI
that is not susceptible to such biases when analyzing the variation in functional brain organization over development. We hypoth-
esized an integration of the components of brain activity over development, and found that the number of components decreases
exponentially, halving from 8 to 35 years of age. The brain regions most affected underlie executive function and coordination. In
summary, we show major changes in the organization and integration of functional networks over development into adulthood,
with both methodological and neurobiological implications for future lifespan and disease studies on brain connectivity.
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tract and region specific, suggesting that trajectories are both
global and regionally specific (Paus et al., 2001). In this study,
we use advanced functional MRI (fMRI) techniques to address
age-related trajectories of change in functional brain organi-
zation at both the whole-brain and regional levels.

Recent findings indicate that neurodevelopmental changes in
the organization of functional networks are detectable as age-
related increases in network coherence (Gu et al., 2015). It follows
that networks of functional correlation may become more inte-
grated from adolescence into adulthood, changing the broader
organization of functional networks. However, age-related dif-
ferences in anatomy complicate the comparison of functional
activity data across development (Power et al., 2012). To more sen-
sitively detect trajectories of age-related functional brain change, we
used multiecho (ME) fMRI (Kundu et al., 2015) to image the
resting state. ME-fMRI isolates the susceptibility-weighted trans-
verse relaxation (T2*) component of blood oxygenation level-
dependent (BOLD) fMRI signals without many of the arbitrary
denoising models used for standard fMRI. Furthermore, using
ME-fMRI, BOLD signal components can be characterized with-
out standard brain parcellations derived from adult data, which
are commonly used, but may bias results to represent normative
adult anatomy (Power et al., 2011; Craddock et al., 2012).

In this study, we especially focused on characterizing the
number of functional BOLD components in the resting state as a
marker of brain development. The number of BOLD compo-
nents in resting-state fMRI data may be considered to represent
the dimensionality, degrees of freedom, or dimensionality of
spontaneous brain activity (Friston et al., 1995). We considered
that this parameter could be useful in representing the level of
fragmentation versus the integration of functional networks
across the brain. The variation of BOLD component number
with age is evaluated in this article. Specifically, we had the fol-
lowing three aims: (1) to show that age affects the number of
components in the fMRI signal, as detected experimentally using
ME-independent component analysis (ICA); (2) to define data-
driven brain regions that are particularly susceptible to the im-
pact of age in terms of the number of BOLD components they
express; and (3) to characterize the relationships among brain
regions that show similar trajectories of change in regional BOLD
component number. Altogether, we find that functional brain
networks undergo a trajectory of functional integration with age,
in a regionally specific way, which has implications for the devel-
opment of normal cognition and behavior as well as neurodevel-
opmental disorders.

Materials and Methods
Overview
We assessed three levels of functional brain organization. First, we deter-
mined the number of BOLD signal components at the individual subject
level. Second, for each subject, we computed a map of the number of
components corepresented in each voxel. Third, we computed the rela-
tionship between component corepresentation and subject age, yielding
regions of interest (ROIs) of age-related component change. We then
used these ROIs as seed regions to estimate their functional connectivity
and elucidate age-sensitive functional networks.

Experimental design
Participants. Fifty-one healthy subjects (mean age, 21.9 years; age range,
8.3– 46.2 years; 20 females) completed the study. This study was ap-
proved by the National Institutes of Health Institutional Review Board.

Image acquisition. Data were acquired on a GE MR750 3 T Scanner
using a 32-channel receive-only head coil (GE Healthcare). Each imaging
session first involved acquiring a whole-brain anatomical MPRAGE scan
with 1 mm isotropic resolution. The resting-state fMRI scan was 10 min

long and involved acquisition of multiecho time-course EPI using the
following parameters: 240 cm field of view; 64 � 64 resolution yielding
3.75 isotropic voxels; in-plane SENSE (sensitivity encoding) acceleration
factor, 2; flip angle, 77°; repetition time (TR), 2.0 s; and echo times (TEs),
12.8, 28, and 43 ms. The ME-fMRI sequence was implemented using
vendor EPI excitation and a modified EPI readout, and used on-line
reconstruction (Poser et al., 2006). Each TR corresponded with the ac-
quisition of three volumes having TE values of 15, 35, and 58 ms.

Anatomical and functional imaging processing. Anatomical images were
first processed using the FreeSurfer pipeline for skull stripping, segmen-
tation, and cortical surface mesh construction. Separately, functional
images were processed using the ME-ICA pipeline as implemented in the
AFNI meica.py toolbox. This toolbox implements preprocessing, de-
composition, and denoising steps for multiecho EPI data, which are
detailed in the study by Kundu et al. (2015). Briefly, multiecho EPI time
series datasets of each TE were aligned for slice-timing offsets, all volumes
were aligned with rigid-body motion correction to the volume of the first
TR, and functional images were skull stripped. These processed func-
tional images were used to compute T2* and S0 maps by fitting signal
means of different TEs for each voxel to a monoexponential decay model.
Using meica.py, parameters of affine coregistration between (skull-
stripped) anatomical and functional images were estimated, using the
thresholded T2* map as a weight volume (Kundu et al., 2015). Anatomical
images were nonlinearly warped to MNI standard space using the AFNI
3dQwarp technique (Cox, 2012), then a single warp combining deobliquing,
motion correction, anatomical–functional coregistration, and nonlinear
warp to MNI space was applied to each echo dataset separately. This proce-
dure produced the preprocessed datasets for input into decomposition and
denoising analyses.

Statistical analysis
BOLD components. After preprocessing, the next stage of ME-ICA was to
extract BOLD components. The processing steps of the ME-ICA pipeline
are summarized here and have been detailed in prior publications (Kundu et
al., 2015, 2017). The first step of ME-ICA was to compute a weighted
average of the separate echo time series into a single optimized time series
dataset. The weighting function was evaluated at each voxel, factoring in
TE and voxel-specific estimates of T2* (Posse et al., 1999). The second step
was to estimate the total number of components and to remove Gaussian
distributed components from the data. This step is standard for all ap-
plications of ICA to fMRI data, and is usually performed using a variant
of principal components analysis (PCA). The ME-ICA pipeline performs
this step using ME-PCA (Kundu et al., 2013). The third step was to
conduct the ICA on the resulting data and elucidate functional BOLD
and artifact components (Kundu et al., 2012). Finally, the ICA compo-
nents were organized into BOLD and non-BOLD categories using met-
rics of TE dependence and TE independence. Strong BOLD weighting of
a component was expressed in high values of the pseudo-F statistic �, and
strong non-BOLD (artifact) weighting was expressed in high values of
the pseudo-F statistic �. Functional BOLD components were interpreted
as those with high � values and low � values (Kundu et al., 2012, 2017).
All remaining components are considered to be non-BOLD compo-
nents. This component classification is also used to denoise fMRI time
series. The non-BOLD components are projected out of the time series
data, based on multiple least-squares fit of the entire mixing matrix.
Maps of the signal-to-noise ratio (SNR) of these time series data were
computed for each subject by dividing the voxel means by the standard
deviation (SD).

Global age-related variation of BOLD components. The total number of
BOLD components per subject was compared against subject age. The
resting-state fMRI dataset from each subject produced one such mea-
sure. Based on prior reports of structural brain changes with age (Giedd
et al., 1999; Paus et al., 2001), the relationship between component
number and age was computed using linear, quadratic, exponential,
and power law functions.

The validity of values of BOLD dimensionality derived from ME-ICA
was further evaluated. First, BOLD dimensionality values were correlated
against values of framewise displacement derived from rigid-body head
motion parameters. This was done to determine whether BOLD dimen-
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sionality was significantly influenced by head motion. Second, BOLD
and non-BOLD dimensionality values (determined simultaneously in
ME-ICA) were correlated against each other. This was done to assess
whether greater non-BOLD (i.e., artifact) signal variance predeter-
mined the number of BOLD components. Last, ME-ICA-denoised
BOLD time series were analyzed with probabilistic PCA (PPCA) from the
FSL program MELODIC. This give an independent estimate of dimensionality
for comparison with ME-ICA estimates of BOLD dimensionality.

We sought further to establish BOLD dimensionality as a metric of
integration of functional brain activity, via comparison to corresponding
graph theoretic measures based on functional connectomes. First, for
each subject, functional connectomes were constructed. Each subject’s
Deskian-Killany FreeSurfer brain parcellation was coregistered to their
preprocessed ME-ICA-derived BOLD functional time series. Parcel av-
erage time series were then computed, and used to compute a matrix of
Pearson correlations. These matrices were then thresholded. Several
thresholds were sampled: r � 0.3– 0.9, in �r � 0.1 increments. Negative
correlations were removed, so only positive correlations were consid-
ered. Thresholded time series correlation matrices were then Fisher R–Z
transformed to create functional connectomes. Graph theoretic analysis
of connectomes was performed using the Brain Connectivity Toolbox,
implemented in MATLAB (Rubinov and Sporns, 2010). For each subject
connectome (weighted, undirected), Louvain community detection was
applied. Per-node participation coefficient values were then computed
based on those communities. The mean participation coefficient was
used as a per-subject measure of functional connectomic integration.
These per-subject values of mean participation coefficient were then
compared against BOLD dimensionality using Pearson (parametric) and
Spearman (nonparametric) correlations. This procedure was repeated
for each sampled threshold on time series correlation to check for robust-
ness of the comparison.

Regional age-related variation of BOLD components. The BOLD com-
ponents identified using ME-ICA were used to delineate functional re-
gions. A region was defined as a set of contiguous voxels with a common
set of overlapping BOLD components. The effect of a component on a
region was determined by the significance of BOLD TE dependence
across the contiguous voxels in the component map. Component maps
were rendered using the F-R2* statistic (Kundu et al., 2012). This statistic
indicates the level of TE dependence [i.e., the susceptibility-weighted
transverse relaxation rate (R2*), the inverse of T2*]. F-R2* is computed
voxelwise and follows a standard F(1,2) distribution. BOLD components
(i.e., functional networks) were each rendered in F-R2* units, thresholded
( p � 0.01, uncorrected, as per prior work on statistical significance for
TE dependence maps, Kundu et al., 2012), and binarized. Binary maps of
all BOLD components were summed, producing a map of the number of
components with significant weight at each voxel, in effect serving as a
map of component overlap. Next, the relationship of how the number of
overlapping BOLD components changed with age was mapped. A func-
tional brain map showing the number of overlapping BOLD components
per voxel was rendered for each subject, called a T2* component overlap
map (T2*-COLAP). This map was normalized to standard cortical surface
space using FreeSurfer cortical surface meshes and AFNI SUMA tools
(Argall et al., 2006; Fischl, 2012), with subcortical regions from nonlinear
warps merged to create a whole-brain standard space map.

Across subjects, for each voxel in the T2*-COLAP maps in standard
space, we computed a nonparametric Spearman correlation of the num-
ber of overlapping BOLD components versus subject age. This produced
a new map reflecting Spearman correlation values, which was thresh-
olded to Spearman’s � for p � 0.01 significance, as shown in Figure 4B.
The resulting parametric map was then cluster corrected, based on Monte
Carlo � probability simulations, to � � 0.05. First, the smoothness of pre-
processed multiecho functional data was estimated in terms of spatial auto-
correlation using AFNI 3dFWHMx (with the �ACF option). Then, the
cluster probability table for nearest-neighbor clustering (considering both
positive and negative values) was calculated using 3dClustSim (Cox et al.,
2017). Finally, spatial clustering was applied using AFNI 3dmerge. For the
target cluster probabilities, a cluster extent of 38 voxels was required.

A separate spatial-clustering strategy for regional BOLD dimensional-
ity correlation maps, called density-based spatial clustering of applica-

tions with noise (DBSCAN; Ester et al., 1996), was also evaluated. This
technique, a standard multivariate clustering technique, can determinis-
tically cluster arbitrary feature spaces. Here we used DBSCAN on a fea-
ture space including both spatial coordinates (i.e., spatial clustering) as
well as a data variate of the Spearman correlation values, as described
above. DBSCAN formally distinguishes clusters and noise, defining clus-
ters on density and noise in terms of being outside of “density reachabil-
ity.” Practically, this application of DBSCAN is well suited to spatially
clustering a densely populated statistical parametric map while rejecting
voxels with neither high value nor contiguity with larger clusters. In such
cases, otherwise distinct clusters tend to have some touching voxels,
yielding apparent contiguity and thus very large clusters. Instead of ap-
plying an arbitrary refinement scheme like erosion and dilation after
spatial clustering, we chose DBSCAN as an optimization-based cluster-
ing technique to solve the spatial contiguity problem. The Python scikit-
learn implementation of DBSCAN was used. A parameter search for the
single DBSCAN parameter � was conducted, based on a minimum clus-
ter size of 40 to find the solution that yielded the maximum number of
clusters. Each surviving cluster was then treated as a separate mask. For each
subject map, component overlap values were averaged within each mask,
and values were correlated against age for each mask region. The relation-
ships between average regional BOLD component overlap and subject age
was assessed for linear, exponential, and power law relationships.

Cross-validation of age as predicted by regional BOLD component over-
lap. The extent to which patterns of regional BOLD component overlap
were predictive of age was assessed using support vector machine
(Scholkopf et al., 1997), cross-validation, and permutation testing, im-
plemented in Python software (Pedregosa et al., 2011). The BOLD com-
ponent overlap values from all voxels of T2*-COLAP maps across subjects
were used as features for age prediction. Prediction was made using the
support vector regression (SVR) framework, training on values of age.
We confirmed that raw BOLD component counts gave inferior predic-
tion compared with log-linearized counts, so the latter is shown in the
results. The accuracy of the age prediction from BOLD component over-
lap was determined using leave-one-out (LOO) cross-validation. The
mean and standard deviation of the prediction error were computed. The
significance of classification was determined by permutation testing. Us-
ing 1000 randomly permutated assignments of ages to datasets, the SVR
was trained and tested in LOO cross-validation, with median absolute error
as the loss function. In effect, the significance of association between “true”
age and BOLD dimensionality was established by comparison to chance
association between an “age-like” variate and dimensionality values, and was
expressed in a significance (p) value.

Seed-based functional connectivity of regions with age-related change in
BOLD components. Functional connectivity analysis was conducted
based on time series extracted from those brain regions that showed a
significant change in BOLD component overlap with age. For each sub-
ject, voxel time series within each respective cluster mask were averaged.
The Pearson correlation between these time series was computed, and
was scaled to correct for the effective degrees of freedom for correlation
(i.e., the number of BOLD independent components comprising the
denoised time series) according to the following (Kundu et al., 2013):

Z � arctanh � sqrt(N � 3). (1)

For each region, the Fisher Z map of functional connectivity for each
subject was input to a one-sample t test group analysis, producing a
group map of functional connectivity for that region. Each such group
map was thresholded with cluster correction for multiple comparisons
based on � probability simulation (as described above) to � � 0.01 (Cox
et al., 2017). Then, the overlap of each thresholded group-level regional
connectivity map was computed as a count of voxels. These corrected
maps were used to determine which regions had seed-connectivity maps
that overlapped with seed-connectivity maps of the other regions, which
was represented in a graph.

Covariation of functional connectivity with age. We tested the relation-
ship between regional changes in component overlap versus functional
connectivity and its change with age. The clusters of the map of Spear-
man correlation between T2*-COLAP maps and subject age were used to

Kundu et al. • Integration of Functional Brain Activity with Age J. Neurosci., April 4, 2018 • 38(14):3559 –3570 • 3561



identify centroids to use as seed voxels for functional connectivity anal-
ysis. The Pearson correlations of each such time course against the time
courses of all other voxels within the brain mask were computed, yielding
whole-brain connectivity maps. Time series correlation values were nor-
malized using the Fisher R–Z transform. The standard error (SE) term
that accounted for the variability across datasets in terms of the total
number of BOLD components (Eq. 1) was included, because false-
positive error may be introduced when this factor is not accounted for
(Kundu et al., 2013). Group analyses of these connectivity maps were
then performed using mass-univariate Pearson correlation analysis of
connectivity versus age, voxelwise. For each seed, the number of voxels
with significant ( p � 0.01) group-level correlation of connectivity with
age was counted, separately for positive and negative values. A two-
sample paired t test was then used to compare the number of positively
versus negatively age-correlated voxels, to determine whether there was a
net increase or decrease of functional connectivity with age across regions
that showed decreasing regional BOLD dimensionality.

Results
ME-ICA of resting-state fMRI across adolescent and
adult data
The separation of ME-ICA components into BOLD and non-
BOLD categories was conducted successfully for each subject. �

and � metrics for datasets of a representative subsample of sub-
jects between 8.25 and 46.17 years are shown in Figure 1, A and B,
respectively. � metrics are plotted in Scree plots in descending
order, juxtaposed with corresponding � values (i.e., in the order
of � values). Together, a change is apparent from high-�/low-�
components to low-�/high-� components. These two catego-
ries represent the two distinct BOLD and non-BOLD sets of
components, from which respective total component num-
bers were determined. Figure 1 shows for, an adolescent and
an adult subject, maps of the “projections” of all components
into a single map, in terms of the most statistically significant
clusters (Fig. 1C,D). On visual inspection of these maps, the
adolescent subject dataset shows a wider coverage of gray mat-
ter by nodes of detected functional networks, including in
subcortex and cerebellum.

Global BOLD component number decreases with age
Global BOLD component numbers decreased with age in all
tested relations, as follows: power law, exponential, and linear
(R 2 � 0.32, 0.33, 0.28, respectively). Agreement with all three
relations is consistent in the present case as they were all mono-

Figure 1. A, B, � and � values (i.e., pseudo-F statistics) for component-level TE dependence and TE independence of ME-ICAs for youngest (A) and oldest (B) subjects expressed as Scree plots, sorted by �
values. Functional network components are characterized by high�and low�values. Note the transition from the���� (BOLD) regime to the��� (non-BOLD) regime. C, D, Overlap of BOLD components
(thresholded ��0.01) from subjects of the youngest and oldest ages, respectively (8.25 and 46.17 years of age). The colored regions are derived from thresholded BOLD components. These component maps
are overlaid in order of decreasing component size (in terms of number of significant voxels). C, Overlap of 53 BOLD components. D, Overlap of 13 BOLD components.
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tonic, and the effect size was large. The maximum global BOLD
component number was seen for a 9-year-old subject, who ex-
pressed 95 BOLD networks. The minimum value was for a 42-
year-old subject, who expressed 32 BOLD networks. Figure 2
shows associations of subject age with global BOLD component
number. In addition, we confirmed that global BOLD compo-
nent number was not correlated to the level of subject head mo-
tion. The number of BOLD components was also not correlated
to the number of non-BOLD components (r � 0.04, p � 0.7). In
contrast, the level of subject head motion was correlated to the
number of non-BOLD components according to a positive linear
relationship, which is shown in Figure 3.

We compared the estimate of BOLD dimensionality from
ME-ICA to a separate estimate of dimensionality provided by
PPCA of the time series with non-BOLD signals removed. We
found a highly significant correlation between the two dimen-
sionality estimates (r � 0.97, p �� 10�7). BOLD dimensionality
from ME-ICA also correlated with graph theoretic measures of
integration derived from subject-level functional connectomes.
Across connectivity thresholds corresponding to r � 0.4 – 0.8, the

mean participation coefficient based on
thresholded, weighted, undirected func-
tional connectomes was significantly (p �
0.05) correlated with global BOLD di-
mensionality. The connectivity threshold
that led to the most significant such cor-
relation was R � 0.5, leading to correla-
tions between BOLD dimensionality
and participation coefficient of Pearson’s
r � �0.34 (p � 0.013) and Spearman’s
� � �0.38 (p � 0.0057).

Regional BOLD component count and
its reduction with age
Maps of BOLD components were gener-
ated in units of TE dependence (F-R2*;
thresholded at � � 0.01, corrected). The
mapping of the overlap of BOLD compo-
nents, the T2*-COLAP map, is shown for a
representative subject in Figure 4A. The
TE dependence maps of ICA components
on which the T2*-COLAP map is based
show spatial patterns comparable with
conventional amplitude-based maps from
spatial ICA. The components mapped with
TE dependence as found in individual
subject data included canonical resting-
state networks such as default mode, sen-
sorimotor, and frontoparietal networks
(Damoiseaux et al., 2006).

For a representative subject, Figure 4A
illustrates the result of thresholding, bi-
narizing, and summing over BOLD
component maps to produce a compo-
nent overlap map. The overlap map con-
veys the number of BOLD components
with a significant linear TE dependence at
each voxel. For example, high component
overlap is observed for regions associated
with the default-mode network, and low
component overlap is observed in regions
such as the motor cortex.

TE dependence maps and their overlap showed two additional
aspects of component maps of functional networks. One is that
functional networks, rendered in units of TE dependence, are typi-
cally inclusive of widespread brain regions. This is attributed to low-
amplitude contributions of components being detected in TE
dependence maps that may not have been detected in maps in mag-
nitude units thresholded according to Z-scores. Second is the indi-
cation that TE dependence maps of networks can be more
comprehensive than magnitude-based maps on the basis of greater
overlap across components, which is not seen in the case of
magnitude-based maps.

Regional BOLD component reduction with age
The relationship between the number of overlapping BOLD com-
ponents and subject age at group level was mapped for each voxel
using a Spearman correlation. After voxel and cluster thresholds
were applied to this correlation map (see Materials and Methods), a
distinct set of clusters was found. These clusters indicated an
age-related decrease in BOLD component count in gray matter
regions. The cluster averages of regional BOLD component over-

Figure 2. A, Scatterplot of global BOLD component numbers across subjects. Power law fit (blue) is shown for the scaling of
component number versus subject age. Significant linear (L) and power law (PL) trends were found (L: R 2 � 0.29, p � 0.001; PL:
R 2 � 0.30, p � 0.001). B, Scatterplot of global BOLD component number versus corresponding subject values of mean partici-
pation coefficient, based on functional connectomes of the Deskian–Killany parcellation and Louvain community detection.
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lap versus age showed highly significant decreases of BOLD com-
ponent count with age across regions (Fig. 4B). Thus, at both
voxel and cluster levels, age-related decreases in component
count were observed. Importantly, the reduction of component
count was not homogeneous across the brain. Figure 4B maps
specific regions that showed this reduction, averaged over the
voxels of the region, as follows: prefrontal cortex (i.e., bilateral dor-
solateral prefrontal cortex, medial prefrontal cortex, frontopolar
cortex), bilateral superior parietal cortex (i.e., sensory cortex, precu-
neus), and bilateral cerebellar hemispheres spanning Crus VI-VIIab.
Regions that did not show age-related change in BOLD component
overlap included premotor and primary motor cortices, the tempo-
ral lobes, insula, thalamus, and inferior frontal cortex.

Linear, exponential, and power law models were used to charac-
terize regional age-related reduction of BOLD component overlap
with age. The power law model gave the most statistically significant
fit (r � �0.54, p �� 0.001). The finding of regional reduction in
BOLD component overlap was consistent with the global reduction
of BOLD component number, but with even greater statistical sig-
nificance at the regional level than the global level.

Cross-validation of subject age as predicted by regional
variation of BOLD component overlap
Regional values of BOLD component overlap were used to predict
subject age using a SVR and cross-validation strategy (Fig. 5). This

approach predicted age with an average error of 6.5 � 0.6 years, with
error based on leave-one-out cross-validation. The significance of
the classification, based on cross-validation involving 1000 permu-
tations of age values, was p � 0.009. These results suggest that re-
gional BOLD component overlap is a significant predictor of subject
age on the order of years.

Seed-based functional connectivity between regional changes
in BOLD component overlap
Seed-based connectivity was computed between functional re-
gions that showed age-related changes in the number of overlap-
ping BOLD components. Seed-based connectivity was computed
using the complete Fisher transformation including degrees of
freedom in terms of the global BOLD component number, a subject-
level variable. The group-level connectivity between these regions
was represented in a circular network diagram (Fig. 6). Each region
of this network showed connectivity to at least one of the other
regions with age-related change in component overlap. Bilateral cer-
ebellum and right precuneus were most connected to the other re-
gions (i.e., these were the highest degree nodes).

Correlation of seed connectivity with age after controlling for
total BOLD components
We found that the regions with decreasing regional BOLD dimen-
sionality with age had increasing functional connectivity with age.

Figure 3. Scatterplots of non-BOLD component number across subjects showing significant linear (L) or power law (PL) fits. A, Total BOLD component number versus total non-BOLD component
number, no significant relation (r�0.05, p�0.7). B, Global BOLD component number versus subject motion, no significant fits (L: R 2 �0.02, p�0.26; PL: R 2 �0.02, p�0.24). C, Subject motion
versus age, no significant relation (L: R 2 � 0.02, p � 0.31; PL: R 2 � 0.01, p � 0.58). D, Global non-BOLD dimensionality versus subject motion, significant linear relationship (L: R 2 � 0.30, p �
0.001; PL: R 2 � 0.30, p � 0.001).
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Across these regions, we found that the number of voxels with
significant trends of increasing functional connectivity with age
were significantly greater (p � 0.0004) than voxels with decreas-
ing trends of connectivity with age (Fig. 7A). The two-sample t
test design of this analysis was robust to false-positive error. The
right cerebellum showed particularly high change of functional
connectivity with age. The analysis of seed-based functional con-
nectivity of the cerebellum versus subject age is shown in Figure 7,
B and C. Age-related connectivity was seen from the cerebellum to
a bilateral frontoparietal network, caudate head, and medial thala-
mus (Fig. 7B). Age-related connectivity increases were greater in the
right hemisphere. Cluster averages of the values of connectivity
across subjects versus subject age are shown in Figure 7C. Except for
the right parietal lobe, which showed decreasing connectivity with
age, all plots showed significant age-related increases in connectivity
with age, even after controlling for global age-related change in
BOLD component number.

Discussion
In this study, we showed that age modulates the number of com-
ponents of functional brain activity in the resting state. This
association suggests increasing age-related integration of func-
tional brain networks, the first such demonstration in resting-
state fMRI data. The number of BOLD components varies with
age parametrically, as a power law. This pattern is highly robust.
It is expressed with high statistical significance at the global

whole-brain level, and with even greater significance locally, in
individual brain regions, expressed as a change in the number of
overlapping BOLD components as a function of age. The effect is
not expressed across all brain regions homogeneously. Frontopa-
rietal and sensory association cortices show the regionally specific
effect, while other regions do not. The ME-fMRI approach allowed
us to take a data-driven approach to finding those brain regions that
showed age-related changes. The estimation of seed-based connec-
tivity among these regions, after controlling for the effect of the
number of BOLD components, showed that these regions form a
functional network with each other. Among regions with age-related
change in BOLD component overlap, the cerebellum was found to
be the most highly connected to the others, as well as to have the
greatest change in connectivity with age.

The pattern of change in component number versus age is con-
sistent with expectations based on age-related structural brain
change. Brain development is a complex process that continues into
early adulthood. After a fourfold increase in brain volume from birth
to about 5 years of age, gross brain morphology stabilizes, with only
an 	10% increase in total volume up to adulthood. In adulthood,
up to the third decade of life, microstructural change is the main
mechanism of brain development (Raz, 2004; Lebel et al., 2008).
Microstructural changes include increasing myelination of white
matter and synaptic pruning. The inter-relationship of brain
structure and function leads to an expectation that the functional

Figure 4. Assessment of regional BOLD component overlap versus subject age. A, Procedure: thresholded ( p � 0.01, uncorrected) F-maps indicating component voxels with significant TE
dependence are warped into standard (MNI) space via normalized cortical surface mesh and nonlinear volumetric warp (see Materials and Methods), then are binarized and summed to produce an
overlap map for component-level TE dependence indicating regional BOLD dimensionality. These were termed T2*-COLAP maps. B, Voxels (grouped into clusters post hoc) showing significant
Spearman correlation of component overlap with subject age. Clusters represent significance with correction for multiple comparisons (� � 0.01), rendered with a high-contrast color map.
C, Scatterplots representing cluster averages for regional BOLD component overlap plotted against subject age. A high magnitude of power law behavior is apparent (note that the initial voxelwise
correlation was nonparametric), which varies in parameters depending on brain region. BA, Brodmann’s area; Cereb., cerebellum; L., left; R., right; PreSMA, pre-supplementary motor area; Ling.,
lingual gyrus; PCC, posterior cingulate cortex; MFg, middle frontal gyrus; PoCg., posterior cingulate gyrus; STg, superior temporal gyrus; IFg, inferior frontal gyrus; Pcn, precuneus; PoPut, posterior
putamen; SPl, superior parietal lobule; IPl, inferior parietal lobule; MeFg, medial frontal gyrus; MOg, middle occipital gyrus; aIns, anterior insula.
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organization of the brain would also
change substantially due to brain develop-
ment. In this study, we show evidence of
such change in terms of functional orga-
nization as well as a key statistical charac-
teristic of functional organization called
BOLD dimensionality, or component
count. Recent work has already shown
that network segregation is one of the
most robust and reproducible findings in
developmental network neuroscience
(Fair et al., 2007; Supekar et al., 2009;
Dosenbach et al., 2010; Baum et al., 2017).
Studies have consistently shown that
short-distance connectivity decreases while
long-distance connectivity increases with
subject age. This pattern in fact concurs
with the decrease in BOLD dimensional-
ity with age, as more regionally specific
networks that dominate at younger ages
integrate into anatomically distributed
and functionally distinct networks over
neurodevelopment. The present work spe-
cially demonstrates that this pattern of the
integration in the developing connectome
also manifests with a change in the global
and regional statistical characteristics of
BOLD signal itself.

Virtually all fMRI studies on func-
tional connectivity to date are based on
the assumption that the number of signal components in resting-
state data is a random effect (van den Heuvel and Hulshoff Pol,
2010). This is evidenced by the current standard of estimating
connectivity based on a version of the Fisher transform that drops
its SE term. This term would normally be used to control for
dataset-level variability in the number of components in the time
series data overall. In a prior study, we showed that this assump-
tion is not valid from a methodological standpoint. Specifically,
head motion reduces the number of BOLD components by re-
ducing acquisition sensitivity (Kundu et al., 2013). Here we pro-
vide the first evidence that the assumption is also invalid on a
neurobiological basis because the number of signal components
varies systematically with age.

It is a basic principle for how correlation is interpreted, from
the canonical form of the Fisher R-Z transform, that an accurate
estimate of the statistical significance of correlation depends on a
proper factoring of the number of independent components in
the data. Given the magnitude of the effect of age-related change
in the number of BOLD independent components, up to a factor
of three between adolescence and middle age, the consideration
of BOLD component counts may be important for interpreting
correlation-based connectivity estimates along the lifespan and
in comparisons involving disease. The ongoing European Autism
Interventions-Multicenter Study (EU-AIMS) study is acquiring multi-
echo resting-state fMRI in healthy individuals and patients with
autism across the age range, and that study will permit further
assessment of this effect in health and disease (Murphy and Spoo-
ren, 2012).

The present analysis incorporated subject age as a correlate of
BOLD component number, which in turn led to the identifica-
tion of brain regions with similar trajectories of functional
change with age. These regions included dorsolateral and dorso-
medial prefrontal cortex. The developmental sensitivity of these

regions found here is consistent with existing findings of their
prolonged developmental trajectory. The dorsal prefrontal cortex
mediates the most complex, higher-level aspects of cognition
(Petrides, 2000; Koechlin et al., 2003; Koechlin, 2011; Passingham and
Wise, 2012). Activity within the dorsolateral prefrontal cortex re-
lates mostly to monitoring and sequencing information in work-
ing memory (Petrides, 1995, 2005; Owen et al., 1998; Amiez and
Petrides, 2007). It also relates to the hierarchical organization and
sequencing of other cognitive operations and to performance
monitoring (Duncan and Owen, 2000; Koechlin et al., 2003;
Duncan, 2010). Activity in the dorsomedial prefrontal cortex is
associated with social cognition both when making judgments
about others’ mental state or intentions (Amodio and Frith, 2006;
Lieberman, 2007; Behrens et al., 2008; Krienen et al., 2010) and
while reflecting on one’s own self, beliefs, intentions, and actions
(Amodio and Frith, 2006; Brass and Haggard, 2007; Desmet et al.,
2011). Importantly, these functions are considered to reach
maturity only in adulthood. This study also brings into focus
age-related changes in the precuneus, which only recently has
become prominent in the study of brain development (Dosen-
bach et al., 2010). The precuneus is a central node of the
default-mode network, which is involved in self-referential
processing. However, further work is needed to examine the
behavioral significance of age-related regional variability in
BOLD components.

The results also highlight a potentially critical role of the cer-
ebellum in age-related brain connectivity. The high signal-to-
noise ratio (SNR) of the cerebellum after ME-ICA denoising
enabled the detection of substantial age-related changes in BOLD
dimensionality and functional connectivity in this region. His-
torically, the cerebellum has been viewed mostly as a motor con-
trol region, but more recently there is increased recognition of its
role in the regulation of autonomic function and cognition (Reis

Figure 5. Predicted versus actual age from training on regional BOLD component overlap in LOO cross-validation with support
vector regression. The mean error in estimates of age is 6.5 � 0.6 years. The significance of classification based on permutation
testing (1000 permutations) is p � 0.009.
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and Golanov, 1997; Parsons et al., 2000; Craig, 2002; Singer et al.,
2004) and in affective processing (Schmahmann and Caplan,
2006). Cerebellar lesions give rise to a constellation of cognitive
and affective abnormalities (i.e., the cerebellar cognitive affective
syndrome; Schmahmann and Sherman, 1998). From a develop-
mental standpoint, the cerebellum is reported to have low heri-
tability in morphology, indicating a greater role of environment
in its neurodevelopment (Gilmore et al., 2010). Functional neu-
roimaging studies report that regions of the cerebellar cortex

most responsive to cognitive demands—namely lobules VI and
VII (Stoodley and Schmahmann, 2009; Stoodley et al., 2012)—
interact closely with prefrontal and parietal association cortices
(Habas et al., 2009; Buckner, 2013). These prior findings agree
with the present results that show augmentation in the functional
relationship between prefrontal regions and the cerebellum during
brain maturation between adolescence and middle adulthood, sug-
gesting the need for further study for this critical brain region (Raz et
al., 1992).

Figure 6. Circle plot representing the graph of average inter-regional connectivity between regions with decreasing BOLD component overlap versus subject age. Each edge that is shown
represents positive connectivity of a seed and target region, such that connectivity is detected in the target region with cluster-level significance of � � 0.01. Self-connections are not shown. The
degree of connectivity of each region is shown, with dark coloration representing a relatively low degree of connectivity, and bright red coloration representing a high degree of connectivity. A high
degree of connectivity is observed of left and right cerebellar nodes as well as right precuneus. Inf, inferior; Sup, superior; Mid, middle; Gyr, gyrus; Ant, anterior; Med, medial; Lob, lobule; fi (e.g. f2,
f3), focus i; Cb, cerebellar lobule; PFop, PFcm, PGa are cytoarchitectonic regions as defined in von Economo and Koskinas, 1926.
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Figure 7. A, Bar charts comparing number of voxels with positive versus negative trends ( p � 0.05) of change in seed-based functional connectivity with age, with seeds being those
regions with changing BOLD component overlap with age. B, Group-level seed-based functional connectivity map of left cerebellum (Lobule VII-Crus II), using central voxel of cerebellar
cluster as seed and one-sample t test, thresholded � � 0.01 (cluster corrected). Blue colors indicate mean negative functional connectivity. C, For left cerebellum seed connectivity,
scatterplots showing mean connectivity per subject versus subject age, within clusters (� � 0.01) showing age-correlated connectivity change. Linear fits are overlaid, with significance
of the Pearson correlation in the legend.
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The limitations of the present study include a relatively small
sample size compared with recent large-scale or multisite neuro-
developmental studies. Larger studies, especially those using ME-
fMRI, will be better suited to evaluate the relationship of BOLD
component number and gender and cognitive variables, after
factoring out the apparently large effect from subject age. To
better understand the underlying neurobiological processes in-
volved in the global and regional changes in BOLD component
number, imaging of brain microstructure may be necessary. This
would involve the additional acquisition of diffusion weighted
imaging that is sensitive to processes like myelination or synaptic
pruning, such as neurite orientation dispersion and distribution im-
aging (Zhang et al., 2012). To elucidate whether functional and
microstructural changes also correlate to changes in brain metab-
olites, magnetic resonance spectroscopy (MRS) will be needed,
possibly with a focus on regions that show change in BOLD com-
ponent number. Also important is the consideration of how
changes in BOLD component number relate to age-related
changes in variability in regional activation during a task, which
has already been associated with subject age (Garrett et al., 2011).
Quantitative measurements of cerebral blood flow and metabo-
lism alongside ME-ICA may also be informative as to how age-
related hemodynamics may relate to BOLD component number.
This is possible given a recent MRI sequence that acquires mul-
tiecho multiband EPI with simultaneous arterial spin labeling,
and has been shown to be compatible with ME-ICA (Cohen et al.,
2017). Altogether, future studies could use advanced MRI se-
quences in imaging larger cohorts with in-depth behavioral data
to better characterize the neurobiological changes that age-
related change in BOLD component number reflects.
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