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Human V4 Activity Patterns Predict Behavioral Performance
in Imagery of Object Color
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Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most
neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated
how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and
female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked
them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color
categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed pre-
dicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4
was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural repre-
sentations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a
perceptual hub linking externally triggered color vision with color in self-generated object imagery.
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Introduction
Our ability to perceive the large variability in reflective properties
of objects surrounding us is central to object recognition, scene
segmentation and foraging (Mollon, 1989; Gegenfurtner and

Rieger, 2000; Dominy and Lucas, 2001). Not only can we perceive
color effortlessly and automatically under most normal viewing
conditions (Shevell and Kingdom, 2008; Brainard and Maloney,
2011; Foster, 2011), but also our memories, dreams, and thoughts
can feature color just as naturally. Although much of visual cortex
responds to chromatic input (Seidemann et al., 1999; Wandell et al.,
1999; Liu and Wandell, 2005), the contributions of different neural
representations to color perception is not clear (Conway, 2014;
Zeki, 2015).

The brain shows some specialization for color as in the cyto-
chrome oxidase-rich neural tissue in V1 (Livingstone and Hubel,
1984, 1988; Song et al., 2011) and V2 (Xiao et al., 2003; Sincich
and Horton, 2005; Wang et al., 2007; Nasr et al., 2016), and V4’s
“glob cells” (Conway et al., 2007; Conway and Tsao, 2009; Tani-
gawa et al., 2010). Color processing extends to more anterior
ventral regions (Brewer et al., 2005), including temporal cortex
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Significance Statement

Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example
when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally gener-
ated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color
stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of
corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral per-
formance in an imagery task, suggesting it forms a perceptual hub for color perception.
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(Lafer-Sousa and Conway, 2013; Lafer-Sousa et al., 2016), and
also parietal cortex (Zeki and Stutters, 2013).

Several approaches aimed to isolate those aspects of sensory-
driven neural activity that are related to perception. One involves
identifying neural signals related to perceptual color constancy in
varying physical illumination conditions. Corresponding illumi-
nation-induced shifts in neuronal tuning profiles have been found
in V1 (MacEvoy and Paradiso, 2001; Wachtler et al., 2003) and in
V4 (Zeki, 1980, 1983; Kusunoki et al., 2006), whereas double-
opponent tuning is thought to occur as early as V1 (Livingstone
and Hubel, 1984; Johnson et al., 2001; Conway et al., 2002). In the
human brain, engagement of color constancy was associated with
increased activity in V1, V4, and in regions anterior to them
(Bartels and Zeki, 2000; Barbur and Spang, 2008). For V1 as well
as for V4�, this activity has been shown to represent surface color
regardless of illumination (Bannert and Bartels, 2017).

Another line of research related perceptual hue similarity to
neural similarity measures. Although performing hue judgments
involves V1 and V4 (Beauchamp et al., 1999), V4 activity re-
flected the similarity structure between hues and task-induced
distortions of the perceptual hue plane (Brouwer and Heeger,
2009, 2013), even though selectivity for a range of perceptually
relevant hues was found in all human visual areas from V1 to V4
(Goddard et al., 2010; Kuriki et al., 2015).

However, despite the wide use of decoding methods in color
vision research (Brouwer and Heeger, 2009; Parkes et al., 2009;
Seymour et al., 2009) and the interest in other forms of nonretinal
color experience (Nunn et al., 2002; Hubbard et al., 2005; Gould
van Praag et al., 2016), including imagery (Howard et al., 1998;
Rich et al., 2006), no study has applied them to isolate neural activ-
ity that can be associated exclusively with perceptual content.

In this study we evoked converging subjective color percepts,
one driven by physically presented color stimuli, the other by
internally generated color imagery (Chang et al., 2013; Wantz et
al., 2015). This allowed us to identify neural sites with converging
color information that represent subjective color perception
regardless of its origin. We implemented this approach by re-
cording fMRI activity in two types of runs. In one run type, par-
ticipants viewed abstract color stimuli that did not convey object
information. In the other type, participants visually imagined
objects, each of which was associated to a particular color. We
then trained classifiers to discriminate between BOLD activity
patterns elicited by veridical chromatic stimulation and tested
them in predicting the color of the imagined objects. In addition,
we related the trial-to-trial performance of classification to behav-
ioral performance in a 1-back color judgment task. Our results
identify color representations in hV4 as being shared between
stimulus-driven and internally generated color vision and relate
hV4 activity to behavioral performance in color imagery.

Materials and Methods
Participants
Nineteen volunteers participated in the experiment. They provided writ-
ten informed consent before the first experimental session. One partici-
pant failed to complete the experiment. We thus analyzed data from the
remaining volunteers (N � 18, 3 males, 15 females, age between 22–35
years, mean � 25.8 years). All participants had normal color vision as
measured with Ishihara plates (Ishihara, 2011).

Stimuli
Objects of different colors and shapes as imagery templates
In the beginning of the experiment participants were familiarized with
the images of the nine objects used in the imagery condition (Fig. 1). Each
belonged to one of three color categories (red, green, and yellow). Each

object also belonged to one of three shape categories, such that each color
could be presented in the form of three different shapes, or each shape
could be presented in three different colors, leading to a 3 � 3 design.
Shapes were elongated, round, or pile-shaped (Fig. 1). Furthermore all
objects belonged to the same superordinate level category (“food”) to
minimize semantic confounds.

These objects were not shown during fMRI, where they were merely
cued using words. The cue words in the imagery phase were presented in
black letters in the center of a gray (154.1 cd/m 2) screen, at a text size of
0.77° of visual angle. Cue words were presented in German or English,
depending on the participant’s preference. All stimuli were presented
with Psychtoolbox-3 (Kleiner et al., 2007).

Physical abstract color stimuli
In our “real-color runs” we presented abstract color stimuli of three
different colors (red, green, and yellow) that would allow us to train
classifiers on brain patterns evoked by different visually presented colors.
The colors were presented in the form of concentric expanding rings that
had mean chromaticities of x � 0.39, y � 0.35 in the red; x � 0.34, y �
0.41 in the green; and x � 0.41, y � 0.43 in the yellow conditions,
respectively. The colored rings were shown at high and low psychophys-
ically matched intensities (see below) on a gray background of medium
luminance (154.1 cd/m 2) to obtain luminance invariant color decoders.

Luminance values were determined for each color using the minimal
flicker procedure (Kaiser, 1991) that required participants to adjust
the luminance of a color stimulus presented against achromatic back-
grounds at the high and low intensities (184.9 cd/m 2 and 151.3 cd/m 2,
respectively) until the amount of perceived flicker was minimal. The
color stimulus used for the minimal flicker method was a vertical rectan-
gle presented in the display center and covering 3.28° vertically and 2.46°
of visual angle horizontally. It was presented every second frame against
the gray background while, in every other frame, the gray background
was shown alone. The background intensity was either “high” or “low”
(see above) to create luminance-matched color stimuli at both lumi-
nance levels. While lying in the scanner, participants adjusted the lumi-
nance of the color stimuli by button press in steps of 11.5 cd/m 2 and
confirmed their adjustments by pressing another button. The six stimuli
(3 hues, high- and low-intensity) were presented in random order. Mean
luminance (SD in parentheses) for red, green, and yellow were 200.0
(9.1) cd/m 2, 189.6 (8.4) cd/m 2, and 179.0 (9.2) cd/m 2 for low-intensity
stimuli and 244.2 (19.3) cd/m 2, 242.9 (11.3) cd/m 2, and 231.9 (11.1)
cd/m 2 for high-intensity stimuli. In the main experiment, high and low

Figure 1. Stimulus material. Stimuli used in the imagery task. Each object belonged to one of
three color categories (yellow, red, green). To reduce confounds unrelated to object color,
objects were approximately matched in shape (elongated round, pile-shaped) and semantic
associations (all of them were fruits/vegetables). Before scanning and before each imagery
fMRI run, participants practiced to remember the images of the nine natural objects (see Mate-
rials and Methods). During each imagery block, they imagined one of the objects, and mentally
compared its color to that of the subsequent object once the word-cue appeared (Fig. 2).
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luminance versions of the stimuli varied within real-color runs (see
Paradigm and procedure) in a counterbalanced manner.

Note that our approach ensured that luminance across the three dif-
ferent colors were perceptually matched, and the use of two luminance
levels for each color ensured that classifiers would be luminance invari-
ant. Importantly though for our key finding, luminance was not relevant
as this concerned cross-decoding between real color and imagery.

The concentric color rings were created by displaying a colored disc
(radius: 8.61° of visual angle) that had its � (i.e., transparency) chan-
nel sinusoidally modulated as a function of eccentricity (2.16° visual
angle cycle size). The rings drifted outward at a velocity of 2.47°/s.

Experimental design
Setup
Participants viewed the stimuli while lying supine in a scanner via a
mirror fixed to the head coil. A projector (NEC PE401H) displayed the
stimuli on a screen placed at the end of the scanner tube. The display was
gamma-calibrated using a Photo Research PR-670 spectroradiometer
(CalibrateMonSpd.m function from Psychtoolbox). Display size was
21.8° by 16.2° of visual angle at a resolution of 800 � 600 pixels and a
frame rate of 60 Hz.

Paradigm and procedure
Before the start of the scan, we familiarized the participants with the
object images to ensure that they could correctly identify each object
based on the word cue. They practiced the study task described below,
which they performed later in the scanner before each imagery run.

The fMRI experiment consisted of six real-color and six imagery runs
(Fig. 2) performed in alternation. Run type (real-color or imagery) of the
first run was counterbalanced across participants. In real-color runs,
participants viewed continuously expanding ring-shaped abstract color
stimuli in blocks of 8.5 s and responded with a button press whenever the
color changed luminance for a brief period of time (0.3 s). Participants
received feedback about their task performance at the end of each run for
motivation before the next run started. A total of 216 color blocks (36 per
run) entered the analysis. Blocks of color/luminance combinations (3
colors � 2 luminances � 6 conditions) were presented in a pseudoran-
domized sequence, which ensured that each color/luminance pair was
preceded by every pair an equal number of times (Brooks, 2012). Each
real-color run started with a block that was identical to the last one of the

preceding real-color run to keep the back-matched sequence intact. This
initial block was not included in the analysis.

Before the start of each imagery run, participants performed a study
task to memorize the objects they had to visualize during the measure-
ment. This study task required participants to distinguish the correct
object from among three distractor objects of the same basic level cate-
gory. The participants had to perform this practice task until they suc-
cessfully completed one trial, in which they correctly identified each of
the nine objects, before the fMRI experiment was resumed. After initial
training outside the scanner, this study criterion was usually reached after
one or two trials.

For the imagery task, participants were instructed to imagine the ob-
jects as if they were seeing them on the screen. During imagery runs,
participants fixated on a small circle in the middle of the screen. A cue
word appeared at the beginning of each imagery block for 1.5 s indicating
which of the nine objects to mentally visualize in the subsequent imagery
block. The imagery block lasted 11.714 s after which a new cue word of
the subsequent trial appeared. Upon the appearance of a new cue word,
participants performed a 1-back color judgment task, which required
them to indicate if the object referred to by the new cue and the object
they had been imaging previously were the same color. We instructed our
participants to reply as quickly and accurately as possible. They had to
make a decision while the cue word was still on the screen. At the end of
each run they received feedback about reaction times and errors for
motivation. As in real-color runs, each of the nine object conditions was
preceded equally often by every other condition in a first-order history-
matched pseudorandomized sequence (Brooks, 2012). The first blocks in
every run were used only to keep the presentation sequence intact across
runs. In total 162 imagery blocks (27 per run) entered the analysis.

Retinotopic mapping and ROI definition
Each volunteer participated in a separate retinotopic mapping session to
identify their visual areas V1, V2, V3, hV4, VO1, LO1, and LO2. We chose
these areas because they had previously been shown to be involved in the
processing of shape and color (Brewer et al., 2005; Larsson and Heeger,
2006; Brouwer and Heeger, 2009; Seymour et al., 2010). We used stan-
dard retinotopic mapping procedures to identify reversals in the angle
map of the visual field representations that delineate the boundaries
between these areas on the cortical surface (Sereno et al., 1994; Wandell
and Winawer, 2011). Participants viewed a contrast-reversing checker-

Figure 2. Experimental design. Trial sequence in real-color and imagery runs. In real-color runs (left) participants viewed concentric rings slowly drifting outward. The rings could be one of three
colors: yellow, green, or red. Observers performed a detection task requiring them to press a button every time the luminance of the stimulus changed between high and low luminance. There could
be 0, 1, or 2 target events per stimulus presentation (8.5 s, ITI � 1.5 s). In imagery runs (right), participants saw a word cue at the beginning of the trial for 1.5 s indicating which of the nine object
images they had to imagine in the subsequent imagery phase (11.714 s). In addition to object imagery, participants had to perform a mental color comparison each time a new word cue appeared:
they had to decide whether or not the color of the object they had to imagine in this trial matched the color of the object in the previous trial, and press one of two designated buttons accordingly
(1-back same/different color judgment task).
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board through a wedge-shaped aperture. Because the visual field repre-
sentations are compressed at large eccentricities on the cortical surface
(cortical magnification), the check sizes increased logarithmically with
eccentricity. The aperture subtended the entire screen within a 90° angle
at all eccentricities from the fixation dot. The wedge rotated at a period of
55.64 s for a total of 10 cycles per run. The rotation direction alternated
between the four mapping runs.

fMRI scan details
We measured BOLD activity with a 64-channel head coil at 3T magnetic
field strength (Siemens Prisma) using 56 slices oriented axially but
slightly tilted in parallel with the AC-PC line. The sampling volume
covered almost the whole brain with a slice thickness of 2 mm and no gap
between slices. In plane resolution was 96 � 96, yielding an isotropic
voxel size of 2 mm. We used a fourfold GRAPPA accelerated parallel
imaging sequence (GRAPPA factor 2) to measure T2*-weighted func-
tional images. Repetition time (TR) and echo time (TE) were 0.87 s and
30 ms, respectively, with a flip angle of 57°. Anatomical images with an
isotropic voxel size of 1 mm were measured using a T1-weighted MP-
RAGE ADNI sequence and magnetic field inhomogeneities were mea-
sured with a gradient echo field map.

fMRI data preprocessing
The first 11 functional images recorded per run were discarded to allow
the MRI signal to reach equilibrium. Functional data were realigned to
correct for head motion and unwarped using the estimated field map,
slice time corrected, and coregistered to the anatomical image. Finally the
data were normalized to MNI space using a segmentation-based normal-
ization of the anatomical image. No smoothing was applied to the images
from the main experiment. We used SPM8 (http://www.fil.ion.ucl.ac.uk/
spm) for preprocessing. The data from the retinotopic mapping session
underwent the same preprocessing up to coregistration in SPM8. The
resulting images were then further preprocessed with FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/), which involved smoothing them with a 4
mm Gaussian kernel. Individual cortical surfaces for all participants were
obtained using FreeSurfer’s recon-all pipeline.

Statistical analysis
Aims and strategy
The aim of this study was to examine how color of imagined objects is
represented in relation to sensory-driven color. We estimated vectors of
fMRI responses using a standard GLM approach and then performed
pattern classification analyses on these data.

Our analysis strategy followed two main steps: in a first step we trained
classifiers to distinguish the three colors an observer was seeing using
only data from real-color runs (real-color-to-real-color classification).
To verify this training procedure, we used cross-validation leaving out
data from a different run in every iteration to obtain an unbiased accu-
racy estimate for the classifier. In a second step, we trained classifiers on
responses from all real-color runs but this time tested them on responses
from the imagery runs (real-color-to-imagined color classification).
Crucially, this analysis tested for commonalities between the representa-
tion of color shown as abstract color rings and the color of imagined
objects.

Furthermore, we wanted to know whether participants actually per-
formed the object imagery task instead of merely keeping the object color
in mind. We therefore performed another classification analysis to de-
code the shape of the imagined object (imagined-to-imagined shape clas-
sification). Because the three shapes were roughly matched across color
categories, we could thus train classifiers to predict the shape of the object
(“elongated”, “round”, or “pile-shaped”) that they imagined on a given
imagery trial while balancing the number of colors across shape catego-
ries. If the shape of the imagined object could be decoded, this would
indicate that participants indeed activated a neural representation of
shape even though the judgment task did not require participants to
mentally represent this stimulus dimension.

Control analysis for shape decoding: comparing shape coding
against word coding with representational similarity analysis
This control analysis served to shed further light on our shape decoding
analysis, and is not directly relevant to our main analysis of cross-

decoding between real and imagined color. Shape decoding could in
principle be mediated by neural signals related to the visual word cue,
because before each imagery phase a unique word appeared on screen
indicating which object to imagine. Although we were careful to model
the BOLD response in the imagery phase with regressors placed at the
offset of the cue presentation (see Pattern estimation), we additionally
conducted the present control analysis using representational similarity
analysis (RSA; Kriegeskorte et al., 2008; Kriegeskorte, 2011; Kriegeskorte
and Kievit, 2013; Nili et al., 2014) to directly compare how well the data
reflect either shape information or word cue properties. We computed
the representational dissimilarities between the responses evoked by the
nine imagery objects [this time without recursive feature elimination
(RFE) so as not to bias the analysis toward shape encoding] as the Ma-
halanobis distances between pairs of activity patterns cross-validated
across the six imagery runs (Walther et al., 2016).

The representational dissimilarity matrix (RDM) of pairwise distances
obtained in this way were rank-correlated (Spearman’s �) with two
model RDMs: the shape RDM contained zeros for pairs belonging to the
same shape category and ones otherwise; the control RDM contained the
difference between word pairs in terms of the number of character inser-
tions, deletions, and substitutions required to change one word into the
other (“Levenshtein” model). The Levenshtein distance (also called “edit
distance”) is a common measure of string similarity (Duda et al., 2001, p.
418) that simultaneously takes into account similarity with respect to
important properties like, e.g., word length or letter sequences shared
between words. The Levenshtein RDM was rescaled so that its entries
ranged from 0 to 1. English or German word RDMs were used for indi-
vidual datasets depending on the language in which the cues were pre-
sented to the participant. Levenshtein RDMs, however, were strongly
rank-correlated between languages (0.7528).

Pattern estimation
We modeled the unsmoothed voxel time series with one boxcar regressor
per trial using SPM8. In the real-color runs, the onset times of each color
block served as regressor onsets. To avoid contamination with visual
processing related to the displayed cue, we chose the cue offset times as
regressor onsets in imagery runs. All regressors were shifted 5 s forward in
time to account for the hemodynamic lag. Realignment parameters re-
gressed out any linear dependence between head motion and voxel time
series. We estimated one � parameter in every voxel for each of the 216
real-color and 162 imagery trials across all runs. Estimates from different
voxels were combined to form vectors of brain responses. In every voxel,
the time series of � estimates was quadratically detrended by removing,
in every run, the fit of a second order polynomial from the original data
to filter out low-frequency noise. Each residual time series was z-scored
for each run separately. To make our analysis more robust against outli-
ers, we set all values with a difference of �2 SD from the mean to �2 and
2, respectively.

Classification details
We used linear discriminant analysis (LDA) classifiers for pattern
classification using the Princeton MVPA Toolbox (https://github.com/
PrincetonUniversity/princeton-mvpa-toolbox) and inhouse MATLAB
code. Due to the low number of samples and high dimensionality of
the dataset we used a shrinkage estimator for the covariance matrix to
ensure that it remained nonsingular (Ledoit and Wolf, 2004). Addition-
ally, we applied RFE (De Martino et al., 2008) on training data only to
select the set of voxels that optimally distinguished between the catego-
ries to be classified. The optimal set of voxels was then used to fit the
classifier to the entire training set and to validate it on the test set, which
was not part of the voxel selection procedure. RFE determined the opti-
mal voxel set by repeatedly training LDA classifiers on part of the training
set (i.e., leaving out 1 run each time) and testing it on the remaining part
of the training set (i.e., the withheld run) to obtain an accuracy score.
This procedure was repeated 15 times while each time dropping those
15% of the voxels from the classification whose coefficients varied the
least across discriminant functions and hence were least discriminative of
the category to be predicted.
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Statistical inference
We used permutation tests to evaluate the statistical significance of our
classifications results. For every time we trained a classifier to discrimi-
nate between fMRI patterns, we refit new classifiers after randomly per-
muting the labels in the training set 10 3 times. The reasoning for this is
that under the null hypothesis of no association between fMRI patterns
and category membership (e.g., color category) the labels can be ran-
domly reassigned to fMRI vectors without changing the expected classi-
fication accuracies. We used the 10 3 classification accuracies from each
participant to obtain a null distribution of mean accuracies at the group
level expected under the null hypothesis (including the accuracy that was
actually observed using the unpermuted dataset). From these null distri-
butions, p values for a one-tailed test can be calculated as the number of
values in the distribution that exceeded the observed accuracies divided
by the number of permutations.

Because we examined classification accuracies from several ROIs, we
needed to correct for multiple comparisons. We controlled the family-
wise error (FWE) by constructing a common null distribution for all
ROIs by taking the maximum value across ROI group means in each
permutation step while making sure that the same label permutations
were used in every ROI (Nichols and Holmes, 2002). The resulting null
distribution was then used to calculate FWE-corrected p values.

In our RSA we tested whether correlations between model RDMs and
brain-derived RDMs were significantly larger than 0 by bootstrapping
the error distribution around the observed correlation (10 4 iterations).
For one-tailed testing, the probability of observing a deviation from 0 at
least as large as the observed one was divided by two. We controlled for
multiple comparisons by applying a false discovery rate threshold of q �
0.05.

Linking behavior to neural coding using drift diffusion models
Drift diffusion model. To enhance the mental representation of color
during object imagery, we had instructed our participants to indicate
whether the color of the object imagined in the current trial was identical
with that of the subsequent trial. The task was performed as soon as the
word cue for the next object appeared. To quantify behavioral task per-
formance using a unified model taking all behavioral measures into ac-
count, we fitted reaction times (RTs) and errors using hierarchical drift
diffusion models (HDDM; Wiecki et al., 2013). Drift diffusion models
provide a principled way to integrate RTs and errors in a single value
called a drift rate. Drift rate quantifies how quickly evidence is accumu-
lated in a decision-making process and thus indicates how easily a task is
performed. Higher values mean shorter RTs and fewer errors. An impor-
tant advantage of HDDM is that it estimates model parameters by di-
rectly modeling the dependencies between model parameters across
subjects in a hierarchical Bayesian framework for improved sensitivity.
For model details and parameter priors see Wiecki et al. (2013, p. 3).

We used HDDM to probe whether neural information as decoded in
the real-color-to-imagined fMRI classification related to the behavioral
performance in the imagery task. The hypothesis was that when partici-
pants were well engaged in the imagery task, this would improve the
behavioral performance as well as the signal of the neural representation
of the imagined object color. It follows that behavioral performance is
better when color classifiers made correct compared with incorrect pre-
dictions for imagery trials. To test this, we fit a single HDDM to behav-
ioral data that assumed separate drift rates for correctly and incorrectly
classified trials. According to the above hypothesis, drift rates for cor-
rectly classified trials were expected to be higher than on incorrectly
classified trials.

Bayesian inference. We then used Bayesian parameter estimation to
calculate the posterior probability of the drift rate being indeed higher for
correct than incorrect trials. The relationship between brain signal and
behavior was computed separately for the fMRI signal preceding the
behavioral judgment or for the signal following behavioral judgment (see
Fig. 5A). In one model different drift rates were assumed depending on
whether the imagery pattern immediately following the color judgment
was classified correctly (“post-judgment model”) whereas the second
model assumed different drift rates for correct versus incorrect classifi-
cations of the pattern that preceded the color judgment (“pre-judgment

model”). These two patterns were thought to be relevant since the task
required a comparison about the color of the previous with the following
objects. An additional model that checked dependence on classification
two trials before the color judgment (data not shown) was also included
for comparison.

We performed Markov chain Monte Carlo (MCMC) sampling to ap-
proximate the posterior distribution over model parameters given the
data using 10 chains. Each of them drew 10 4 samples plus additional 10 3

for burn-in. Using MCMC sampling, we obtained a posterior probability
distribution for the difference between drift rates for correctly and incor-
rectly decoded trials. This distribution represents how likely each value of
this difference is, given the behavioral data and the classifier predictions.
In Bayesian parameter estimation, the posterior probability that the
difference is larger than 0 is then given by the probability mass occu-
pying the interval above 0.

Statistical inference was inherently corrected for multiple compari-
sons by false discovery rate: when conducting statistical inference on the
basis of posterior probabilities in a family of tests, a cutoff of 0.95 auto-
matically enforces a corresponding upper bound of 5% on the false dis-
covery rate (Friston and Penny, 2003). The reason is that, with each
statistical decision, there is a 5% probability that the null hypothesis has
been falsely rejected, leading to an expected fraction of false-positives of
5% for the whole test family. Note that only trials with key presses made
within the 1.5 s response window were included in this analysis, i.e., while
the cue was still on the screen.

Results
Real-color decoding
First we validated our methods by testing whether classifiers could
predict which color a person was seeing from the multivariate pat-
tern of fMRI responses when participants viewed the colored ring
stimuli. Figure 3A illustrates that real color could be decoded from
fMRI activity in all ROIs we studied (p � 0.001, FWE corrected),
replicating previous findings (Brouwer and Heeger, 2009; Seymour
et al., 2009). With a chance level of 33%, classification accuracies
averaged across participants were as follows: 51.4% in V1 [SD �
5.3%, Cohen’s d � 3.38, 95% CI (48.9, 53.9)], 51.4% [SD � 6.6%,
Cohen’s d � 2.72, 95% CI (48.3, 54.5)] in V2, 49.3% [SD �
7.6%, Cohen’s d � 2.1, 95% CI (45.8, 52.8)] in V3, 49% [SD � 7.1%,
Cohen’s d � 2.2, 95% CI (45.7, 52.3)] in hV4, 42.8% [SD � 5.5%,
Cohen’s d � 1.74, 95% CI (40.3, 45.4)] in VO1, and 43.6% [SD �
5.8%, Cohen’s d � 1.76, 95% CI (40.9, 46.3)] in LO1, 41.4% in
LO2 [SD � 6.7%, Cohen’s d � 1.2, 95% CI (38.3, 44.5)], all p �
0.001, FWE corrected. This shows that it is possible to construct a
classifier to reliably decode sensory-driven color.

Predicting imagined object color
Our main hypothesis was that the neural representations of imag-
ined object color overlap with those of veridical color perception.
The crucial test for this was to train classifiers to distinguish be-
tween sensory-driven colors and to test them on the imagery
trials. If sensory-driven and imagined object color representa-
tions overlap in a given ROI, one would expect classification
accuracies above chance level. As can be seen from Figure 3B, the
color of imagined objects could indeed be decoded successfully
from area hV4 [M � 36.2%, SD � 2.6%, p � 0.005, FWE cor-
rected, Cohen’s d � 1.08, 95% CI (35.0, 37.4)], but in no other
brain region. This means that the color-specific patterns of fMRI
activity elicited by object imagery resembled those measured dur-
ing sensory-driven color vision in hV4 only.

To test for potential confounding behavioral effects on decod-
ing accuracies, we compared RTs and error rates in the 1-back
same/different task between color conditions but did not find any
differences for RTs (F(2,34) � 0.005, p � 0.9947) or errors (F(2,34) �
0.5, p � 0.6106, one-way repeated-measures ANOVA, respec-
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tively). Our analysis thus did not provide
evidence for cross-decoding being driven
by behavioral differences between color
conditions.

Mean decoding accuracies in the re-
maining areas were 32.5% [SD � 3.6%,
p � 1, Cohen’s d � �0.22, 95% CI (30.9,
34.2)] in V1, 34.2% [SD � 4.2%, p �
0.667, Cohen’s d � 0.21, 95% CI (32.3,
36.2)] in V2, 33.5% [SD � 3.0%, p �
0.971, Cohen’s d � 0.06, 95% CI (32.1,
34.9)] in V3, 33.2% [SD � 4.2%, p �
0.993, Cohen’s d � �0.04, 95% CI (31.2,
35.1)] in VO1, 32.1% [SD � 3.6%, p � 1,
Cohen’s d � �0.35, 95% CI (30.4, 33.7)]
in LO1, and 34.1% [SD � 3.2%, p �
0.757, Cohen’s d � 0.25, 95% CI (32.7,
35.6)] in LO2 (all FWE corrected).

Because all visual areas, including V1
and V2, allowed for decoding of physically
presented color, the failure to cross-decode
imagined color cannot be explained by
poor signal quality relative to hV4. As
shown in the previous section, decoding
accuracies for sensory-driven color
tended to be slightly larger in V1 and V2
than in hV4. Post hoc t tests revealed that
this difference, however, marginally failed
to reach significance [V1: t(17) � 1.4189,
p � 0.087, 95% CI (�1.18, 6.01); V2: t(17) �
1.619, p � 0.0619, 95% CI (�0.73, 5.51),
each one-tailed and uncorrected].

Decoding the shape of imagined objects
Next we examined whether our partici-
pants did as instructed imagine the objects
as a whole, i.e., including object shape,
even though this was irrelevant to the
color judgment task. The objects in this
experiment had been chosen such that
there were three identical types of shape in
every color category: elongated, round,
and pile-shaped. If observers imagined
the entire objects instead of just retaining
a (possibly non-pictorial) representation
of that object’s color in mind, we would
expect shape information also to be repre-
sented in the neural signal evoked during
object imagery. We tested this by training classifiers on imagery
responses to discriminate between the three shape categories (re-
gardless of color) and testing them on fMRI responses from a run
that was not part of the training set (leave-one-run-out cross-
validation). As shown in Figure 4, the imagined object shape
could be successfully decoded from areas V2 [M � 38.1%, SD �
4.8%, p � 0.001, FWE corrected, Cohen’s d � 1.01, 95% CI (35.9,
40.3)], V3 [M � 37.4%, SD � 5.9%, p � 0.001, FWE corrected,
Cohen’s d � 0.68, 95% CI (34.6, 40.1)], and LO2 [M � 35.7%,
SD � 5.4%, p � 0.01, FWE corrected, Cohen’s d � 0.44, 95% CI
(33.2, 38.2)]. This is consistent with the interpretation that par-
ticipants’ object imagery on average encompassed also the repre-
sentation of object shape although it was irrelevant to the color
judgment task. This result once again demonstrates that sufficient

signal was present also in imagery trials in early as well as high-level
regions to decode imagery content.

Because the imagery phase for each object was preceded by a
unique cue word, we tested for possible confounding effects on
shape decoding. Specifically, we used RSA (Nili et al., 2014) to
directly probe how well the similarity structure between fMRI
responses to the nine imagined objects was predicted by model
RDMs that either captured shape information or cue word infor-
mation (Levenshtein distance of word pairs, see Materials and
Methods, Experimental design).

One-tailed bootstrap tests showed that the group average rank
correlations between the shape model and brain-derived RDMs
were significantly positive in areas V3 [M � 0.1039, SD � 0.1518,
p � 0.0023, FDR adjusted, 95% CI (0.03, 0.17)] and LO2 [M �

Figure 3. Color decoding results. Real-color-to-real-color and real-color-to-imagined color decoding. A, Classifiers were trained
to distinguish between the three color categories based on the responses in each ROI to the color stimuli. Classifier performance was
cross-validated leaving out one of the six runs for testing on each iteration to obtain an average accuracy. In all ROIs classifiers could
predict the color of the stimulus that participants were viewing significantly above chance. B, Color classifiers were trained on the
whole set of fMRI responses to color stimuli to predict which color observers were seeing. The learned classifiers were then used to
predict on a trial-by-trial basis the color of the objects that participants were imagining in the imagery runs of the experiment.
Permutation tests showed that the color of the imagined objects could be decoded significantly above chance only from activity
patterns in area hV4. A, B, Horizontal and vertical bars represent group means and two-tailed 95% confidence intervals, respec-
tively. Chance level was 1/3. **p � 0.01, FWE corrected, one-tailed.
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0.0803, SD � 0.1618, p � 0.027, FDR adjusted, 95% CI (0.01,
0.15)] but not in V2 [M � 0.0531, SD � 0.1474, p � 0.0612,
uncorrected, 95% CI (�0.02, 0.12)]. The Levenshtein model con-
versely was significantly correlated with brain-derived RDMs in V2
[M � 0.1546, SD � 0.3154, p � 0.0336, FDR adjusted, 95% CI (0.0,
0.3)] and V3 [M � 0.1301, SD � 0.308, p � 0.0321, FDR adjusted,
95% CI (�0.02, 0.27)]. Crucially and in contrast to the shape model,
however, there was no significant correlation in LO2 [M � 0.0712,
SD � 0.2302, p � 0.092, uncorrected, 95% CI (�0.04, 0.18)].

Our RSA approach thus shows that, although similarity
structures of BOLD responses could to some degree indeed be
explained by word similarity (V2) or both shape and word simi-
larity (V3), the similarity structure of LO2 activity correlated with
shape information exclusively. This confirms our conclusion that
participants represented shape information (i.e., imagined ob-
jects), which was irrelevant to the behavioral color judgment task.

Brain-based drift diffusion modeling
We identified hV4 as a visual area where the color of imagined
objects could be decoded using color classifiers trained on sensory-
driven color responses. It is unclear, however, whether the neu-
ronal signal underlying this observation played a behaviorally
relevant role for imagery of object color. We therefore sought to
investigate the relationship between the predictions of the brain
signal classifier and our participants’ behavior in the color judg-
ment task, i.e., errors and RTs.

Mean RT across the group was 0.853 s (SD � 0.075 s) and
mean error rate was 5.3% (SD � 4.5%). Mean RT in correct and
in error trials were 0.853 s (SD � 0.075 s) and 0.866 s (SD � 0.134
s), respectively. Trials without a button press during the 1.5 s
response window were excluded from the analysis.

We fitted HDDMs to our participants’ behavioral data (errors
and RTs) and tested whether the drift rate in these models dif-
fered for imagery trials in which neural signal led to correct or
incorrect decoding of object color. Several convergence diagnos-

tics including visual inspection of trace
plots, autocorrelation between samples at
different lags, and Gelman-Rubin statistic
calculations (for all parameters, R � 1.02)
showed that the chains had converged to
their stationary distributions. The distribu-
tions obtained through MCMC sampling
approximate the posterior probability den-
sity function only when convergence is
reached. Here, the chains could hence be
combined and used for Bayesian inference.

Bayesian inference showed that drift
rates were higher when color decoders
correctly predicted the color of an imag-
ined object in the trial that immediately
preceded the color judgment. This finding
held true only for area hV4. The posterior
probability of a higher drift rate on correct
trials given the data D was p(vc � vi�D) �
0.9802 (Fig. 5B, pre-judgment model).
This means that the drift rate on correctly
predicted trials was larger than on incor-
rectly predicted trials with probability
0.9802 (inherently FDR-corrected; see
Materials and Methods), given the behav-
ioral data and classifier outputs. It dem-
onstrates that observers performed the
color judgment more easily when the ob-

ject color could be correctly predicted from hV4 activity mea-
sured in the imagery blocks immediately preceding the color
judgment task. Accordingly, RTs were shorter following an im-
agery block that was correctly classified (M � 0.844 s, SD �
0.077) than following incorrectly classified ones [M � 0.86 s,
SD � 0.077, t(17) � 2.4711, p � 0.0243, Cohen’s d � 0.5825, 95%
CI (0.002, 0.029), one-tailed paired t test]. Error rates did not
differ significantly between correct (M � 4.7%, SD � 4.6%) and
incorrect classifications [M � 5.6%, SD � 4.8%, t17 � 1.0132,
p � 0.3252, Cohen’s d � 0.2388, 95% CI (�1, 3), one-tailed
paired t test]. The posterior probabilities for the models fit to data
in the other ROIs did not reach the 0.95 threshold [V1: p(vc �
vi�D) � 0.2714; V2: p(vc � vi�D) � 0.219; V3: p(vc � vi�D) �
0.7298; VO1: p(vc � vi�D) � 0.8296; LO1: p(vc � vi�D) � 0.2277;
LO2: p(vc � vi�D) � 0.4801].

When considering the classifier prediction of the imagery trial
immediately following the color judgment, the posterior proba-
bility for hV4 did not exceed the 0.95 threshold and dropped to
p(vc � vi�D) � 0.9275 (Fig. 5B, post-judgment model). Likewise,
drift rates were not larger on correctly than incorrectly decoded
trials in any of the other ROIs [V1: p(vc � vi�D) � 0.6; V2: p(vc �
vi�D) � 0.0663; V3: p(vc � vi�D) � 0.7447; VO1: p(vc � vi�D) �
0.4414; LO1: p(vc � vi�D) � 0.3165; LO2: p(vc � vi�D) � 0.2921].
Also when assuming different drift rates depending on classifier
accuracies two trials before the color judgment, the posterior
probabilities in none of the ROIs exceeded the threshold of 0.95
[V1: p(vc � vi�D) � 0.5894; V2: p(vc � vi�D) � 0.2907; V3: p(vc �
vi�D) � 0.2214; hV4: p(vc � vi�D) � 0.8709; VO1: p(vc � vi�D) �
0.3923; LO1: p(vc � vi�D) � 0.1151; LO2: p(vc � vi�D) � 0.2416].

The correlation between behavioral performance with the
correctness of the classifier predictions in hV4 suggests that the
neural information represented in hV4 on the color of the imag-
ined object was behaviorally relevant for correct and rapid task
execution in the following trial.

Figure 4. Shape decoding results. Classifiers were trained to distinguish between the three shapes (elongated round, pile-
shaped) and tested on data from one of the six imagery runs that was excluded from the training procedure in a sixfold leave-one-
run-out cross-validation scheme. The shape property of objects was orthogonal to the color feature dimension (Fig. 1). Mean
decoding accuracies were significantly above chance in areas V2, V3, and LO2 according to permutation tests. Horizontal and
vertical bars represent group means and two-tailed 95% confidence intervals, respectively. Chance level was 1/3. *p � 0.05,
**p � 0.01, FWE corrected, one-tailed.
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Discussion
We examined neural representations of color during sensory
stimulation and during imagery of object color. This allowed us
to identify neural sites representing subjective color experience
regardless of its origin. Classifiers trained to distinguish between
sensory-driven colors could predict the color of the object our
participant was imagining based on the activity only in hV4. Impor-
tantly, the quality of the neural code only in this area predicted be-
havioral performance in the color imagery task. The results suggest
that hV4 forms a perceptual hub for color perception.

Common neural representations for color imagery and
sensory-driven color vision
The similarity of activity patterns in object imagery and sensory-
driven color vision is consistent with its role in color perception
(Lueck et al., 1989; Bartels and Zeki, 2000; Bouvier and Engel,
2006; Brouwer and Heeger, 2009, 2013; Conway and Tsao, 2009).
The perceptual relevance of color-selective activity in hV4 is cor-
roborated by the psychophysiological link we discovered using
brain-based behavioral modeling. Observers performed better in
their task when object color could successfully be decoded from

Figure 5. Brain-based drift diffusion modeling. HDDMs were used to study the relationship between the information content in ROIs and performance in the color judgment task. A, Behavioral
data (RTs and errors) on trial j were modeled with different drift rates depending on whether the classifier predicted the correct or the incorrect label either for the response pattern yj-1 on the previous
trial j-1 (pre-judgment model), which was recorded before the behavioral judgment, or the response pattern yj on the same trial j, which was recorded after the behavioral judgment (post-judgment
model). As depicted on the right, higher drift rates mean faster response times and fewer errors. B, Posterior probability distribution over the difference vdiff between drift rates vc on correctly
classified and vi on incorrectly classified trials for the two models in area hV4. The posterior probability of vc being larger than vi was 98.02% in the pre-judgment model, i.e., when different drift rates
were assumed depending on the classification of the trial preceding the behavioral judgment. However, when instead classifier correctness for the imagery block following the behavioral judgment
was taken into account (post-judgment model), the posterior probability dropped to 92.75%. See main text for values of all ROIs.
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hV4 activity immediately before the behavioral decision. This
provides an important additional clue to the perceptual nature of
this neural signal because perception evolved to guide behavior
(Friston, 2010; Purves et al., 2011; Hoffman et al., 2015).

To the extent that imagery and working memory rely on the
same mechanisms (Keogh and Pearson, 2011; Albers et al., 2013),
our results are thus consistent with theories ascribing a central
role to perceptual representations in visual short-term memory
and imagery (Finke, 1980; Pasternak and Greenlee, 2005; D’Esposito
and Postle, 2015). Memory for color has been shown to modulate
neuronal excitability and to elicit sustained firing of V4 neurons
(Ferrera et al., 1994; Motter, 1994). Interestingly, simultaneous
recordings from V4 and prefrontal cortex showed phase-locking
of local field potentials (LFPs) to predict behavioral accuracy in
working memory for colored objects (Liebe et al., 2012). Because
LFP correlates well with BOLD activity (Logothetis, 2008), this
may suggest a neural mechanism underlying the relationship be-
tween hV4 activity and task performance observed in our study.

The present findings hence extend early studies reporting in-
creased fMRI responses to sensory-driven and imagined color in
V4 (Rich et al., 2006) or, instead, anterior to it (Howard et al.,
1998) in important ways: we show that activity in hV4 was selec-
tive for the precise content of internally generated color experi-
ence, thereby signaling the color of the imagined object. This
distinguishes it from color representations in other visual areas
like V1, which we could only show to represent sensory-driven
color vision. Such dissociations may reflect that color is a non-
unitary attribute linked to multiple perceptual primitives (Maus-
feld, 2003) and is hence represented at multiple processing stages.

An alternative view could entail a component of categorical
coding of color in hV4 with tighter chromatic color codes in
earlier regions. If this were the case, small deviations of imagined
color from the trained real color stimuli would degrade cross-
classification in early but not late stages of color representation.
More research is hence needed to illuminate the relationship be-
tween color perception, hue, and category encoding. A starting
point is given by prior studies that found frontal lobe regions to
be involved in color category encoding (Bird et al., 2014), or V4
activity patterns to predict behavior in color categorization
(Brouwer and Heeger, 2013).

Coding for color and spatial features in V4
Given that V4 is involved in the processing of object properties
such as shape (Kobatake and Tanaka, 1994; Pasupathy and Con-
nor, 2002; Dumoulin and Hess, 2007; Bushnell and Pasupathy,
2012) and texture (Kohler et al., 2016), it is plausible that there is
an overlap in the coding of color in perception and object imag-
ery. This is because the internal generation of object percepts
requires a unified representation of several different object-related
features (shape, texture, etc.), which may engage particularly
those neural representations affording a suitable degree of feature
binding with color (Seymour et al., 2009, 2010, 2016).

Explicit and implicit processes in color vision
Our findings are potentially important in illuminating a differ-
ence in neural mechanisms between processes related to active
imagery as opposed to those related to completion, association or
error-correction during perception. V1 and higher areas may
play different roles when viewed from a process-based per-
spective that distinguishes between top-down signals that can
be characterized as either explicit and voluntary or as implicit
and involuntary (Albright, 2012; Pearson and Westbrook,
2015).

In a previous study we had presented participants grayscale
photographs of objects that are typically associated to a given
object-specific color, such as bananas, strawberries, etc. Partici-
pants performed a motion discrimination task while viewing
grayscale object images. Classifiers trained on sensory-driven
color responses predicted the unperceived memory color of the
grayscale objects in V1 but not in extrastriate regions (Bannert
and Bartels, 2013). The contrast to the current findings suggests
that active imagery and automatic color-association related to
objects recruit fundamentally distinct mechanisms: conscious
and attentive object imagery engages color encoding in hV4,
whereas automatic (and likely unconscious) association of mem-
ory colors to objects engages V1. This account is consistent with
research suggesting that color-selectivity of BOLD signals in early
areas seem to reflect implicit top-down influences on color pro-
cessing (Amano et al., 2016), whereas in higher areas this tends to
apply rather for explicit effects (Brouwer and Heeger, 2013; Van-
denbroucke et al., 2016).

Color imagery and visual attention
From a process-based viewpoint, our findings therefore have to
be discussed especially with respect to visual attention as an ex-
plicit form of top-down influence. There are two reasons for this:
first, attention plays a central role in the binding of object features
(Treisman, 1988; Humphreys, 2016) and, second, because atten-
tion is thought to rest on similar cognitive top-down mechanisms
as working memory (Kastner and Ungerleider, 2000; Gazzaley
and Nobre, 2012; D’Esposito and Postle, 2015). Both properties
make it hence likely for object imagery to be accomplished by
attending to internal object feature representations. Modulation
of V4 activity by attention to color is well established by electro-
physiology (Moran and Desimone, 1985; McAdams and Maun-
sell, 2000) and fMRI (Bartels and Zeki, 2000; Saenz et al., 2002;
Brouwer and Heeger, 2013). Feature-based attention can flexibly
change the spatial tuning of V4 neurons along stimulus dimen-
sions depending on task demands in visual search (David et al.,
2008). It is plausible that such task-dependent changes may be
expressed as changes in presynaptic integration processes, which
can be detected with fMRI and may depend on (top-down) input
from other brain regions (Liebe et al., 2011).

The role of early visual areas
The fact that color classification did not generalize from sensory-
driven color to imagined object color in V1 or V2 does not imply
that such an effect could not be obtained with more sensitive
methods or even that those areas do not partake in imagery of
object color. One imaging study conducted at 7T field strength
showed that imagined pieces of art could be identified from V1
and V2 activity (Naselaris et al., 2015), but it did not identify the
unique contributions of different visual features (and none of
them was color). We do not believe, however, that poor sensitiv-
ity accounted for the absence of color imagery signals in early
visual cortex in the present study because physically presented
color could be predicted at least as accurately from fMRI patterns
in V1 or V2 as in hV4. We interpret the difference that we ob-
served between early visual areas and hV4 therefore as reflecting
the increase in sensitivity to top-down processing like attention
for higher visual areas, which may give rise to a perception/imag-
ery gradient in the visual cortex (Lee et al., 2012).

It has been argued that the involvement of V1 in imagery is
task-dependent such that imagery tasks requiring more detailed
information (Pearson et al., 2015, p. 596), may activate more
low-level visual features as well. The fact that we did not find
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effects in V1 suggests that imagery of object-associated color re-
lies primarily on extrastriate coding, possibly fostered by differ-
ences in object-color associations in categorical terms rather than
fine detail. Accordingly, a decoding study involving a task requiring
working memory and discrimination of only very small changes in
color saturation identified V1 as hue-encoding site (Serences et al.,
2009). In contrast, the present study decoded categorical hue differ-
ences between red, green, and yellow and involved imagery of
highly distinct objects rather than working memory of fine detail.
Note though that direct comparisons between working memory
and imagery are not unconditionally permissible because partic-
ipants may have pursued different cognitive strategies to meet
task demands (Keogh and Pearson, 2011).

Conclusion
Our experiment directly related sensory driven color representa-
tions in the brain to those generated internally through imagery.
The results show that in the entire visual cortex, those represen-
tations converge in hV4. We hence identified hV4 as a neural site
bridging the domains of sensory-driven and imagined object
color. The behavioral relevance of activity in this area highlights
its role in generating color percepts, be they externally triggered
or a product of our minds.
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