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How Does the Brain Tell Self-Motion from Object Motion?
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Imagine a football player who has to run
across the field, evade opponent players,
and eventually catch the ball that is passed
to him by his teammate. As he does this,
his retinal image is a hodgepodge of mov-
ing components. The position of back-
ground objects (e.g., yard lines, goal posts,
the cheering crowd) changes relative to
the runner as he runs across the field, cre-
ating a so-called “optic flow” pattern on
his retina; the opposing team’s players
move toward him from different angles;
and, most importantly, the football even-
tually appears in his field of vision. To
navigate and act within this ever-changing
environment, the player must be able to
distinguish retinal motion resulting from
his own movements from the motion
caused by moving objects. But how can
the relevant motion components be se-
lected and confounding components be
discarded, given that all the information
the visual system receives is the jumble of
movements across the retina?

The dorsal part of the medial superior
temporal area in the macaque cortex (area
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MSTd) has long been known to play an
important role in motion perception in
general (Graziano et al., 1994) and self-
motion perception in particular (Britten,
2008). Individual neurons in this part of
the brain are typically tuned for the direc-
tion of a moving stimulus or for a partic-
ular heading direction, as measured with
stimuli that simulate optic flow (e.g., a
field of random dots that move away from
a single point, which determines the direc-
tion of the simulated self-motion). Further-
more, the area contains multimodal neurons
that integrate visual information with ves-
tibular information (Dufty, 1998; Gu et al.,
2008) for a joint representation of self-
motion. Interestingly, some multimodal
MSTd neurons have the same preferred
direction for visual and vestibular input
(“congruent cells”), whereas others prefer
different or even opposing directions (“op-
posite cells”) (Gu et al.,, 2008). During
simultaneous visual and vestibular sti-
mulation, the neuronal sensitivity for
discriminating heading directions (calcu-
lated based on signal detection theory)
(see Britten et al., 1992) is decreased in
such opposite cells compared with either
visual or vestibular stimulation alone.
Congruent cells, on the other hand, show
an increased sensitivity in this “bimodal
condition” compared with either unimodal
condition (Gu et al., 2008). This raises the
question of what the purpose of opposite
cells may be.

In a recent publication in The Journal
of Neuroscience, Sasaki et al. (2017) sug-

gested that opposite cells play an impor-
tant role in parsing object motion and
self-motion-components from the overall
retinal image motion. To investigate this,
they recorded the activity of individual
neurons in area MSTd in 2 macaque mon-
keys who were placed in a virtual-reality
setting. The monkeys were seated on a
platform that could passively be moved in
3D space, thus providing vestibular stim-
ulation. Simultaneously, visual optic flow
stimuli were presented through a 3D field
of stars that simulated translational self-
motion in one of eight directions in the
frontoparallel plane. Additionally, a clus-
ter of nine spheres, defined by increased
dot density (the “object”), moved in one
of eight possible directions through the vi-
sual world on some of the trials (Sasaki et
al., 2017, their Fig. 1).

Sasaki et al. (2017) found that the influ-
ence of object motion on heading tuning
(and the influence of heading direction on
object motion tuning) differed between
cell types: for congruent cells (50% of re-
corded cells), heading tuning was more
consistent in the bimodal condition (ves-
tibular and visual stimulation) than in the
visual-only condition, but object motion
direction tuning was more consistent in
the visual-only condition. Conversely, for
opposite cells (~18% of recorded cells),
heading tuning was stronger in the visual-
only condition, whereas object-motion-
direction tuning was more consistent in
the bimodal condition. This makes intui-
tive sense: if a cell’s preferred heading
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direction is the same for visual and for
vestibular stimuli (i.e., congruent cells),
then adding vestibular information will
help the cell to maintain its normal tuning
curve in the face of visual input that is
confounded by a moving object. For cells
that have opposing preferences for visual
and vestibular heading information (i.e.,
opposite cells), bimodal stimulation flat-
tens the tuning curve, thereby decreasing
the selectivity for heading direction. Fur-
thermore, the preferred direction for
moving objects typically is opposite to the
preferred heading direction because self-
motion in one direction (e.g., to the left)
means that the retinal image, including
individual objects, moves in the opposite
direction (e.g., to the right). A cell that is
tuned for heading to the left should there-
fore also be tuned for an object moving to
the right. Thus, in opposite cells, vestibu-
lar heading tuning is aligned with object
motion direction tuning, as both are the
opposite of visual heading tuning.

How do these different cell types influ-
ence the way that heading direction and
object motion direction are represented
by a population of MSTd neurons? To
determine which specific stimulus most
likely elicited a given neural population
response, the authors first computed the
joint probability of a specific heading and
a specific object motion given the popula-
tion response. Despite some simplifying
assumptions, this decoder was able to ac-
curately estimate both the heading and
the object motion. However, this strategy
would become computationally expensive if
there were several objects moving through
the scene (which is often the case in real-
life scenes), as this would require the brain
to calculate a multidimensional probabil-
ity distribution.

This problem can be solved, however,
by a mathematical procedure called margin-
alization, which determines the probability
of one event (e.g., a specific heading direc-
tion) independent of a second event (e.g.,
object motion) that modulates the proba-
bility of the first event. While models have
previously suggested that this process can
be implemented in the brain (Beck et al.,
2011), Sasaki et al. (2017) considered an
approximation of marginalization, which,
they claimed, would be more intuitive in
terms of neuronal implementation. To
this end, they first tried to decode heading
direction from the responses of bimodal
neurons by calculating the likelihood of a
given heading direction (or object motion
direction) as the sum of each neuron’s
response, weighted by either its visual or
its vestibular tuning curve (Jazayeri and

Movshon, 2006). This approach was not
successful, however, possibly because of
the diversity of tuning properties across
the neuronal population. Approximate
linear marginalization (ALM) (Kim et al,,
2016) differs from the traditional likeli-
hood computation in that it uses a regres-
sion model to find the optimal weights
with which each neuron influences the
overall likelihood of a specific heading di-
rection. Applying this procedure to either
a subset of the recorded MSTd neurons
(all opposite cells and an equal number
of randomly selected congruent cells) or
to the whole sample resulted in a much
better decoding performance. The decod-
ing error was also smaller in the bimodal
condition than in the visual-only condi-
tion, showing that the algorithm uses
vestibular information to improve its de-
coding accuracy. The profile of the decod-
ing weights across the population was
similar to the neurons’ tuning curves, sug-
gesting that the brain uses information it
already has when determining how much
each cell contributes to the population’s
representation of the stimulus. However,
the ALM algorithm appeared to apply a gain
factor to the neurons that was not inherent
to the neurons’ tuning properties.

In summary, Sasaki et al. (2017) showed
that a new algorithm, which had previously
been developed for a population of simu-
lated MSTd neurons (Kim et al., 2016),
can be applied to a population of real
MSTd neurons to distinguish self-motion
from object motion. These findings raise
the question of whether such an algorithm
can actually be implemented by the brain
and, if so, how the brain could learn the
weights that are assigned to each neuron.
ALM learned the weights by being trained
on 500 simulated trials for each stimulus
condition, attempting to minimize the
difference between the true probability
distribution and the algorithm’s estima-
tion of this distribution. During devel-
opment, the brain does not have direct
access to the true probability distribution
to quickly learn the correct decoding
weights. Instead, it acts based on its own
estimation and then has to infer correct
and incorrect judgments based on feed-
back to the actions it took. This should in
principle allow decision-making areas in the
brain to learn how to optimally read out the
population response of MSTd.

Another point in question is why the
authors put so much emphasis on mar-
ginalization being implemented through
a linear decoder, at the cost of being only
an approximation. They state that, for the
purpose of modeling, they assume the
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brain to be “limited to processing neural
responses linearly” (Kim et al., 2016) and
that nonlinear transformations “may be
difficult for the brain to implement” (Sasaki
etal., 2017). However, there is evidence that
marginalization can be implemented in
neural circuits through divisive normal-
ization (Beck et al., 2011), a widespread
nonlinear computation where neuronal re-
sponses are inhibited, and thus effectively
normalized, by the summed activity of a
pool of neurons (for review, see Carandini
and Heeger, 2011). Furthermore, area
MST has been suggested to integrate its
visual input from the middle temporal
area in a nonlinear manner (Mineault et
al., 2012), raising additional doubts as to
why decoding of the output of MST would
have to be a linear approximation. Thus,
although ALM can decode heading and
object motion from a population response
in area MSTd, this does not guarantee that
the brain actually implements this specific
computation.

What additional strategies could the
brain use to distinguish self-motion from
object motion? In many cases, self-motion
is caused by actions of the individual, such
as walking or running, and these actions
provide extraretinal information, such as
the stimulation of proprioceptive sensors
in moving body parts, or efference copies
of motor commands to other parts of the
brain. These can be used to compensate
for the effects of self-motion on the retinal
image flow (e.g., Crowell et al., 1998), so
that any uncompensated retinal motion
is likely due to moving objects (Wallach,
1987). But even when being moved pas-
sively (e.g., while riding a train and looking
out of the window), eye movements can
provide additional information about ob-
ject motion during self-motion (Warren
and Rushton, 2007). This is particularly in-
teresting, as MSTd neurons also carry sig-
nals about eye movements (Newsome et al.,
1988).

In conclusion, Sasaki et al. (2017) pro-
vided evidence that area MSTd can help
our football player achieve his goal. Infor-
mation that is encoded by MSTd neurons
can be used to compute the player’s own
movement running across the field, even
as his perceived optic flow patterns are
disrupted by the movements of other
players and the football. Similarly, MSTd
can represent the ball’s trajectory, even
though its motion on the retina is dis-
torted by the player’s own movements.
This can be achieved by a neuronal pop-
ulation of congruent and opposite mul-
tisensory cells, whose responses can be
decoded in a way that approximates the
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mathematical process of marginalization
to accurately estimate a single variable of
interest. Whether this is the computation
actually performed by the brain needs to
be investigated in more detail. Showing
that decision-related brain areas higher
up in the cortical processing hierarchy
represent heading or object motion infor-
mation in a manner that is consistent with
the read-out predicted by ALM would pro-
vide evidence in favor of this hypothesis.
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