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Canonical Notch Signaling Directs the Fate of Differentiating
Neurocompetent Progenitors in the Mammalian Olfactory
Epithelium
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Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston Massachusetts 02111,
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The adult olfactory epithelium (OE) has the remarkable capacity to regenerate fully both neurosensory and non-neuronal cell types after
severe epithelial injury. Lifelong persistence of two stem cell populations supports OE regeneration when damaged: the horizontal basal
cells (HBCs), dormant and held in reserve; and globose basal cells, a heterogeneous population most of which are actively dividing. Both
populations regenerate all cell types of the OE after injury, but the mechanisms underlying neuronal versus non-neuronal lineage
commitment after recruitment of the stem cell pools remains unknown. We used both retroviral transduction and mouse lines that
permit conditional cell-specific genetic manipulation as well as the tracing of progeny to study the role of canonical Notch signaling in the
determination of neuronal versus non-neuronal lineages in the regenerating adult OE. Excision of either Notch1 or Notch2 genes alone in
HBCs did not alter progenitor fate during recovery from epithelial injury, whereas conditional knock-out of both Notchl and Notch2
together, retroviral transduction of progenitors with a dominant-negative form of MAML (mastermind-like), or excision of the down-
stream cofactor RBPJ caused progeny to adopt a neuronal fate exclusively. Conversely, we show that overexpressing the Notchl-
intracellular domain (N1ICD) either genetically or by transduction blocks neuronal differentiation completely. However, N1ICD
overexpression requires both alleles of the canonical cofactor RBPJ to specify downstream lineage. Together, our results suggest that
canonical RBPJ-dependent Notch signaling through redundant Notch1 and Notch2 receptors is both necessary and sufficient for deter-
mining neuronal versus non-neuronal differentiation in the regenerating adult OE.
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(s )

Despite the substantial reconstitution of the olfactory epithelium and its population of sensory neurons after injury, disruption
and exhaustion of neurogenesis is a consequence of aging and a cause of olfactory dysfunction. Understanding the mechanisms
underlying the generation of replacement neurons and non-neuronal cells is critical to any therapeutic strategy aimed at rebuild-
ing a functional neuroepithelium. The results shown here demonstrate that canonical Notch signaling determines the balance
between neurons and non-neuronal cells during restoration of the epithelium after injury. Moreover, the complexities of the
multiple Notch pathways impinging on that decision are dissected in detail. Finally, RBP], the canonical Notch transcriptional
cofactor, exhibits a heretofore unreported haploinsufficiency in setting the balance among the regenerating populations.
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al., 2004; Leung et al., 2007). However, the extent to which the OE
can regenerate all epithelial cell types and reconstitute its prein-

Introduction
Adult neural stem cells that have the capacity to participate in

tissue regeneration after injury have been identified in the CNS
and the olfactory epithelium (OE; Doetsch et al., 1999; Chen et
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jury structure throughout adult life is unparalleled compared
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dei, 1979; Schwob et al., 1995, 2017; Schwob, 2002; Iwema et al.,
2004).

Two stem cell populations, globose basal cells (GBCs) and
horizontal basal cells (HBCs) play an integral role in maintaining
OE tissue homeostasis throughout life and in regenerating the OE
after severe tissue injury (Schwob et al., 2017). The GBC popula-
tion is a morphologically uniform, but molecularly and function-
ally heterogeneous, population that sits at a slight remove from
the basal lamina (Caggiano et al., 1994; Goldstein et al., 1998;
Chen et al., 2004; Packard et al., 2011; Schwob et al., 2017). In
contrast, HBCs are dormant, mitotically quiescent, reserve stem
cells attached to the basal lamina deep to the GBCs and are rarely
activated to multipotency in the absence of epithelial injury (Hol-
brook et al., 1995; Leung et al., 2007, Iwai et al., 2008). However,
damage to the OE by administration of an olfactotoxin is capable
of activating HBCs to multipotency through downregulation of
p63, such that HBCs contribute to the regeneration of all epithe-
lial cell types in the OE during tissue regeneration (Jang et al.,
2003; Leung et al., 2007; Fletcher et al., 2011; Schnittke et al.,
2015; Gadye et al., 2017). However, the mechanism(s) determin-
ing neuronal versus non-neuronal differentiation as HBCs and
GBCs produce progeny in the regenerating adult OE has yet to be
determined.

The Notch signaling pathway may play a role in cell-type spec-
ification in the developing OE (Carson et al., 2006; Rodriguez et
al., 2008). The Notch signaling pathway is an evolutionarily con-
served cell-cell signaling pathway that governs stem cell dynam-
ics, progenitor fate choice, and cell proliferation. In canonical
Notch signaling, Notch receptors (Notchl—4) are activated by
Notch ligands (Delta-likel, 3, 4 and Jagl, 2) on neighboring cells
at which point the cleaved intracellular domain of Notch (NICD)
translocates to the nucleus, displaces repressor proteins and
binds the cofactor RBPJ to initiate canonical gene transcription
(Kopan and Ilagan, 2009; Artavanis-Tsakonas and Muskavitch,
2010). The most well characterized Notch target genes are of the
Hes and Hey family transcription factors (Kopan and Ilagan,
2009). Notch signaling has been shown to play a role in determin-
ing progenitor fate in multiple adult tissues, notably in bone mar-
row (Han et al., 2002; Hozumi et al., 2003; de La Coste et al., 2005;
Mercher et al., 2008), intestine (van Es et al., 2005; Riccio et al.,
2008), and CNS (Ishibashi et al., 1994; Sakamoto et al., 2003;
Imayoshi et al., 2010). Among the roles assigned to Notch signal-
ing in the developing OE are the promotion of progenitor prolif-
eration but inhibition of neurogenesis in the developing OE (Cau
et al., 2002; Schwarting et al., 2007; Maier et al., 2011). Recently,
we have demonstrated that Notchl signaling helps to maintain
HBC dormancy (Herrick etal., 2017). To date, however, the com-
plexities of Notch signaling have not been fully elucidated.

Here, using in vivo retroviral transduction in rats and condi-
tional gene knock-out/overexpression in mice, we demonstrate
that canonical Notch signaling determines neuronal versus non-
neuronal differentiation in the regenerating adult OE. Specifi-
cally, Notch1 and Notch2 play redundant RBPJ-dependent roles
in determining cell fate, but Notch2, and not Notchl, is required
for the survival of Sus cells after their differentiation (Rodriguez
et al., 2008). Interestingly, long-term N1ICD overexpression in
HBCs results in increased cell proliferation and tumor formation.
These results enable us to direct HBC cell fate both in vivo and in
vitro in the setting of neuronal injury and tissue repair.

Materials and Methods

Animals and breeding. Wild-type F1 mice used for assessing immunohis-
tochemical expression of Notch pathway components after MeBr lesion
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were bred from C57BL/6] and 129S1/Svlmj mice in house or ordered
from the The Jackson Laboratory as needed (stock 101043). K5CreER ™
mice were described previously (Indra et al., 1999) and provided by P.
Chambon (University of Strasbourg, Strasbourg, France) via R. Reed
(Johns Hopkins University School of Medicine, Baltimore, MD). The
floxed Notchl (Notchl"?®%/Grid], stock 00695), floxed Notch2
(B6.129S-Notch2"™3¢"/] stock 010525), and floxed-stop Notch1-ICD
[Gt(ROSA )?osertmINetch gy /T stock 008159] mice were purchased
from The Jackson Laboratory and were bred in house (Murtaugh et al.,
2003; Yang et al., 2004; McCright et al., 2006). The floxed RBP] mouse,
designated Rbpj™'"°" was provided by W. Cardoso (Columbia Univer-
sity Medical Center, New York, NY) and was described previously (Han
et al, 2002). The Cre reporter mice R26R(TdTomato) [B6.Cg-
Gt(ROSA)26Sor'm9(CAG-TdTomato)Hze /1 = stk 007909] were purchased
from The Jackson Laboratory and described previously (Madisen et al.,
2010). All animals were housed in a heat- and humidity-controlled
AALAC-accredited vivarium operating under a 12 h light/dark cycle, and
animals were maintained on an ad libitum rodent chow and water. Male
Sprague-Dawley rats (Taconic) weighing 200-250 g were maintained on
ad libitum food and water. The Committee for the Humane Use of Ani-
mals at Tufts University School of Medicine, where the animals were
housed and the experiments conducted, approved all protocols using
vertebrate animals.

MeBr lesions. Animals were passively exposed to MeBr gas for 8 h as
described previously (Schwob et al., 1995; Chen et al., 2004). Twelve-
week-old B6.129 F1 mice were exposed to 180 ppm MeBr in pure air,
whereas all transgenic mouse lines were exposed to 175 ppm MeBr in
pure air at 8 weeks of age. Rats weighing 300—325 g were exposed to 330
ppm MeBr.

Methimazole lesions. Methimazole was dissolved in PBS at a concen-
tration of 10 mg/ml and administered to mice at 6 weeks of age at a dose
of 50 mg/kg (i.p.). Mice are placed on heat pads for 1 d following admin-
istration, to ameliorate the anti-thyroid effects of the drug. Postinjection
care is provided when necessary.

Drug preparation and administration. Tamoxifen (Sigma-Aldrich,
T5648) was dissolved in sterile corn oil (USP grade) at 30 mg/ml at 37°C
for 20 min. This solution was injected intraperitoneally at 150-300
mg/kg as indicated. EdU (Invitrogen, A10044) was dissolved in sterile
PBS at 5 mg/ml and injected subcutaneously under the back skin at 50
mg/kg 2 h before kill.

Tissue processing. Animals were anesthetized using induction mixture
and transcardially flushed with PBS and perfused with 40 ml of 1% PLP
(1% paraformaldehyde, 0.01 M monobasic and dibasic phosphates, 90
mu lysine, 0.1 M sodium periodate). After dissection of the OE turbinates
and olfactory bulb, tissue was postfixed in 1% PLP for 1 h under vacuum.
Tissue was washed with PBS and decalcified with saturated EDTA over-
night. Tissue was cryoprotected in 30% (w/v) sucrose in PBS overnight,
embedded in optimal cutting temperature (OCT) compound (Miles),
and frozen in liquid nitrogen. Coronal sections (10 um) were cut using a
Leica cryostat, mounted on “Plus” slides (Fischer Scientific), and stored
at —20°C until used for immunohistochemical staining.

Replication-incompetent retroviral vector generation and concentration.
The three plasmid constructs for the replication-incompetent MMLV-
derived retroviral vectors (RRV) (1)-expressing EGFP; (2) the constitu-
tively active Notchl intracellular domain (N1ICD) along with EGFP
(both from Dr. Constance Cepko, Harvard University); and (3) the
dominant-negative form of Mastermind-like DN-MAML and EGFP (a
gift from Dr. Warren Pear, University of Pennsylvania) have been de-
scribed previously (Maillard et al., 2004; Dang et al., 2006). Retrovirus
(RV) was generated using standard calcium phosphate transfection
method. Phoenix cells were split on the day before transfection to reach
50-70% confluence. DNA (10 wg/10 cm Petri dish) was incubated with 2
M CaCl, and 2X HBS buffer for 10 min on ice and then added dropwise
to cells. Subsequently, chloroquine (2 mg/ml) was added to facilitate the
entry of DNA. Cells were switched to fresh medium supplemented with
10% FBS at 1618 h after transfection. Batches of RRV-contained super-
natant was concentrated via a calcium phosphate precipitation method
(Pham et al., 2001). Cells transfected with retroviral construct were
switched to fresh, serum-free DMEM medium at 48 h after transfection
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and incubated overnight at 37°C. Supernatant was collected and its pH
was adjusted to 7.7 with 0.1 N NaOH. Supernatant was then filtered
through 0.45 um filter, followed by the slow addition of 1 M CaCl, to
reach a final concentration of 60 mm. The suspension was incubated at
37°C for 30 min to facilitate the formation of calcium phosphate precip-
itates, followed by centrifugation at 2050 X g for 5 min at 4°C. The
precipitate was redissolved in 0.1 M EDTA and dialyzed to remove EDTA.
The typical titer of concentrated retrovirus was determined by the stan-
dard in vitro infection method on 3T3 cells. The typical titer of RV stocks
used for intranasal infusion was in excess of 5 X 10 infectious particles
per milliliters in an assay on 3T3 cells.

Nasal cavity infusion with RV. Host rats were exposed to 330 ppm of
MeBr gas for a period of 6 h. One day after MeBr lesion, animals were
anesthetized by intraperitoneal injection of induction mixture. After
neck dissection and tracheotomy, 150 ul of RV suspension, together with
polybrene (8 pg/ml), was directly infused into the nasal cavity of the host
rat using PE10 tube (BD Biosciences) inserted into 15 mm depth into the
nasal cavity. Infused animals were kept at a surgical plane for 4 h by
periodic supplemental injections of maintenance mixture and main-
tained with a supplemental heating source. Animals were allowed to
survive for 2 weeks or 2 months before perfusion with fixative, the latter
survival being used for long-term N1ICD-overexpression.

Antibody reagents and the identification of OE cell types. The immuno-
histochemical classification and identification of the several olfactory
epithelial cell types in this study are described in Table 1. The primary
antibodies used in this study to make cell type identifications are listed in
Table 2. Information on the antibodies is derived from the manufactur-
ers’ description, the literature, and our own data.

Immunohistochemistry. The primary antibody dilutions and the details
of their working conditions and detection are listed in Table 2. Before
immunostaining, tissue sections were rinsed in PBS to remove OCT and
subjected to antibody-specific pretreatments. The pretreatments in-
clude: heating in 0.01 M citrate buffer, pH 6.0, for 10 min in a commercial
food steamer and/or incubation in 3% hydrogen peroxide in MeOH for
5 min. Sections were blocked with 10% donkey serum/5% nonfat dry
milk/4% BSA/0.1% Triton X-100 in PBS and incubated for 1 h at room
temperature in primary antibody. Subsequently, staining was visualized
using the array of methods indicated in the table. Unless otherwise indi-
cated, blue represents the nuclear counterstain 4',6-diamidino-2-
phenylindole.

EdU labeling. EAQU (Invitrogen, A10044) was dissolved in sterile PBS at
5 mg/ml and injected subcutaneously under the back skin at 50 mg/kg 2 h
before kill. For visualization of EAU incorporation, sections were perme-
abilized with 0.5% Triton X-100 in PBS, and treated with azide-594
containing Click-iT reaction mixture (Invitrogen) for 30 min. After three
washes in 3% BSA in PBS, sections were steamed and stained for addi-
tional IHC markers.

Imaging and quantification. Stained tissue sections were imaged using
a Zeiss 510 confocal microscope in multi-tracking mode. Image assembly
was performed using Photoshop CS6 (Adobe). In all photographs, only
balance and contrast were altered throughout the entire image using
Image].

Proliferation studies using EAU analysis were performed in the follow-
ing manner. Mice were injected subcutaneously with 50 mg/kg EAU in
PBS. EdU was detected using ClickIt-chemistry on prepared tissue sec-
tions (Invitrogen). EAU(+)/TdTomato(+) cells were counted by direct
observation. In both mice and rats cell types were determined by direct
observation using a Nikon 800E epifluorescence microscope. Following
gene manipulation in mice, TdTomato(+) cells that were negative for
immunohistochemical staining with rabbit a-PGP9.5 were classified as
non-neuronal. TdTomato(+) cells were counted and considered to be
completely recombined at the loci of interest if the corresponding protein
(Notchl, Notch2, or RBPJ) was absent by immunohistochemistry. Eight
to 12 nonsequential sections were analyzed for TdTomato(+) regions.
Data were pooled from three animals unless otherwise specified. Data
were analyzed using Microsoft Excel software, with the appropriate sta-
tistical test as indicated in the text. In all graphs mean values and SEM are
reported. Following retroviral infusion in rats, clones of labeled cells were
analyzed with reference to the immunochemical markers listed above.
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Clones were classified as having or lacking sustentacular cells and totaled
for each of the treatment groups.

Results

Analysis of Notch receptors and targets in normal and injured
olfactory epithelium

We first studied tissue-wide expression of components of the
canonical Notch signaling pathway and its targets following acute
injury to the OE of wild-type mice, which are confirmatory of
previous findings examining recovery of the rat OE (Manglapus
et al., 2004; Guo et al., 2010). These included changes in the
pattern of immunohistochemical staining for the canonical Notch
target, Hesl, and the two Notch receptors, Notchl and Notch2
(Fig. 1). In the uninjured epithelium, in agreement with a previ-
ous microarray analysis of gene expression (Krolewski et al.,
2013), Hesl and Notch2 label both Sus cells, whose somata oc-
cupy the most apical zone of the epithelium (Fig. 1A,AlI, aster-
isks, C, single straight arrow; uninjured), and HBCs (Fig.
1A,A1C, double arrows; uninjured), whereas Notchl labels
HBC:s (Fig. 1B, double arrows; uninjured) as well as a small pop-
ulation of GBCs (Fig. 1B, thick arrows; uninjured). In another
study, we find that canonical Notch ligands Jagl and DII1 label
Sus cells and HBCs, respectively (Herrick et al., 2017). We cannot
detect any evidence of Notchl or Notch2 receptors or Hesl ex-
pression in neurons of the uninjured epithelium (Fig. 1), nor
could we detect Notch3 or Notch4 staining in the OE either with
or without injury (data not shown), which fits with the absence of
significant expression of these receptors in microarray and
RNAseq analyses of uninjured OE (Krolewski et al.,, 2013;
Schnittke et al., 2015). In the acute phase of epithelial recovery at
2 and 3 d postlesion (dpl) some among the heterogeneous pop-
ulation of non-HBCs, identified as p63(—) cells that are displaced
from the basal lamina, are Notchl(+), Notch2(+), and/or
Hes1(+) (Fig. 1A, Al thick arrows; at 2 and 3 dpl). Some of these
are likely to be transitioning into GBCs to regenerate the neuro-
nal population, but others may be differentiating into Sus cells
directly (Manglapus et al., 2004). Between 4 and 7 dpl, the most
heavily labeled Hesl(+) cells form an apical cell layer (Fig.
1A, Al straight thin arrows; at 4—7 dpl), and more lightly labeled
Hes1(+) cells have reattached to the basal lamina, resumed p63
expression, and apparently are re-established as HBCs (Fig.
1A,A1, double thin arrows; at 6 dpl). However, it is notable that
many p63(+) cells, presumed HBCs, lack Hesl staining (Fig.
1A,Al, single thin arrows with asterisks; at 2—4 dpl), suggesting
that they are not yet fully stabilized, given the contrast with the
uninjured epithelium shown here (Fig. 1A; uninjured vs 2—4 dpl)
and the role of Notch1 signaling in maintaining HBC quiescence
(Herrick et al., 2017). Up through 4 dpl, Notch1 and Notch2 are
scattered through the thickness of the OE, although some HBCs
are distinctly Notch1(+) (Fig. 1B, double arrows; at 4 dpl). How-
ever, by 5-6 dpl, Notchl is more established in the basal layer,
whereas Notch2 is more prominent at the apex of the epithelium
(Fig. 1B, double arrows vs C, single arrow; at 5 and 6 dpl). By 7
dpl, the marker-based distinction between apical Sus cells and
basal HBCs is more evident, such that Notch2 intensely stains Sus
cells (Fig. 1C, single thin arrows; at 3-7 dpl) and faintly labels
HBCs, whereas Notchl now intensely labels the p63(+) HBCs
(Fig. 1B, double arrows; at 7dpl).

To examine more closely the transition of HBCs to Sus cells
after injury, we assessed the pattern of CK14 and CK18 immuno-
staining after injury in combination with Hesl, the canonical
downstream target of Notch signaling. At 1 dpl, Hes1 labels the
vast majority of CK14(+) basal cells, some intensely, and many of
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Table 1. Cell types of the olfactory epithelium and the markers used in this study

p63 CK5/CK14 (D54 Sox2 Pax6 NST PGP9.5 OMP (K18 Ezrin REEP6 Sus4

HBCs ++ ++ ++ + + — — — — _ _
GBGs,, — — — + + — — — — — _ _
GB(:Sdown - - - - - * * — — — —_ —
OSNS;m — — — — — + + — — _ _ _
OSNSmat - - - - - =+ + ++ — — — —
SI'lsimm - - - ++ ++ — — — ++ + + —
SUS ot — — — ++ ++ — — — ++ + + +
Duct/gland — — — — ++ — _ _ + + +

-+ =+ Strongly positive, + positive, = weaKly positive.

References to cell type markers used here: HBCs (Holbrook etal., 1995; Guo etal., 2010; Packard etal., 2011); upstream GBCs (GBCs,,, ; Guo etal., 2010; Packard etal., 2011; Schwob etal., 2017); downstream GBCs (GBCs, ; Guo etal., 2010;
Packard et al., 2011; Schwob et al., 2017); immature olfactory sensory neurons (OSNs; .., ; Schwob et al., 2017); mature OSNs (OSNs,,,,. ; Schwob et al., 2017); immature sustentacular cells (Sus; ., ; Schwob et al., 1995; Guo et al., 2010;
Krolewski et al., 2012); mature Sus cells (Sus,,.,, ; Schwob et al., 1995; Huard et al., 1998; Guo et al., 2010; current paper, Fig. 4); Bowman’s duct and gland cells (Schwob et al., 1995; Huard et al., 1998; current paper, Fig. 4).

Table 2. Antibodies used and their working conditions

Primary antibody Source/vendor Immunogen Protocol

Rb cv-activated Casp-3 Cell Signaling Technology Large fragment of activated caspase-3 resulting from cleavage adjacent to (1:100) — fluor-DaRb
Asp175

Mo cc-BIV Tubulin Sigma Aldrich Peptide corresponding to the C-terminal sequence of B-tubulin isotype IV, (1:100) — fluor-DaMo
conjugated to BSA

Gt a-CK14 Santa Cruz Biotechnology C-terminus of CK14 of human origin (1:50) — fluor-DaxGt

Rb -CK18 Abcam C-terminus of human (K18 (1:300) — fluor-DaRb

Gt a-mouse (D54 R&D Systems Mouse myeloma cell line NSO-derived recombinant mouse ICAM-1/CD54, (1:50) — fluor-DaGt

GIn28-Asn485

Recombinant protein specific to human Hes1 protein

Purified recombinant peptide produced in Escherichia coli
Residues around Pro2438 of human Notch1 protein

Residues around Ala2378 of human Notch2 protein

Raised against aa 1-163 OMP of human origin

Recombinant fragment corresponding to human p63 aa 1-205
Recombinant human UCHL1, aa 1-223

1:100) — fluor-DaRb
1:1000) — fluor-DaRb
1:50) — TSA — fluor-SA
1:100) — fluor-DaGt

1:75) — TSA — fluor-SA
1:150) — TSA — fluor-SA
1:100) — fluor-DacMo
1:200) — fluor-DaMo
1:100) — fluor-DaRb

Rb a-dsRed Rockland Immunochemicals Recombinant protein
Chk a-GFP Aves Labs Recombinant Protein
Rb -Hes1 Cell Signaling Technology
Gt a-mCherry SicGen
Rb a-Notch1 Cell Signaling Technology (Danvers, MA)
Rb a-Notch2 Cell Signaling Technology
Mo a-OMP Santa Cruz Biotechnology
Mo a-p63 Nordic BioSite
Rb «-PGP9.5 (UCHL1) Protein Tech
Rt -RBPJ Cosmo Bio Clone 76709
Rb a-Sox2 EMD Millipore
Rb a-Sox9 EMD Millipore
human Sox9
Mo c-Tuj1 BioLegend

Recombinant GST fusion protein (Clone 6F1.2)
KLH-conjugated linear peptide corresponding to the C-terminal sequence of

Microtubules derived from rat brain

1:25) — TSA — fluor-SA
1:100) — TSA — fluor-SA
1:500) — fluor-DaRb

(1:100) — fluor-DaeMo

Avariety of fluorophores (fluors) were used: green, AlexaFluor 488; red, AlexaFluor 594 (epifluorescence) or Cy3 (confocal); blue, AMCA. Alexa-conjugated secondary Abs were used at 1:250. Cy3 conjugated reagents were used at 1:150 for
directly conjugated secondary antibodies or 1:750 for TSA. AMCA was used at 1:100. Rb, Rabbit; Mo, mouse; Gt, goat; Chk, chicken; TSA, Tyramide Signal Amplification Kit from Perkin Elmer; b, biotinylated secondary antibody.

the same basal cells contain immuno-detectable CK18 as well
(Fig. 2A—C, double arrows). At 2 dpl, CK14 and CK18 begin to
label predominantly (but not exclusively) basally versus apically
located cells, respectively (Fig. 2D—F). Some of the more apical
CK18(+) cells are strongly Hes1(+), whereas others are not (Fig.
2D-F, arrows vs arrows with asterisks, respectively). It is worth
noting that gland cells in the lamina propria are Hes1(-) (Fig.
2D-F, curved arrows), which absence is characteristic of the un-
injured epithelium. The coexpression of CK14 and CK18, in con-
trast to their segregation in the normal epithelium, may be
characteristic of cells that are now transitioning into duct/gland
or Sus cells or alternatively, cells that are poised to go either back
to CK14 " basal cells. OE cells maintained in culture can also
exhibit a mixed cytokeratin phenotype (Jang et al., 2008), and
bioinformatic analysis suggests that newly activated HBCs tran-
sition directly to Sus cells when p63 is conditionally excised or
after epithelial lesion (Fletcher et al., 2017; Gadye et al., 2017).

Manipulating Notch signaling determines cell fate after MeBr
injury in rat OE

To investigate the role of the canonical Notch signaling pathway
in determining cell fate after epithelial injury in rats, we infused

replication-incompetent retroviral vectors encoding either GFP-
alone (pLIA-GFP), dominant-negative mastermind-like-GFP
fusion protein (pLIA-dnMAML/GEFP), Notchl intracellular do-
main (pLIA-N1ICD-IRES-GFP) into the nasal cavity of MeBr-
exposed rats 1 dpl. Transduction of dividing progenitors spared
by the lesion will lead to turning off or turning on canonical
Notch signaling with the dnMAML construct or the N1ICD con-
struct, respectively (Fig. 3A). Previous experiments that used in-
tranasal infusion of retroviral vectors in the same manner
demonstrated that the clusters of labeled cells that arise do so
from a single infected progenitor cell, i.e., the clusters, which are
widely dispersed, uniform in expression levels of the protein tag,
and transduced by only one type of vector when a mixture of
distinct vectors are infused, are clonal in origin (Huard et al,,
1998). In the prior study of some 228 retrovirally transduced
clones, 76% of the clones contained Sus cells and 30% of
the clones contained neurons. The vast majority of neuron-containing
clones were mixed with respect to their composition; 93% of the
neuron-containing clones also included Sus cells. Most of the
clones that lacked neurons and Sus cells were comprised of duct
and gland cells (21% of all clones). As expected on the basis of the
prior results, infusion and transduction with the empty RV vector
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Hes1|Hes1

Figure1. Immunohistochemical labeling demonstrates participation of Notch receptors and downstream targets during OE regeneration. In the uninjured mouse OE, Hes1and p63 co-label HBCs
[A, A1 (column), uninjured (row), double arrows], as does Notch1 and Notch2 (B, C; uninjured, double arrows). In addition, Notch1 labels some GBCs (B, uninjured, thick arrows), but they do not
express Hes1. Notch1also labels gland cells deep to the basal lamina and cells lining the ducts that extend apically to the surface of the epithelium (B, uninjured, curved arrow). Notch2 labeling marks
the foot process of the Sus cells (thin arrows), as well as the somata at the surface. The early response to MeBr lesion entails the downregulation of Hes1in the weakly p63(+) HBCs (4, A1, 2 dpl, thin
arrow with asterisk) and the expression of Hes1 in cells situated apically to the HBCs, which may be either GBCs or cells transitioning directly into Sus cells (4, A7, 2, 3 dpl, thick arrow) (Manglapus
etal., 2004; Guo et al., 2010). Hes1-labeled cells that are differentiating into fully-fledged Sus cells remain linked to the surface of the epithelium throughout the remainder of the first week after
lesion (4,A7,4—7 dpl, thinarrows), at the end of which they remain immature, but are demonstrably Sus cells (4, A7, 7 dpl, asterisk). Around this time, Hes1and p63 co-labeling of HBCs also resumes
(A, A1,6 dpl, double arrows). Basal cell labeling with Notch1 remains the predominant staining pattern throughout the first week following injury (B, 2—7dpl) and the clear association of Notch1
with p63in HBCs reappears by 4 dpl (B, 4 -7 dpl, double arrows). In contrast, Notch2 labeling is concentrated at the surface from 3 dpl onward (C, 3—7 dpl, thin arrows), in parallel with Hes1 labeling
(A,A1,3-6dpl, thin arrow, 7 dpl, asterisks) and their differentiation to Sus cells. Arrowheads mark the basal lamina. Scale bar: (in 4) A-C, 20 m.

Hes1 CK18

Figure 2.  Displacement of Hes1 apically is associated with the onset of CK18 expression. A—C, At 1 dpl in mice, apically displaced Hes1-expressing cells coexpress both CK14 and CK18 (double
arrows), whereas the duct cells express CK18 only (curved arrows). D—F, By 2 dpl, some of the Hes1(-+) cells have lost CK14 positivity (single arrow). Other CK18(+) cells lack Hes1 (arrow with
asterisk). Arrowheads mark the basal lamina. Scale bar: (in A) A—F, 20 m.

(pLIA-GFP) resulted in a range of clone types at 2 weeks survival =~ HBCs but are distinct from them). In these, neurons were iden-
(Fig. 3B,D,E); some were complex and composed of neurons tified by their location in the middle of the epithelium and
(thick arrows), Sus cells (curved arrows), and basal cells (straight ~ labeling with Tujl (thick arrows), whereas Sus cells were api-
arrows, the asterisk marks GBCs that nestle among the CD54(+)  cal to the neurons and Sox2(+), identifying them as Sus cells
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Figure 3.  Retroviral transduction-mediated manipulation of the Notch pathway indicates that Notch signaling drives the differentiation of non-neuronal cells in the regenerating rat OE. 4,
Retroviral constructs, control (pLIA-GFP), repression of canonical Notch signaling via the dominant-negative form of Mastermind-like fused to GFP (dnMAML-GFP), and constitutively active Notch
signaling via the Notch1 intracellular domain (Notch 11CD-GFP), and (B, €) whole mounts of clones arising 2 weeks after retroviral transduction with control (pLIA-GFP) or constitutive Notch signaling
(pLIA-NTICD) vectors demonstrates the marked difference in effect; instead of the dispersion of the labeled cells seen with the GFP-only vector, N1ICD produces a large tight cluster of cells whose cell
bodies are nearer the surface of the epithelium. D, D1, E, Two adjacent sections illustrating a clone generated by GFP-only transduction 2 weeks previously that contains a mixture of cell types:
Sox2(+) Sus cells (curved arrows), Tul1(+) olfactory neurons (thick arrows), Sox2(+) GBCs (thin arrows), and even (D54(+) HBCs (thin arrows with asterisk). In this and other panels, the
designation “1” indicates differentimages of the same section. F-H1, Three different clones generated following dnMAML transduction 2 weeks previously in which the vast majority of the cells are
(D54(—), Sox2(—), Tuj1(+) neurons (thick arrows). Some GBCs are also seen (thin arrows). I-K2, Three different type | clones generated by N1ICD transduction 2 weeks previously. The transduced
cells are Sox2(+) (1, 17), Pax6(+) (J), and Hes1(+) (K—K2), even if found deeper in the epithelium (curved arrow with asterisk), as are non-transduced Sus cells adjacent to them (curved arrow).
They form multiple layers of Sus-like cells at the surface of the epithelium. L-M1, Two different type Il clones generated by N1ICD transduction 2 weeks previously. The transduced cells are Pax6(+)
(M, M1) and Hes1(+) (data not shown) but do not express detectable Sox2 (L, LT), in contrast to the Sus cells around them (curved arrow). The clones are convoluted and can form vesicles, which
differentiates them from Sus cells or the Sus-like cells of the type | clones. Arrowheads mark the basal lamina. Scale bars: (in B) B, €, 50 wm; (in D) D-H, 25 pm; (inJ) I-L, 15 pem; M, 50 m.

(Fig. 3D, E, curved arrows). Other clones were composed of
only neurons, only Sus cells, or a mixture of Sus, duct, and
gland cells. Summing cellular composition across all of the
empty vector-transduced clones, some 61.6% of the constitu-
ent cells were neurons. Particularly pertinent for the assess-
ment of the role of Notch signaling in cell-type determination

(described in the next section), 20 of 25 pLIA-GFP clones that
we examined contained Sus cells (which comports well with
the results of the previous study; Huard et al., 1998). For each
clone type, the cells were indistinguishable in morphology and
marker phenotype from the nontransduced cells of the sur-
rounding epithelium.
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In contrast to complex or mixed clones observed with the
control vector, transduction with the pLIA-dnMAML/GFP pro-
duced clones confined to the middle and lower regions of the OE
that were composed of only Tuj-1(+) neurons (Fig. 3F-H, thick
arrows) and GBCs (Fig. 3F-H, thin arrows) at the 2 week time
point. It is noteworthy that the transduced cells were well inte-
grated among, and closely resembled, the neurons and basal cells
of the surrounding epithelium. The absence of Sox2(+) Sus cells
following dnMAML transduction was consistent and notable; all
40 of the clones generated across the two surviving animals in-
fused with the dnMAML vector lacked Sus cells as defined by the
usual morphological and immunolabeling criteria (y* = 42.5,
p < 0.001 with Yates’ correction; Fig. 3F-H).

By comparison to the clones observed with either control or
dnMAML vectors, the pLIA-NI1ICD-transduced clones were
markedly larger and did not resemble the composition of the
epithelium in which they were embedded. On the basis of their
cellular morphology, disposition within the tissue, and marker
expression, the clones arising following N1ICD transduction and
analyzed 2 weeks after transduction can be categorized into two
dominant and easily distinguished clone types, which we term
type I and type I, both of which were composed of non-neuronal
epithelial cells. Of the 101 clones generated by pLIA-N1ICD
transduction across three rats, 48 can be classified as type I and 49
as type II. The remaining four did not fall into either category,
although they, too, lacked neurons, and were not analyzed in
detail.

The cells comprising type I clones tend to merge fairly seam-
lessly with the surrounding OE (Fig. 3I-K). Type I clones were
completely aneuronal. Instead, most of the transduced cells span
the width of the OF and are roughly columnar in shape, like Sus
cells (Fig. 3I-K). A smaller proportion of the cells are found deep
to the layer of Sus cells and trail upward from the basal lamina
(Fig. 31, curved arrow with asterisk); they are marked by staining
with a pan-keratin antibody (data not shown). They tend to form
a tightly contiguous cluster that is easily recognizable when ex-
amining whole mounts (Fig. 3C); that kind of clustering is also
typical of Sus cell-only clones that are generated by transduction
with a control vector (cf. Huard et al., 1998, their Fig. 9). The cells
in the type I clones are heavily labeled with both anti-Sox2 and
anti-Pax6, as are the surrounding Sus cells (Fig. 31,], curved ar-
rows). Although it is impossible to rule out the generation of an
occasional pLIA-N1ICD-transduced neuron, the overwhelming
majority of the cells in the type I clones are Sus cells.

In contrast, the cells in the type II clones form an irregular
mass that pushes into, interrupts, and distorts the surrounding,
non-transduced epithelium (Fig. 3L, M). The cells are fashioned
into a highly convoluted epithelial monolayer, often arranged
around a lumen. The cells of both clone types are Hes1(+) (type
I, Fig. 3K; type II, data not shown), as would be expected in
response to N1ICD expression. However, the cells of type II
clones do not express Sox2 (Fig. 3L) unlike the surrounding Sus
cells (Fig. 3L, curved arrows) and unlike the cells in the type I
clones. The epithelial cells in the type II clones do express Pax6
(Fig. 3M) and Sox9 (data not shown); the molecular signature
Sox2(—)/Pax6(+)/Sox9(+) is characteristic of the cells compris-
ing Bowman’s ducts and glands (Guo et al., 2010; Lin et al., 2017).
To further compare the cells of the type I and type II with Sus cells
and duct/gland cells, we assessed labeling with other antibodies
that mark Sus cells at various stages of their maturity (Fig. 4).
Ezrin and REEP-6 are markers for both immature and mature
Sus cells (Krolewski et al., 2012), whereas SUS4 is limited to more
mature Sus cells (Goldstein and Schwob, 1996; Huard et al., 1998;
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Chen et al., 2004; Krolewski et al., 2012; Fig. 4A—C). All three
antibodies also stain duct/gland cells, but Ezrin does so weakly by
comparison with SUS4 and REEP6 (Fig. 4, compare A-C).

After MeBr injury in the rat, the vast majority of the cells that
are proliferating, exposed to the nasal cavity at the epithelial sur-
face, and thus infectible are spared marker-defined GBCs and
duct/gland cells (Huard et al., 1998). Based on differences in the
morphology and molecular phenotype it is highly likely that the
type I and type II clones arise from different cells of origin. By
comparison with the outcomes of transplantation and lineage
tracing experiments (Schwob et al., 1994; Goldstein et al., 1998;
Huard etal., 1998; Chen et al., 2004, Schnittke et al., 2015; and see
the next section), we favor the inference that GBCs that survive
MeBr lesion give rise to type I clones following transduction
with N1ICD, whereas residual duct/gland cells give rise to the
type II clones; that inference is supported further by the find-
ing that the transduced progeny in the type II clones are
Sox2(—)/Pax6(+) like duct/gland cells (Guo et al., 2010).

Thus, the retroviral infusion results demonstrate that block-
ing Notch signaling forces neuronal differentiation while activat-
ing Notch signaling drives non-neuronal differentiation in
whatever cell type has been transduced. However, with regard to
the differences in outcome following pLIA-NICD transduction,
and our interpretation that they reflect the identity of the specific
cells infected by the virus, it is important to acknowledge that our
inference can only be based on the composition of the clones that
arise with this type of approach.

Overexpression of N1ICD in HBCs drives Sus cell
differentiation in the injured mouse OE

Because of the uncertainty in the cell of origin for the different
types of clones observed with retroviral transduction, we also
took a genetic approach to manipulate N1ICD expression in a
cell-type-specific manner by taking advantage of the HBC-
specific K5CreER ™ driver to excise the stop sequences inhibiting
expression of Notch1-ICD (N1ICD) and of TdTomato in HBCs
using K5Cre; R26R-fl(stop)N1ICD-GFP; fl(stop) TdTomato mice
(Leung et al., 2007; Fletcher et al., 2011; Schnittke et al., 2015;
Herrick et al., 2017). It is worth emphasizing that although both
the NIICD and TdTomato constructs are targeted mutations of
the ROSA26 locus, equal efficiency of recombination cannot be
assumed nor practically evaluated (Badea et al., 2009; Long and
Rossi, 2009). Tamoxifen-induced recombination in HBCs and
their expression of N1ICD had no discernable effect on the be-
havior of the TdTomato(+) HBCs in the unlesioned OE, absent
activation. The labeled HBCs remained flat cells, tightly adherent
to the basal lamina, and part of the typical monolayer of HBCs,
i.e., they were persistently dormant. Thus, we assessed the fate of
HBCs and the cells they give rise to in a Notch-ON state after
injury (Fig. 5A). Two weeks following administration of tamox-
ifen, the mice were lesioned by exposure to MeBr (Fig. 5B). Mice
were perfused 4 weeks after injury at a time when the epithelium
is substantially recovered in wild-type animals (Schwob et al.,
1995; Chen et al., 2004; Holbrook et al., 2014; Schnittke et al.,
2015). The vast majority of HBC-derived TdTomato(+) cells
stain for the Sus cell markers Hesl, Sox2, and CK18, as well as
Notchl, of course, and do not label with PGP9.5 (Fig. 5C-G). The
N1ICD-expressing, HBC-derived cells closely resembled the type
I clones generated by transduction with pLIA-NICD: columnar
in shape and forming a compact cluster of cells in the apical layer
of the epithelium. The TdTomato(+) cells did not label with
BIV-tubulin, a marker of respiratory epithelium (Fig. 5H,1). In
contrast, the majority of the cells observed after injury in
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Type | NTICD-transduced clones in rats resemble Sus cells, whereas type Il clones are different. Staining with additional markers that label Sus and duct/gland cells reveals other

differences between type | and type Il clones. A—C, SUS4, Ezrin, and Reep6 all label Sus cells strongly in the uninjured OE. Duct/gland cells also label strongly with SUS4 and Reep6; Ezrin, not so much.
D-F1, Type | clones are strongly positive for all three markers. 611, Type Il clones lack SUS4 labeling, indicating that the cells are less well differentiated. The designation “1” indicates different

images of the same section. Scale bar: (in 4) A-11, 50 Lm.

K5CreER™; fl(stop) TdTomato mice were marker-identified neu-
rons (data not shown) in accordance with previous results
(Leung et al., 2007; Fletcher et al., 2011; Schnittke et al., 2015;
Herrick et al., 2017), and contrasts strongly with the scarcity of
neurons in the N1ICD-expressing mice (77.7 % 5.4% vs 0.4 *
0.7% neurons, respectively, = 23.8; p < 0.001, n = 3). The few
neurons observed in the K5Cre; fl(stop)N1ICD; fl(stop) TdTomato
mice may reflect a disjunction between expression of TdTomato
and the NIICD construct, even though they are both insertions
into the ROSA26 locus.

Notchl, Notch2, and combined Notch1/2 knock-outs shift
cell fate after injury

The foregoing data suggest that N1ICD expression in injury-
activated HBCs, or in GBCs, via retroviral transduction, appar-
ently dictates Sus cell differentiation. The coexpression of Notch1
and Notch2 by HBCs raises the obvious question of whether
Notchl or Notch2 receptors or both are integral to, and necessary
for, lineage specification after epithelial injury. The roles of
Notch receptors in other tissues provide precedents for the in-
volvement of either or both Notchl and Notch2 when both are
expressed (Kumano et al., 2003; Cheng et al., 2007). Accordingly,

we used several conditional knock-out lines to investigate the
respective roles of Notch1, Notch2, and Notch1/2 deficiency in
the setting of OE injury.

The several conditional knock-out lines that were used to
study the effects of isolated loss of Notch receptors on cell fate
after injury all use the K5CreER™ driver to accomplish recombi-
nation (Leung et al., 2007; Schnittke et al., 2015; Herrick et al.,
2017; Fig. 6A). Mice of the appropriate genotype were treated
with tamoxifen at 6 weeks of age, lesioned by injection with me-
thimazole at 8 weeks, and killed 1 or 4 weeks after injury (Fig. 6B).
With respect to Notchl, prior excision did not prevent the differ-
entiation of Sus cells when assayed 1 week (data not shown) or 4
weeks after lesion (Fig. 6 D,D1) compared with the wild-type
control (Fig. 6C,CI). The earlier time point is soon after lineage
commitment becomes evident (compare Fig. 1).

Similarly, the conditional excision of Notch2 did not prevent
the formation of identifiable Sus cells, which were evident 1 week
after lesion despite their lack of Notch2 labeling (Fig. 6E); our
findings parallel and extend previous observations that constitu-
tive knock-out of Notch2 does not prevent the formation of Sus
cells during embryonic and neonatal development (Rodriguez et
al., 2008). However, we do find enhanced activated Caspase3
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Figure5.  HBC-specificN1ICD overexpression drives the formation of non-neuronal, Sus-like cellsin the regenerating mouse OE.
A, Schematic of the mouse genotype used to assess the effect of N1ICD overexpression. The K5:CreER driver is HBC-specific. B,
Experimental protocol. The 200 mg/kg dose of tamoxifen induces widespread but not universal recombination in HBCs.
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staining in Sus cells at 1 week (Fig. 6F ); for
example, we found multiple fields that
contained several Caspase3(+) Sus cells
in the Notch2 knock-out animals, which
was never seen in the wild-type mice. Fur-
thermore, HBC-derived, TdT(+) Sus
cells were demonstrably scant at 4 weeks
of survival (Fig. 6G). Indeed, those few
TdT(+) Sus cells observed at 4 weeks sur-
vival in the Notch2 conditional knock-out
mice have demonstrable immunolabeling
for Notch2, indicating that the knock-out
was incomplete (Fig. 6G1,G2, arrows).
The disappearance of the HBC-derived
Notch2(—) Sus cells between 1 and 4 weeks
after their generation also parallels the effect of
developmental knock-out of Notch2 as refer-
enced above (Rodriguez et al., 2008).

The preceding results suggest that ei-
ther Notchl or Notch2 on its own is suf-
ficient for the generation of Sus cells
by HBCs. The consequences of double-
knock-out of Notchl and Notch2 are de-
cidedly different. In double-knock-out
mice, HBCs gave rise to neurons almost
exclusively at 1 week postlesion, which
phenotype remained evident at 4 weeks
postlesion (Fig. 6 H,HI,LII); this is a
marked shift away from non-neuronal
fate compared with wild-type animals and
the single gene knock-outs. Comparison
of the effects of genotype on the percent-
age of neurons among the HBC-derived
progeny at 1 week after lesion demon-
strates a statistically significant overall ef-
fect (Fig. 6J; one-way ANOVA, F = 68.47,
p <0.001, n = 3). Also statistically signif-
icant were pairwise comparisons between
Notch1/Notch2 double-knock-out versus
Notchl knock-out (Student’s t test, t =
28.98, p < 0.001, n = 3), Notchl/Notch2
double-knock-out versus Notch2 knock-
out (Student’s t test, t = 9.25, p < 0.001,
n = 3), and Notchl/Notch2 double-
knock-out versus wild-type (Student’s ¢
test, t = 22.79, p < 0.001, n = 3). Thus,
both Notchl and Notch2 must be elimi-
nated in order for a strictly neuronal fate
to be adopted by the descendants of

<«

Regeneration of the epithelium is nearing completion at 4
weeks after lesion. (-G2, Cells derived from N1ICD-
overexpressing HBCs after MeBr lesion are PGP9.5(—) (€2),
Notch1(+) (D2), Hes1(+) (E2), Sox2(+) (F2), and CK18(+)
(G2). Their appearance and marker-defined phenotype are
Sus-like and closely resemble the cells of the type | clones in-
duced by retroviral NICD transduction in rats (compare Figs. 3,
4). H, I, The HBC-derived cells are BIV-tubulin(—) (H), which
is a marker of respiratory epithelium (/). The designations “1”
and “2" indicate different images of the same section. Arrow-
heads mark the basal lamina. Scale bars: (in €) (—H, 20 m; 1,
50 pm.
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Conditional, HBC-specific deletion of both Notch1 and Notch2 is required to suppress the formation of Sus cells in the regenerating adult mouse OE. A, Genotypes of the mouse strains

used. B, Experimental protocol. €, €1, HBC-derived clones that are wild-type for Notch1 and Notch2 genes (K5CreER;TdT) consist of both PGP(+) neurons and Sus cells found superficial to the band
of neurons. D, D1, Deletion of Notch1in HBC does not alter differentiation of HBC-derived progeny, which includes Sus cells (thin arrow) and PGP(+) neurons. E, F, HBC-specific excision of Notch2.
Deletion of Notch2 does not prevent the formation of Sus cells at 1 week after lesion (E, F, arrows). However, the Sus cells are labeled for activated Caspase3 at that time point, suggesting that they
are most likely dying (F, arrows). (G—G2, HBC-specific excision of Notch2. In animals that survive for 4 weeks after methimazole injury, the epithelium lacks HBC-derived Sus cells, except in those few
instances where HBC-derived Sus cells retainimmunolabeling for Notch2 (G7, G2, arrows). H—I1, Deletion of both Notch 1and Notch2 in HBCs prevents the formation of Sus cells at 1 week after lesion
(H, H1) and results in predominantly neuronal clones (/, /7). J, Quantifying the percentage of HBC-derived neurons in mice of the specified genotypes at 1 week after lesion confirms the finding that
both Notch1 and Notch2 have to be excised to prevent the formation of Sus cells. The designation “1” indicates different images of the same section. Arrowheads mark the basal lamina. Scale bar:

(in B) A—J, 20 .

N1ICD-expressing, activated HBCs after injury; these data paral-
lel the pro-neuronal effect of transduction with a dominant-
negative construct of MAML (Fig. 3). It is likely that a failure to
efficiently recombine at both alleles of both Notchl and Notch2
explains why a few of the HBC progeny were able to adopt a
non-neuronal fate.

RBPJ mutation, which blocks canonical Notch signaling,
prevents Sus cell differentiation in response to N1ICD

As described in the section on retroviral transduction of the rat
OE, retroviral transduction with dominant-negative MAML pro-
motes neuronal differentiation and prevents the formation of Sus
cells, suggesting that lineage specification driven by Notch signal-
ing occurs via the canonical Notch pathway. Mutation by exci-
sion of the required canonical cofactor RBP] provides an
additional test of canonical involvement in Sus cell production
subsequent to conditionally driven N1ICD expression in lesion-
activated HBCs. Immunohistochemical staining of the OE with
an anti-RBPJ antibody that binds to the DNA-binding domain

(DBD) marked all of the cells, and it intensely labeled immature
neurons, i.e., those cells that are deep to the layer of OMP(+)
neurons (Fig. 7D-D3; Herrick et al., 2017). The specificity of this
antibody for the DBD has been established (Basch et al., 2011).

The role of RBPJ in driving Sus cell differentiation was as-
sessed during recovery from MeBr injury using quadragenic
strains of mice with the following genotypes: K5CreER"%RBPFV*;
fl(stop)N1ICD;fl(stop) TdTomato and K5CreER"%;RBPJ™";
fl(stop)N1ICD;fl(stop) TdTomato (Fig. 7A; Han et al., 2002). In
the floxed RBJ mice, tamoxifen administration (Fig. 7B) leads to
the excision of the DNA-binding domain of RBP] of ostensibly
one or both alleles, respectively. The expression of both TdTo-
mato and N1ICD is also released by tamoxifen (Fig. 7A). In sib-
lings that are wild-type at both RBPJ alleles (K5CreER™%RBPJ ™",
fl(stop)N1ICD;fl(stop) TdTomato), the expression of NI1ICD is
sufficient after activation of the recombined HBCs to force near-
universal Sus cell differentiation (Fig. 7C,F), see also (Fig. 5).

In both strains of RBPJ-targeted mice, i.e., those that were
homozygous and those that were heterozygous for the floxed
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experiments. B, Experimental protocol. (~€2, In mice that are wild-type for RBPJ the descendants of N1ICD-expressing HBCs are exclusively Sus cells 4 weeks postinjury. D-D3, In mice that are
homozygous for the floxed RBPJ allele, conditional recombination shifts the descendants of HBCs to primarily a neuronal fate despite the exogenous expression of N1ICD; at least some mature to the
point of OMP-expression. Itisimportant to note that although some HBC-derived neurons demonstrably lack RBPJ-DNA-binding-domain staining (D74, D1B, X), others retain RBPJ-DBD staining like
the surrounding neurons (D24, D2B, asterisks) suggesting that excision of a single copy may be sufficient to block Sus cell-like differentiation. E, E7, In mice that are heterozygous for the floxed RBPJ
allele, conditional recombination still shifts the descendants of HBCs to primarily a neuronal fate despite the exogenous expression of N1ICD (asterisks), confirming haploinsufficiency. Sus cells are
seen more frequently when only one copy can be excised (arrows). F, Quantification of neuronal versus non-neuronal progeny following HBC-specific recombination confirms the phenotype
associated with both the homozygote and heterozygote RBPJ genotype. Arrowheads mark the basal lamina. Scale bar: (in () A-€2, D3—F, 20 m.

RBPJ allele, tamoxifen-driven recombination in HBCs of the
RBPJ gene and the other alleles led to the production of a very
high percentage of neurons despite activation of N1ICD (Fig.
7D-F); N1ICD ought to suppress neuronal differentiation and to
lead to nothing but Sus cells (Fig. 7C). Indeed, neurons are gen-
erated to roughly the same extent in the heterozygotes and ho-
mozygotes (Fig. 7F) as in RBPJ-wild-type animals that do not
express N1ICD (Fig. 7F). Statistical analysis demonstrated the
overall significance of RBPJ] mutation (one-way ANOVA, F =
96.38, p < 0.001, the individual n values for the 4 groups are listed
with the pairwise comparisons which follow immediately) and
significant pairwise effects [(1) N1ICD;RBPJ*/* vs N1ICD;
RBJ "/t = —13.74, p < 0.001, n = 3, 7, respectively; (2) N1ICD;
RBPJ /" vs N1ICD;RBJ V™ t = —17.44, p < 0.001, n = 3, 8,
respectively; (3) RBPJ */* vs N1IICD;RBP] */*: t = —23.88, p <
0.001,n = 5, 3, respectively; Fig. 7D—-D3,F]. It is worth noting that

many of the neurons that arise in the RBPJ mutant epithelium
have matured to the point of OMP-positivity despite N1ICD
expression (Fig. 7D3).

That the neuron-suppressive effect of N1ICD is blocked in the
heterozygote was surprising, as RBP] is not commonly described
as haploinsufficient in mice (although RBJ heterozygous muta-
tions demonstrate a variably penetrant phenotype in humans;
Masek and Andersson, 2017). Nonetheless, close analysis of the
labeled cells in the epithelium of the RBPJ ™" mice also supports
the finding of haploinsufficiency in that a goodly proportion of
the TdTomato(+) neurons retained some RBPJ-DBD labeling
(Fig. 7D2A,D2B, asterisks). Likewise, neurons that stain for RBPJ
are also prevalent in the RBPJ+/fl mice (Fig. 7E, EI, asterisks).
The presence of RBPJ-DBD staining in neurons that have under-
gone recombination suggests that they retain one intact copy of
the gene. Other HBC-derived OSNs in the homozygous mice
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role of N1ICD in Sus cell differentiation. B, Experimental protocol. (—3, 4 weeks after MeBr injury, the N1ICD/TdT-expressing cells are Sus-like, but present in multiple layers and highly proliferative
by comparison with surrounding Sus cells (€3); not that none of the surrounding Sus cells have incorporated EdU, whereas a significant fraction of the N1ICD-expressors do. Arrowheads designate
the basal lamina. D—E2, At 12 weeks postinjury, some of the progeny of N1ICD-expressing HBCs retain a Sus-like phenotype in that they are confined to epithelium, e.g., the ones located at the bend
of the epithelium in D, although they are dividing at an increased rate (D7; EdU). However, other cells have grown into disorganized cell masses that occupy the full thickness of the epithelium,
displace the p63(+) HBCs, and breach the basal lamina to extend deeply into the lamina propria. (D-D2, E-E2). They, too, show a high rate of proliferation (D7, D2; EdU), but they maintain
expression of CK18 (E7, E2). Dashed white lines mark the basal lamina. F, Quantification of proliferation of wild-type mice [TDT(—)] versus N1ICD-expressing [TdT(+)] Sus cells. Scale bar: €3, 20

m; D2,200 pem; E2, 100 pem.

lacked detectable staining with the anti-RBPJ-DBD antibody
(Fig. 7D1A,DI1B, “X’s”). The presence of occasional RBPJ-
DBD(+) Sus cells in the RBPJ " mice (Fig. 7 E, E1, arrows) may
reflect a failure of recombination at the floxed allele, but that
cannot be ascertained at present.

Thus, despite giving mice a very high dose of tamoxifen in an
attempt to achieve complete recombination at both RBPJ alleles,
it appears that recombination was still incomplete in many in-
stances. Both the results in the heterozygous mice and in the
incompletely recombined homozygous mice suggesting that
RBP] is, indeed, haploinsufficient. Clearly the data demonstrate
that RBPJ and thus canonical Notch signaling are required for
N1ICD to drive lineage commitment.

Long-term effects of N1ICD overexpression

Studies in other tissues have demonstrated that dysregulated
Notch signaling can be either oncogenic (Ellisen et al., 1991; Za-
gouras et al., 1995; Pear et al., 1996; Weijzen et al., 2002) or
tumor-suppressing (Talora et al., 2002; Nicolas et al., 2003;
Radtke and Raj, 2003). To determine the consequences of a pro-
longed Notch-ON state in the OE, K5CreER™%; fl(stop)N1ICD;
fl(stop)TdTomato mice were treated with tamoxifen, exposed to

MeBr 2 weeks later and then killed either 4 or 12 weeks after
injury (Fig. 7A,B). At the shorter time-point, the TdTomato-
labeled cells were exclusively non-neuronal, as expected (Fig. 8C—
C3). Notably, many of the TdTomato-positive Sus cells were
also labeled by the incorporation of EAU, a marker of prolif-
eration (Fig. 8C3). At 12 weeks after injury, some TdTomato-
positive clusters were extremely large, occupying a broad
swathe of the OE, breaching the basal lamina and extending
into the lamina propria (Fig. 8D-D2). Within the lamina pro-
pria the tdTomato-labeled cells often formed complex cystic
structures (Fig. 8D—-E2). EdU incorporation by the TdTo-
mato(+) cells remained prevalent at this time [Fig. 8D1,D2,F;
Edu incorporation in TdT(—) vs TdT(+) cells, paired f test,
p <0.001, t = —9.27, n = 7]. The maintained proliferation is
markedly different from the usual mitotic quiescence of Sus
cells at this time point in the recovery of the tissue after MeBr
lesion (in the absence of exogenous N1ICD expression;
Schwob et al., 1995). The large size of the labeled cell clusters
may reflect this enhanced proliferation of TdTomato(+) cells
in the fl(stop)NIICD mice. In clones that invaded lamina pro-
pria, we find that the basal HBC layer of the OE had generally
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pLIA-NTICD

Figure 9.  Long-term retroviral transduction-mediated N1ICD overexpression also leads to
the formation of tumors in rats. A-D, Long-term overexpression of N11CD by retroviral infection
in the rat OF has a similar phenotype to that observed when N1ICD is constitutively expressed
following genetic recombination in mice. D, On occasion, GFP-labeled neurons are seen, which
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been disrupted or depleted altogether as a consequence, as
seen by scant p63 staining (Fig. 8E-E2).

Transduction of lesioned rat OE with the pLIA-N1ICD retro-
virus had comparable long-term effects on the structure of the
epithelium (Fig. 9A-C). As in the transgenic mice, a mass of
labeled cells breached the basal lamina and invaded the lamina
propria (Fig. 9A, B) and/or distorted epithelial structure by form-
ing cysts and interrupting the CD54-stained HBC monolayer (Fig.
9C). In other clones, the transduced cells remained aberrant
and interrupted the neuronal layer, but confined to the epithe-
lium. Rare neurons were also seen, suggesting that N1ICD ex-
pression may have been silenced several weeks postinfection
(Fig. 9D).

Discussion

The present results suggest that canonical Notch signaling drives
the differentiation of non-neuronal cells during the reconstitu-
tion of the OE after MeBr-induced epithelial injury. Three lines of
evidence support that conclusion: (1) the formation of both Sus-
like cells and duct/gland-like cells following transduction of
spared GBCs and duct/gland cells with N1ICD, and of Sus-like
cells following conditional expression of N1ICD by HBCs; (2) the
diversion of the HBC progeny toward the formation of neurons
when both Notchl and Notch2 are eliminated by conditional
recombination; and 3) the diversion toward neurons when ca-
nonical Notch signaling is blocked by either transduction of
GBCs and duct/gland cells with the dominant-negative form of
MAML, a necessary cofactor of canonical Notch signaling, or
by excision of the DNA binding domain of RBPJ in HBCs
(Artavanis-Tsakonas and Muskavitch, 2010).

Several other subsidiary points emerge. First, the blocking of
non-neuronal differentiation and a diversion to a neuronal fate
does not occur until both Notchl and Notch2 receptors are ex-
cised. Thus, the commitment to a non-neuronal fate is neither
Notch receptor dose- nor type-dependent, but rather appears to
be an all-or-none phenomenon that requires some level of sig-
naling even if that level is less than the full gene dosage. Second,
the N1ICD-induced commitment to a non-neuronal fate is de-
pendent on the status of the canonical Notch cofactor RBPJ, since
a shift back toward neuronal differentiation is observed in ani-
mals that are either homozygous or heterozygous for the floxed
DNA-binding domain allele of RBP]. Third, after HBC-derived
Sus cell form, we find that Notch2, but not Notch1, is required for
their survival, which is also true of Sus cells in the developing OF
(Rodriguez et al., 2008). Our demonstration that Notch2 knock-
out leads to activation of Caspase3 and the death of Sus cell prog-
eny replicates and extends the previous demonstration using a
different driver, different age, and a different cellular locus for
recombination and excision (Rodriguez et al., 2008).

Notch signaling and the specification of cell fate

That Notch signaling drives the differentiation of non-neuronal
cell types during the reconstitution of the olfactory epithelium
raises additional considerations. Among them are the contextual
influences on Notch signaling in HBCs, the signaling events driv-
ing lineage determination, and the sequencing of events during
epithelial reconstitution. First, the influence of context on Notch

<«

may reflect silencing of N1ICD or insertion of the retroviral genome in the vicinity and under the
partial control of a gene encoding an olfactory receptor (Zhuo et al., 2001). The latter is sug-
gested by the greater intensity of staining in the neuronal cells. Scale bar, 50 pm.
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signaling is apparent from the consequences of NotchI deletion in
the absence of direct epithelial injury (Herrick et al., 2017). The
excision of both alleles of NotchI results in a significant but low
rate of HBC activation in the setting of an undamaged OE in
which neuronal turnover is piecemeal, and markedly enhanced
activation following ablation of the olfactory bulb, which causes
wholesale retrograde neuronal degeneration and secondarily up-
regulates GBC proliferation and neurogenesis (Herrick et al.,
2017). Because HBC activation is also observed after selective Sus
cell death, the normal expression of Jagl by Sus cells may be the
ligand responsible for activating Notch signaling and maintain-
ing HBC dormancy in the absence of injury or following bulb
ablation (Herrick et al., 2017). However, because RBP] mutation
does not result in HBC activation, it is unlikely that the Notch
signaling that contributes to the maintenance of dormancy is
mediated via the canonical pathway (Herrick et al., 2017). It is
worth noting that the drive to HBC activation after severe and
direct epithelial injury apparently supersedes the influence of
Notch signaling in restraining activation, because the number of
HBCs observed after MeBr injury is comparable to wild-type
when N1ICD expression is driven by genetic manipulation in
mice (Herrick et al., 2017).

Second, although canonical Notch signaling is necessary and
sufficient for the progeny of HBCs to adopt a non-neuronal fate,
the identity and location of the corresponding ligand is undeter-
mined. Notably, HBCs express Delta-likel, along with a lesser
level of Jagl expression (Herrick et al., 2017). Ligand expression
by HBC:s raises the possibility of either cis- or trans-signaling, or
both, although cis-signaling is usually inhibitory in nature (del
Alamo et al., 2011).

Third, activated HBCs must transition into GBCs, to replace
the neuronal population during epithelial reconstitution (Jang et
al., 2003). On the other hand, the question of whether activated
HBC:s can differentiate directly into Sus cells cannot be answered
definitively. That HBCs bridge the height of the regenerating OE
to contact the epithelial surface and begin to differentiate into Sus
cells suggest that they may (Schwob et al., 1995). Furthermore,
pseudo-time inference based on Slingshot analysis of RNAseq
data also suggests that newly activated HBCs transition directly to
Sus cells when p63 is conditionally excised or after epithelial in-
jury (Fletcher et al., 2017; Gadye et al., 2017). Nonetheless, GBCs
also act as a nexus for lineage determination in response to Notch
signaling because (1) Sus-like cells are formed following N1ICD
transduction of presumed GBCs in rat, (2) the GBC progeny
divert uniformly to neurons after dnMAML transduction, and
(3) Sus-only clones arise following GBC transplantation into the
lesioned OF of both rats and mice (Goldstein et al., 1998; Chen et
al., 2004; Schnittke et al., 2015).

Notch1 and Notch2 are redundant and not dose-dependent in
determining progenitor lineage

That HBC-conditional deletion of Notch1 while sparing Notch2,
and vice-versa, do not apparently alter HBC-derived progeny
following MeBr lesion suggests that any degree of Notch signaling
is sufficient to drive lineage determination and is unaffected by
gene dose. That Notch1 and Notch2 are functionally redundant
for cell fate determination is not unknown. For example, Notch1
and Notch?2 exhibit functional redundancy when regulating left-
right asymmetry via the Nodal gene in the developing mouse
(Krebs et al., 2003). Conversely, Notchl and Notch2 are known
to have distinct, i.e., non-redundant, roles in some tissues. For
example, both Notch1 and Notch2 are expressed in the early renal
vesicle, but only Notch2 is required for differentiation of the

J. Neurosci., May 23, 2018 - 38(21):5022-5037 « 5035

proximal nephron structures despite activation of Notchl and
translocation to the nucleus (Cheng et al., 2007).

RBPJ haploinsufficiency abrogates the effect of N1ICD
overexpression on non-neuronal lineage commitment

The finding that excision of the DNA binding domain of a single
RBPJ allele was sufficient to obstruct the effect of N1ICD expres-
sion is surprising and suggests that RBP] is haploinsufficient. It is
conceivable that the outcome is a dominant-negative or a neo-
morphic effect of the mutant RBP]. However, neither mRNA nor
protein is detectable in other tissues following recombination at
both alleles, which tends to eliminate the dominant-negative and
neomorphic genetic explanations (lymphocytes: Tanigaki et al.,
2002; inner ear: Basch et al., 2011). The finding of RBP] haploin-
sufficiency is relatively novel. Descriptions of mice that bear the
same heterozygous genotype as we bred here are limited and have
not revealed a phenotype compared with wild-type mice (Raafat
etal., 2009) There is one exception. Heterozygous mice display an
enhanced propensity for diet-induced aortic valve disease (Nus et
al., 2011). RBPJ:N1ICD stoichiometry is potentially a determin-
ing factor in cell behavior, as Notch signaling is one of few
pathways that lacks an enzymatic amplification step and is
more dependent on gene dosage (Artavanis-Tsakonas and
Muskavitch, 2010; Southgate et al., 2015). Consistent with the
foregoing interpretation, other Notch signaling components
do evidence a potential for haploinsufficiency. For example, phe-
notypic abnormalities in humans and mice are associated with a
single mutant allele at the Jagl (Alagille syndrome; Krebs et al.,
2004) and DII4 loci (Masek and Andersson, 2017); RBPJ muta-
tion in humans is a variably penetrant autosomal dominant con-
dition as well (Masek and Andersson, 2017).

Prolonged exogenous Notch1-ICD expression leads to
increased cell proliferation and aberrant cellular growth

The overexpression of N1ICD in HBCs after injury caused sus-
tained proliferation of the Sus-like and duct/gland-like cells be-
yond the period when they would normally be dividing in the
regenerating OE (Schwob etal., 1995). The formation of aberrant
cell masses that invade the lamina propria is reminiscent of the
pathology observed with olfactory neuroblastomas (Holbrook et
al., 2011). The study of Notch signaling in such tumors may be a
fruitful avenue for investigation in the future.

Conclusion

In summary, these data show that canonical Notch signaling de-
termines neuronal versus non-neuronal fate in the regenerating
olfactory epithelium. Our findings here and previously (Herrick
et al., 2017) align well with observations in other parts of the
nervous system. For example, Notch promotes the acquisition of
glial identity by astrocytes, radial glia in the forebrain and cere-
bellum, Miiller glia in the retina, and Schwann cells (for review,
see Gaiano and Fishell, 2002). Notch signaling also maintains
neural stem cells in the developing and adult CNS as shown
by their premature differentiation following conditional RBPJ
knock-out (Imayoshi et al., 2010), which may be analogous to the
effect of Notchl signaling on HBC dormancy (Herrick et al.,
2017). Importantly, we suggest that fate is independent of Notch
receptor dose. Nonetheless, both alleles of RBP]J are required for
NI1ICD to efficiently drive non-neuronal differentiation. Notch
also behaves as an oncogene in the Sus-like and duct/gland-like
cells, increasing rates of cell division and enabling cells to invade
adjacent tissues.
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