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Behavioral/Cognitive

Pain-Related Expectation and Prediction Error Signals in the
Anterior Insula Are Not Related to Aversiveness

Sepideh Fazeli and ©“Christian Biichel
Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246

The anterior insula has repeatedly been linked to the experience of aversive stimuli, such as pain. Previously, we showed that the anterior
insula is involved in the integration of pain intensity and its prior expectation. However, it is unclear whether this integration occurs by
a pain-specific expectation or a more general expectation of an aversive event. To dissociate these possibilities, we conducted an exper-
iment using painful stimuli and aversive pictures with three levels of aversiveness on human male volunteers. Stimuli were preceded by
a probabilistic, combined modality and intensity cue in a full factorial design. Subjective ratings of pain intensity and skin conductance
responses were best explained by a combination of actual pain intensity and expected pain intensity. In addition, using fMRI, we
investigated the neuronal implementation of the integration of prior expectation and pain intensity. Similar to subjective ratings and
autonomic responses, the dorsal anterior insula represented pain intensity and expectations. The ventral anterior insula additionally
represented the absolute difference of the two terms (i.e., the prediction error). The posterior insula only represented pain intensity.
Importantly, the pattern observed in the anterior insula was only present if the cued modality was correct (i.e., expect pain); in case of an
incorrect modality cue (i.e., expect aversive picture), the ventral anterior insula simply represented pain intensity. The stimulus expec-
tation and prediction error specificity in the ventral anterior insula indicates the integration of expectation with painful stimuli in this
area. Importantly, this pattern cannot be explained by aversiveness.
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The anterior insula has been shown to integrate pain intensity and their expectation. However, it is unclear whether this integra-
tion is pain-specific or related more generally to an aversive event. To address this, we combined painful stimuli and aversive
pictures with three levels of aversiveness. The ventral anterior insula represented pain intensity, expectation, and their absolute
difference (i.e., the prediction error). Importantly, this pattern was only observed if the cued modality was correct. In case of an
incorrect modality cue, this area simply represented as pain intensity. The stimulus expectation and prediction error specificity in
the ventral anterior insula indicates the integration of expectation with painful stimuli in this area. Importantly, this pattern
cannot be explained by aversiveness. /

ignificance Statement

Introduction
Accurate and fast perception of pain is crucial for an organism to
avoid tissue damage. In many cases, sensory cues precede pain
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and allow the organism to generate an expectation or prediction.
The influence of such expectations on pain perception has been
established in basic cued pain paradigms (Koyama et al., 2005;
Keltner et al., 2006; Wiech et al., 2008; Atlas et al., 2010) and in the
context of placebo and nocebo effects (Tracey, 2010; Hiuser et
al., 2012). It has previously been speculated that predictive cod-
ing, which integrates predictions and violation of predictions
(i.e., prediction errors), could be a suitable mechanism mediating
the effect of expectations on pain (Biichel et al., 2014; Geuter et
al., 2017). In this framework, expectations (i.e., predictions) and
the mismatch between these expectations and the sensory inputs
(i.e., prediction errors) are assumed to be combined to minimize

DOI:10.1523/JNEUR0SCI.0671-18.2018
Copyright © 2018 the authors  0270-6474/18/386461-14515.00/0



6462 - J. Neurosci., July 18,2018 - 38(29):6461- 6474

future prediction errors by updating the expectations at multiple
levels of the neuronal hierarchy. So far, this framework has
mainly been applied to visual and auditory processing (Rao and
Ballard, 1999; Sterzer et al., 2008; Egner et al., 2010; Okada et al.,
2018) and has only recently been extended to pain perception
(Geuter et al., 2017). However, pain is not unimodal but com-
prises other aspects, such as aversiveness, unpleasantness, and
salience, which are shared by negative stimuli in other sensory
modalities. Therefore, the observed expectation and prediction
error signals in the anterior insula and the intensity representa-
tion in the posterior insula (Geuter et al., 2017) might not be
related to pain per se but could be related to aversiveness in
general. This alternative hypothesis can be tested by adding a
second aversive stimulus modality. Consequently, we adapted
our cued pain paradigm (Geuter et al., 2017) by adding aversive
pictures as a second sensory modality. In both modalities, we
presented aversive stimuli at three levels of intensity. Each stim-
ulus was preceded by a combined modality and intensity cue.
Cues and stimuli were combined in a full factorial design with
factors of cue modality, cue intensity, stimulus modality, and
stimulus intensity. This design allowed us to investigate whether
expecting an aversive stimulus with a specific intensity only af-
fects the neuronal activity in response to a stimulus in the cued
modality or whether this influence also generalizes to a stimulus
in the other modality.

Within the framework of predictive coding, the prediction
error represents the “surprise” induced by a mismatch between
the sensory signals encountered and those predicted. If the pre-
viously observed prediction error signal in the anterior insula is
related to aversiveness in general, we should observe such a signal
if the cued intensity differs from the perceived intensity, regard-
less of the cued modality: a prediction error for a high-intensity
painful stimulus, when a low-intensity aversive picture or a low-
intensity painful stimulus was expected. On the contrary, if the
anterior insula does not represent aversiveness in general, we
should only observe prediction errors if the intensity cue is in-
congruent with the experienced intensity, but only if the modality
cue matches: if a high intensity painful stimulus is perceived,
when a low-intensity pain stimulus is cued, but not when a low-
intensity aversive picture cue has been presented. Therefore, in-
vestigating the modality cue specificity of expectations and
prediction errors for pain can potentially shed light on the char-
acteristic of the pain processing system and a possible implemen-
tation of predictive coding therein.

Materials and Methods

Participants

Thirty-two healthy human male volunteers (average age: 26 years; range:
19-38 years) successfully participated in the study and were paid as
compensation for their participation. Exclusion criteria were neurologi-
cal, psychiatric, dermatological diseases, pain conditions, current medi-
cation, or substance abuse. All volunteers gave their informed consent.
The study was approved by the Ethics board of the Hamburg Medical
Association.

Stimuli and task

The stimuli were either thermal or visual stimuli. Thermal stimulation
was performed usinga 30 X 30 mm * Peltier thermode (CHEPS Pathway,
Medoc) at three different intensities: warm (42°C), medium painful
(46°C), and highly painful (48°C) to the left radial forearm at different
skin patches in each experimental block to avoid sensitization. The stim-
ulation pattern was chosen based on the distribution of average human
pain thresholds to have three distinguishable levels of thermal stimula-
tion. The visual stimuli were pictures chosen from the International
Affective Picture System (IAPS) (Langet al., 2005) database at three levels
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of aversiveness. The classification of IAPS pictures was performed man-
ually to divide the reported valance spectrum into six separate groups,
where three of them were assigned to the training set and the other three
were assigned to the fMRI set. The pictures in the fMRI set had three
levels of aversiveness of which the low aversive category had aversiveness
values of 2.02 * 0.05 (mean * SE), the medium aversive category had
aversiveness values of 4.06 * 0.02 (mean = SE), and the high aversive
category had aversiveness values of 5.23 * 0.01 (mean = SE). Before each
picture or heat stimulus, a visual cue was presented. The color of the cue
(triangle) indicated the modality of the stimulus (yellow for picture and
red for heat). The size of the cue indicated its intensity (small, medium,
and large triangle for low, medium, and high intensities, respectively).

Atthe beginning of each trial (Fig. 1), the cue was presented for 500 ms,
indicating the modality and intensity of the following stimulus. The cue
validity for the stimulus modality was 70%. Cue validity with respect to
intensity was 60% (for details of all cue stimulus combinations and fre-
quency, see Fig. 1F). After a jittered blank period of 300—700 ms, volun-
teers received the visual or heat stimulus with a duration of 2 s. After
stimulus presentation, volunteers had to rate the intensity of the aver-
siveness of the picture or the heat stimulus within a time window of 2 s on
a4 point rating scale (1 labeled as “neutral” and 4 as “strong”). A fixation
cross was presented throughout the trial. In addition, we added 4 catch
trials to each block, in which volunteers were asked to report the preced-
ing cue within 8 s. No stimulation was given in these trials. Volunteers
were rewarded with 50 cents for a correct answer in each catch trial.
Finally, a variable intertrial interval (2.5 = 0.5 s) followed each trial,
during which only a fixation cross was displayed.

Procedure

The experiment consisted of two sessions: a behavioral training session
and an fMRI session. Before the training session, volunteers were in-
formed about the procedure and gave their written informed consent.
They were informed about the experimental paradigm and the nature of
the cues and the contingencies between the cues and the stimuli to avoid
learning effects during the main fMRI session. The training session con-
tained up to three blocks and was terminated once volunteers had
learned the cue regularities. The termination criterion was defined as
detecting >75% catch trials and a significant discrimination (repeated-
measures ANOVA [rmANOVAJ: p < 0.05) of the three levels of pain and
aversive picture intensities. The fMRI session consisted of four blocks.
Each block consisted of 130 trials (including four catch trials) and lasted
~15 min. The trial order within each block was pseudo-randomized, and
the order of blocks was randomized across volunteers. During each
block, fMRI signal and skin conductance responses (SCRs) were mea-
sured. A high-resolution anatomical image for each volunteer was ac-
quired at the end of the fMRI session. The whole fMRI experiment lasted
for ~2 h.

Data acquisition

fMRI data were recorded on a Trio 3 tesla system equipped with a 32-
channel head coil (Siemens). Forty transversal slices (voxel size 2 X 2 X
2 mm, 1 mm interslice gap) were obtained within each volume using a
T2*-sensitive single-shot EPI sequence (TR = 1.24 s, TE = 26 ms, flip
angle: 60°, FOV: 220 X 220 mm) with parallel imaging (GRAPPA, in-
plane acceleration factor 2) (Griswold et al., 2002) and simultaneous
multislice acquisitions (“multiband,” slice acceleration factor 2) (Fein-
berg et al., 2010; Moeller et al., 2010; Xu et al., 2013) as described previ-
ously (Setsompop et al., 2012). The corresponding image reconstruction
algorithm was provided by the University of Minnesota Center for Mag-
netic Resonance Research. Slices were tilted ~30° relative to the AC-PC
line to improve coverage in the brainstem. Additionally, T1-weighted
structural images (1 X 1 X 1 mm resolution) were acquired using an
MPRAGE sequence (TR = 2300 ms, TE = 2.98 ms, flip-angle = 9°).
Stimulus presentation, response recording, and timing relative to MR
data acquisition were done using Psychophysics Toolbox 3 (http://www.
psychtoolbox.org). Skin conductance was recorded using an EDA100C
MRI system (Biopac Systems), amplified using an analog amplifier
(MP150, Biopac Systems), and sampled at 100 Hz using a CED 1401
analog-digital converter (Cambridge Electronic Design). SCR electrodes
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cue-stimulus contingencies.

were connected to the palm (thenar and hypothenar eminences) of the
left hand. During the study, lights in the MRI room were dimmed, and
luminance was kept constant across volunteers.

Data analyses
SCRs. The phasic skin conductance drive locked to the onset of each
stimulus was estimated from the raw SCRs in each trial using an estab-
lished deconvolution method as implemented in ledalab (Benedek and
Kaernbach, 2010). The resulting phasic responses were then separately
averaged for different conditions within a temporal window from2to 5 s
after stimulus onset for the painful stimuli and within a window from 0 to
3 s for the aversive pictures, which was selected to cover the peak of the
averaged SCR signal in each modality across volunteers.

fMRI data preprocessing. Functional imaging data were analyzed using
MATLAB (version 2014b, The MathWorks) and SPM12 (Wellcome
Trust Centre for Neuroimaging, London). The first five volumes of each
functional block were discarded. The remaining images were spatially
realigned to correct for motion artifacts and were then spatially normal-
ized using DARTEL, a high-dimensional warping algorithm imple-
mented in SPM (Ashburner, 2007). The functional images were spatially
smoothed using a Gaussian kernel with an FWHM of 6 mm. First-level
models included separate regressors using a boxcar with a duration of 2 s
for each of the 36 experimental conditions: 6 stimuli (3 levels of pain + 3

levels of aversive images) X 3 intensity cues X 2 modality cues. Addi-
tional regressors with a duration of 2 s modeled the rating period. An-
other regressor (boxcar, duration 9 s) modeled the catch trials. In
addition, the model also included six motion parameters estimated dur-
ing realignment. All regressors were convolved with a canonical hemo-
dynamic response function as implemented in SPM. The first-level
contrast estimates for the 18 pain conditions were the basis for our com-
putational models. Model estimation used a linear mixed-effect model as
implemented in MATLAB (version 2014b, The MathWorks). Models
were estimated for all gray-matter voxels. Gray-matter voxels were deter-
mined using the segmentation routine in SMP12 at the single volunteer
level, then averaged across volunteers, and finally thresholded at an 80%
gray matter probability.

Neurological pain signature (NPS) analyses. The NPS is a multivariate
pattern of brain activity with the aim of distinguishing experimental pain
from other conditions (Wager et al., 2013; Krishnan et al., 2016). The
NPS response mirrors subjective pain and has been suggested as a surro-
gate marker for heat pain intensity (Wager et al., 2013). We computed
NPS expression values for each of the experimental conditions based on
the regressors described above separately for each participant (Wager et
al.,2011,2013; Krishnan etal., 2016). The resulting NPS values were then
the basis for our model comparison.
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ROI masks and analysis. According to the finding reported by Geuter et
al. (2017), insular cortex is the area among pain-responsive regions rep-
resenting expectation and prediction error signals. Based on these find-
ings, we mainly focused our analysis on the insular cortex and its
anatomically defined subdivisions as defined by the Destrieux atlas (Fis-
chl et al., 2004; Destrieux et al., 2010). Using insular subdivisions, we
tested our four models on the average parameter estimates extracted
from voxels within these ROIs (for the detailed model comparison rou-
tine, see below). Even though the insular cortex is the focus of this study
because of its key role in the integration of pain expectation as the inter-
nal model, and sensory signals as the physical input (Ostrowsky et al.,
2002; Nieuwenhuys, 2012; Geuter et al., 2017), the processing of nocice-
ptive information is not limited to the insular cortex. We therefore con-
ducted additional ROI-based analyses in several other pain-related
regions, including the parietal operculum (SII), postcentral sulcus (SI),
frontal medial cortex, anterior cingulate (ACC), posterior cingulate
(PCC), amygdala, hippocampus, thalamus, cerebellum, and periaque-
ductal gray (PAG). Anatomical masks were the same as used by Geuter et
la. (2017), except for the PCC, frontal medial cortex, hippocampus, and
cerebellum, which were generated by thresholding the probability map of
the corresponding areas in the Harvard-Oxford Atlas (Desikan et al.,
2006) at 50% probability (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).
Similar to insular subdivisions, we tested our four models on the average
parameter estimates from voxels within these masks.

Modeling behavioral, SCR, NPS, and voxelwise fMRI data. Crossing our
three levels of stimulus intensity, three levels of intensity cues, and two
levels of modality cues resulted in 18 (3 X 3 X 2) different pain condi-
tions, in which nine stimuli were preceded by a valid modality cue and
nine stimuli were preceded by an invalid modality cue. For these valid
and invalid cue conditions, subjective ratings, SCR, NPS, and voxelwise
fMRI data were fitted separately to four different models. All models
included a stimulus intensity term. The first model (intensity model
[INT]) only contained the stimulus intensity term as the physical char-
acteristic (intensity) of the stimulus (Fig. 1A). The second model (expec-
tation model [INT+EXP]) additionally comprised an expectation term
represented by the intensity cue (Figure 1B). The third model (prediction
error model [INT+PE]), comprised two terms: the prediction error (i.e.,
the absolute difference between intensity cue and stimulus intensity) and
stimulus intensity (Fig. 1C). This model was inspired by several studies
reporting reduced neuronal activity in response to expected versus un-
expected stimuli (Egner et al., 2010; Jiang et al., 2013). The final full
model (INT+EXP+PE) contained both the expectation and the predic-
tion error term, as well as the intensity term. Conceptually, this model
assumes that the response to a painful stimulus is a weighted sum of its
intensity value, the prediction error as well as the expectation (Fig. 1D).
This model was inspired by studies showing the existence of both expec-
tation and prediction error signals in different brain regions (Egner et al.,
2010; Geuter et al., 2017). Prediction errors were coded in absolute dif-
ferences, motivated by previous studies in the visual and auditory system
(den Ouden et al., 2010; Todorovic et al., 2011; Todorovic and de Lange,
2012; Boll et al., 2013; Geuter et al., 2017). Furthermore, to account for
the uneven “perceptual distance” between three levels of intensity, we
added a second-order intensity term to all models. Model comparisons
were performed on behavioral ratings, autonomous (SCR) data, as well
as voxelwise BOLD signals and the NPS score. Model fit and parameter
estimation were conducted using the FITLME function in MATLAB
(version 2014b, The MathWorks).

Model comparison and statistical analysis. To find the best of four al-
ternative models, we used a nested-model comparison in a backward
selection fashion. We started with the INT+EXP+PE model as the most
comprehensive model and compared it with the INT+EXP and INT+PE
models using likelihood-ratio tests. The likelihood-ratio test constructs a
test statistic using the log-likelihood objective function evaluated under
the unrestricted model parameter estimates (INT+EXP+PE) and the
restricted model parameter estimates (INT+EXP or INT+PE). The test
statistic follows a x? distribution with 1 df. Comparing the unrestricted
INT+EXP+PE model with the two alternative-restricted INT +EXP and
INT+PE models resulted in two p values. If both p values were below our
threshold (e.g., p < 0.05), then INT+EXP+PE (unrestricted model) was
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selected as the best model. Otherwise, the model associated with the
biggest p value was discarded, and the fit to the other restricted model was
compared with the fit to the INT model as the simplest model using
likelihood-ratio test. If the ensuing p value was below the threshold, then
the intermediate model (in our case either INT+EXP or INT+PE) was
the winning model. Otherwise, the INT model as the simplest model was
determined as the best model. In summary, model selection proceeded
according to the following algorithm:

1: Fit the data to the full model (INT+EXP+PE).

2: Compare the model with the two simpler models (INT+EXP and
INT+ PE).

3: Find the largest associated p value from the previous tests.

>> If the largest p value is above threshold, go to Step 4.

>> Otherwise, determine the full unrestricted model as the best model
and stop.

4: Compare the model with smallest associated p value with the INT
model.

>> If the p value is above threshold, determine the INT model as the
best model and stop.

>> Otherwise, determine the intermediate unrestricted model as the
best model and stop.

The criteria used to select each model as the winning model are
also illustrated in Figure 2. In addition, we used Bayesian model
weights to verify the model comparison results of the likelihood-ratio
test. The Bayesian model weight w,, for the model M is given by the
following:

1
exp( - EABICM>

1
Eiexp< - EABICi)

where BIC is the Bayesian Information Criterions computed using
FITLME function in MATLAB (version 2014b, The MathWorks). Each
Wy, is between 0 and 1, and the model with the biggest w,, is the best
model. Furthermore, given the computed BIC, the Bayes factor compar-
ing two alternative model was obtained as follows:

Wy =

1
BF = exp( - EABIC)

Therefore, the ratio of any two w,, is equal to the corresponding Bayes
factor comparing those models. For behavioral, SCR, and NPS data, the
p value threshold was set at 0.01. At the fMRI voxel level, we used an ROI
(insula) based correction for multiple comparisons using false discovery
rate (FDR) correction at p = 0.05. FDR correction was performed using
the FDR_BH function in MATLAB (version 2014b, The MathWorks).
Moreover, we also tested for main effects and interactions across stimu-
lus intensity, intensity cue, as well as modality cue using rmANOVA as
implemented in MATLAB (version 2014b, The MathWorks). We also
conducted paired ¢ test, where all tests were two-sided unless otherwise
stated. All statistical tests were conducted in MATLAB (version 2014b,
The MathWorks).

Results

Behavioral results

To validate our intensity manipulation for heat pain and to verify
the discriminability between different levels of pain, we first
tested for the main effect of stimulus intensity (Fig. 3A). Results
regarding the aversive pictures are beyond the scope of this report
but are depicted in Figure 3A for the sake of comparison. An
rmANOVA, based on the behavioral data, revealed significant
effects for the three levels of pain (F(, ¢, = 736.4,p = 6 X 10~ *,
rmANOVA). Similarly, the main effects of intensity cue (F(, 45, =
30.7, p = 5 X 10 %, rmANOVA) and modality cue (F, 5, =
10.85, p = 0.0025, rmANOVA) were significant. The two-way
interaction between stimulus intensity and intensity cue (F, 1,4 =
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Figure2.

Flowchart of the model selection procedure. A, The EXP+PE-+INT model will be considered the winning model if the associated p values of the likelihood ratio tests are <<0.05. B, The

EXP+INT is considered the best model, if the p value for the likelihood ratio test of EXP+PE+INT against PE+INT is <<0.05, but the p value for EXP+PE+INT versus EXP+INT is >0.05. C, The
PE +INT model is considered the best model, if the p value for the likelihood ratio test of EXP+PE+INT versus EXP+INT is <C0.05, and the p value for EXP+ PE+INT versus EXP +INT is >0.05.
D, If both p values of the likelihood ratio tests are >0.05, the INT model is considered the best model.

7.09, p = 3 X 10>, rmANOVA) and the interaction between
modality cue and intensity cue (F,4, = 11.45, p = 0.0001,
rmANOVA) were also significant (Table 1). The rmANOVA re-
sults regarding the aversive pictures are summarized in Table 1.

In addition, we fitted the behavioral ratings to our four alter-
native models (INT, INT+EXP, INT+PE, and INT+EXP+PE).
Backward model selection revealed that the INT+EXP model
best explained the data in the conditions with a valid modality
cue. In contrast, the INT model best explained the data in the
invalid modality cue conditions. In addition to the likelihood-
ratio test, BIC and Bayesian model weights were computed for
each model to validate the consistency of our model selection
routine. Comparing the four models in the valid modality cue
conditions based on their corresponding BIC, INT+EXP+PE
model showed the biggest weight (BIC = 144.2 and BICw = 0.6),
even though the Bayes Factor comparing INT+EXP+PE and
INT+EXP model was BF,c—pxp = 1.52, which indicates their
difference is not substantial; and as the expectation model
(INT+EXP) has less degree of freedom, it can be determined as
the best model describing the behavioral rating data in the valid
modality cue conditions (Lewandowsky and Farrell, 2010). For
the invalid modality cue conditions, again the INT+EXP+PE

model had the biggest weight (BIC = 144.2 and BICw = 0.29),
but there was no substantial difference between INT+EXP+PE
model and the other three models (BFpc~ pxp = 1.18, BFpcopp =
1.21, BFpc—c = 1.34). Therefore, the INT model as the simplest
model was identified as the best model describing the behavioral
ratings in the invalid modality cue conditions. In summary, both
model selection strategies identified the INT model as the best
model describing the behavioral ratings in the invalid modality
cue conditions and the INT+EXP model as the best model for the
data in the conditions with a valid modality cue.

SCR

Analogous to the behavioral data, the main effects of stimulus
intensity (F, 6, = 53.2, p = 3 X 10", rmANOVA), intensity
cue (F, ¢, = 8.48, p = 0.006, rmANOVA), and modality cue
(Fi 51 = 12.71, p = 0.001, rmANOVA) were significant. Similar
to the ratings, the two-way interaction between stimulus intensity
and intensity cue (F(, 1,4 = 12.33,p = 2 X 10 "%, rmANOVA) as
well as the interaction between the modality cue and the intensity
cue (F, ¢ = 8.4, p = 0.0006, rmANOVA) were significant
(Table 1; Fig. 3B). The best model describing the SCR data were
identified using likelihood-ratio test in both valid and invalid
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Behavioral, autonomous responses and NPS to thermal pain and aversive pictures. A, Color bars represent the subjective ratings of warm (38°), medium-painful (46°), and highly painful

(48°) stimuli (left) and subjective ratings for aversiveness of IAPS pictures (right). B, SCRs to the pain and aversive pictures. C, NPS responses to painful stimuli and aversive pictures. Error bars indicate

SEM across volunteers.

modality cue conditions. As in the behavioral ratings, INT +EXP
was the winning model in explaining the SCR data in the valid
cue conditions. The INT model was the best model in the
invalid modality cue conditions. This result was verified using
Bayesian model weights for the model comparisons for the
valid and invalid modality cue conditions. For valid modality
cue conditions, the INT+EXP model had the biggest BICw of
0.78, whereas the BICw of INT+EXP+PE model was 0.21, the

BICw of INT+PE model was 4 X 10 %, and the INT model
had a BICw of 0.002. For the invalid modality cue conditions,
INT+PE had the biggest BICw of 0.47, which was only 1.25
times bigger than the BICw of the INT model with the value of
0.37. INT+EXP+PE and INT+EXP models had BICws of
0.08 and 0.06, respectively. Therefore, the INT model can be
considered as the best model in the invalid modality cue
conditions.
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Table 1. Main effect of stimulus intensity, intensity cue, modality cue, as well as their corresponding two-way and three-way interactions: subjective ratings, SCR, and NPS

in both pain and picture conditions

Modality cue X Modality cue X

Stimulus Modality cue X Stimulus inten- Intensity cue X Intensity cue X
Modality cue Intensity cue intensity Intensity cue sity Stimulus intensity Stimulus intensity
Fasm p Foe p Foe p Fae p Foe p Fa124) p Fa124) p
Pain
Ratings 10.85 2.3 30.7 5.e-5 736.4 6.e-44 1.4 le-4 491 0.01 7.09 3.e-5 1.79 0.13
SCR 12.71 1.e-3 8.48 6.e-4 53.2 3e-14 8.43 6.e-4 1.4 0.25 12.33 2.e-8 2.44 0.049
NPS 1.88 0.18 2.09 0.13 122.65 3.e-22 5.1 0.008 1.97 0.14 1.68 0.15 2.54 0.04
Pictures
Ratings 0.57 0.45 6.73 0.002 794.6 6.e-45 0.14 0.86 0.87 0.42 3.37 0.01 0.84 0.49
SCR 75.29 8.e-10 3.89 0.02 1.46 0.23 7.21 0.001 0.34 0.7 8.2 6.e-6 432 0.002
NPS 341 0.07 0.4 0.67 8.19 7.e-4 22 0.11 0.33 0.71 1.44 0.22 1.44 0.22
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Voxelwise representation of the best model explaining responses to thermal pain within insular cortex. A, Contrast estimates were fitted to four alternative models of INT, INT+EXP,

INT+PE, and INT+EXP + PE (valid modality cue). The INT+EXP +PE model (red) best explains the data in the anterior division of the circular insula (vAl). Color coding is based on likelihood-ratio
test model comparison (FDR-corrected, g << 0.05). g values are the adjusted p values found using an optimized FDR approach in voxels within the insula. The INT+EXP model (yellow) best explains
the fMRI data in the superior division of the circular insula (dAl). Within the inferior division of circular insula, the INT model (blue) is the winning model. B, When the modality cue was invalid, the
contrast estimates were best explained by the INT model (blue) in all regions. Error bars indicate SEM across volunteers.

fMRI data

In a first step, we analyzed fMRI data from all conditions using
the NPS (Wager et al., 2013). For the NPS data, an rmANOVA
showed a significant effect for the three levels of pain (F(,4,, =
122.65, p = 3 X 10>, rmANOVA). Neither the main effect of

intensity cue nor modality cue was significant. The two-way in-
teraction between modality cue and intensity cue was significant
(F2.62) = 5.1, p = 0.008, rmANOVA); however, the other two-
way interactions were not significant (Fig. 3C; Table 1). As for the
behavioral data, we fitted the NPS-derived scores to all our four
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Voxelwise map of the respective weights of the individual components of the INT+EXP+PE and INT+EXP models within insular cortex for the valid modality cue conditions. 4,

Weights for the expectation term are plotted for all INT+EXP -+ PE representative voxels in insular cortex (i.e., Fig. 4, red voxels). Bar graph represents the average of the expectation weight within
voxels best explained by the INT-+EXP-+PE model. Error bars indicate SEM across volunteers. B, Voxelwise map for the weight of the prediction error term as well as its average for all voxels best
explained by the INT+EXP+PE model. C, Map of the expectation term and its average across voxels best explained by the INT+EXP model (i.e., Fig. 4, yellow voxels).

models. Analogous to the behavioral ratings, the INT-+EXP
model best explained the data for the valid modality cue condi-
tions using hierarchical model comparison based on the likeli-
hood-ratio test. In the invalid modality cue conditions, the INT
model was best in explaining the NPS data based on the nested
likelihood-ratio test. This was confirmed by Bayesian model
weights in the valid and invalid modality cue conditions. The
INT+EXP model had the biggest BICw of 0.88 (with the Bayes
Factor of 14.83 compared with the INT+EXP+PE model as the
second wining model) for valid modality cue conditions. The
Bayesian model weights for INT+EXP+PE, INT+PE, and INT
models were 0.06, 0.004, and 0.05, respectively. In the invalid

modality cue conditions, the INT model had the biggest BICw of
0.89 (with the Bayes Factor of 16.15 compared with the INT+PE
model as the second wining model). The other alternative models
of INT+EXP+PE, INT+EXP, and INT+PE had the BICw of
0.003,0.053, and 0.055, respectively. As control, we also tested the
NPS on picture stimuli (Table 1; Fig. 3C).

We next investigated the response patterns of voxels in subre-
gions of insular cortex according to a surface atlas (Fischl et al.,
2004; Destrieux et al., 2010). Regions in this atlas are defined
according to sulcal depth (Fischl et al., 2004; Destrieux et al.,
2010). To obtain an intuitive visualization of the cortical repre-
sentation for each model, we color-coded surface vertices accord-
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Figure 6.  Color map representing the best model for each voxel at an uncorrected threshold of 0.01 projected on flattened cortex and inflated brain surfaces. 4, In addition to the insular clusters
depicted in Figure 4, an INT-+EXP cluster is also evident within the ACC and visual cortex. There is also a small cluster of the INT-+PE model within the cingulate cortex (green). B, For the invalid
modality cue, the INT model is the best model across all pain-responsive areas. €, Color-coded model selection for subcortical areas. In parts of the PAG, the INT+EXP model best described the data.

For the invalid modality cue, the INT model best explains PAG responses.

ing to the best explanatory model (four different colors) on the
inflated cortical surface. As shown in Figure 4, the spatial distri-
bution of the insular subregions according to this atlas closely
resembled the distribution of the winning models. Activity pat-
terns in the anterior division of the circular insula (ventral part of

anterior insula [VAI]) were best explained by the INT+EXP+PE
model, activity patterns in the superior division of the circular
insula (dorsal part of anterior Insula) were best explained by the
INT+EXP model, and the inferior division of the circular insula
showed activation patterns compatible with the INT model. To
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Table 2. Main effect of stimulus intensity, intensity cue, modality cue, as well as their corresponding two-way and three-way interactions for all ROIs, including the SII, SI,
frontal medial cortex, ACC, PCC, amygdala, hippocampus, thalamus, cerebellum, and PAG*

Modality cue X

Modality cue X Intensity cue X Intensity cue X

Modality Intensity Stimulus Modality cue X Stimulus Stimulus Stimulus
cue cue intensity Intensity cue intensity intensity intensity
Region Fazm p Fos p Fos p Fos p Fos p Fianoa p Fia2 p
ACC
L 0.003 0.95 2.25 0.1 3132 3.e-10 4.62 0.01 0.01 0.98 234 0.05 3.01 0.02
R 0.03 0.85 2.15 0.12 29.14 1.e-9 4.63 0.01 0.02 0.97 2.16 0.07 2.93 0.02
PCC
L 4.01 0.05 0.56 0.57 13.7 le-5 3.2 0.05 0.02 0.98 2.36 0.06 242 0.05
R 2.61 0.12 0.32 0.72 12.82 2.e-5 2.55 0.08 0.05 0.95 1.9 0.1 2.13 0.08
Parietal operculum
L 3.56 0.06 139 0.25 26.78 4e-9 136 0.26 1.68 0.19 1.12 0.34 415 0.003
R 0.82 0.36 1.09 0.37 47.09 3.e-13 139 0.25 15 0.23 1.16 0.33 2.24 0.06
Postcentral
L 0.37 0.54 1.86 0.16 28.97 1.e-9 0.32 0.72 1.15 0.32 2.86 0.02 243 0.05
R le-4 0.99 1.37 0.26 24.15 1e-8 0.58 0.55 0.09 0.9 1.6 0.17 2.06 0.08
Frontal medial cortex
L 0.02 0.88 1.17 0.31 5.54 0.006 1.94 0.15 0.21 0.81 2.05 0.09 24 0.05
R 0.49 0.49 1.22 0.3 7.78 0.001 2.02 0.14 0.05 0.94 1.55 0.19 2.53 0.04
Hippocampus
L 0.43 0.51 1.7 0.18 4.09 0.02 1.59 0.21 0.43 0.65 1.74 0.14 217 0.07
R 0.01 0.92 0.68 0.51 5.08 0.009 1.01 0.37 0.65 0.52 1.59 0.18 2.25 0.06
Amygdala
L 0.1 0.75 0.39 0.67 6.77 0.002 1.72 0.18 0.52 0.59 0.75 0.55 151 0.2
R 0.67 0.4 0.75 0.47 8.98 3.e-4 0.94 0.39 0.32 0.72 0.99 0.14 1.87 0.1
Thalamus
L 25 0.12 137 0.26 3431 9.e-9 1.74 0.18 0.44 0.64 134 0.25 4.54 0.001
R 113 0.29 2.07 0.13 37.49 2.e-1 1.62 0.2 0.1 0.9 1.39 0.23 4.23 0.003
Cerebellum
L 452 0.51 211 0.19 16.73 le-6 1.39 0.26 0.25 0.78 227 0.06 3.7 0.007
R 117 0.29 1.87 0.16 19.11 3e-7 1.68 0.19 0.06 0.94 2.00 0.1 2.92 0.2
PAG 2.36 0.13 3.88 0.02 14.88 5.e-6 0.24 0.78 0.26 0.78 2.53 0.04 3.82 0.005

“The main effect of stimulus intensity was significant in all ROls. A significant main effect of cue intensity was only observed in the PAG. The only significant two-way interaction between modality cue and intensity cue was identified in the

ACC.

verify this, we averaged the contrast estimates in each anatomical
subregion of the insula and performed a formal model compari-
son on this average activation pattern. For the valid modality cue
conditions, the INT+EXP+PE model best accounted for the
fMRI pattern in the anterior division of circular insula, the
INT+EXP model best described the response pattern in the su-
perior division of circular insula, and the INT model was the best
model explaining fMRI activation patterns in the inferior divi-
sion of circular insula (Fig. 4, inserted). For all invalid modality
cue conditions, the INT model was the best model across all
insular subdivisions. We also compared the individual contribu-
tion of the expectation and the prediction error terms in voxels
best explained by the INT+EXP+PE model within the insula.
For this purpose, we mapped the corresponding parameter esti-
mates within the insular cortex on the inflated cortical surfaces
(Fig. 5A, B). This analysis revealed that the prediction error pa-
rameter estimate and the expectation parameter estimate are not
significantly different in both hemispheres. We also observed that
the expectation weight was not significantly different in
INT+EXP representative cluster compared with INT+EXP+PE
voxels in both hemispheres (Fig. 5C).

In an exploratory fashion, we also performed formal model
comparisons with the threshold of 0.01 outside the insular ROI
(Fig. 6) on the surface and in all voxels, including subcortical
areas. Here we additionally observed groups of voxels represent-
ing the INT+EXP model as the best model in the ACC, but only
in valid modality cue conditions (Fig. 6A). Among the subcortical
areas, the PAG showed activation patterns that were best ex-

plained by the INT+EXP model (Fig. 6C). As in cortical regions,
this was only true if the modality cue was valid. Otherwise, inten-
sity coding was identified as the best model (Fig. 6B, C).

In an explorative fashion, we also examined the averaged pa-
rameter estimates in other pain-related anatomically defined
ROIs for the valid modality cue conditions. Based on rmANOVA,
we found a significant main effect of stimulus intensity in all
ROIs, including ACC, PCC, parietal operculum, postcentral,
frontal medial cortex, hippocampus, amygdala, thalamus, cere-
bellum, as well as the PAG (for detailed results, see Table 2).
Moreover, among all ROIs, a significant main effect of cue inten-
sity was observed in the PAG (Fq,) = 3.88, p = 0.02,
rmANOVA). The two-way interaction between modality cue and
intensity cue was significant in the ACC (LH: F(, ¢,y = 4.62, p =
0.01; RH: F(, ¢5) = 4.63, p = 0.01, rmANOVA). With regards to
model selection, we used condition-specific parameter estimates
for each voxel and subjected those parameter estimates to our
formal model comparison. As for the behavioral data, the model
best explaining the data were identified using hierarchical
likelihood-ratio tests. The INT+EXP model was determined as
the best model (for detailed results, see Fig. 7; Table 3) in the ACC
and PAG. In all other regions, the INT model was the winning
model.

Discussion

Our data show a clear discriminability of different levels of pain
intensity based on behavioral ratings, autonomic measures, and a
neural compound marker (NPS). Furthermore, we observed a
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Figure7.

Parameter estimates of ROls. Mean of the parameter estimates (== SE) at three pain intensities of high, medium, and low in different intensity cue conditions for valid modality cue trials

are plotted for left (LH) and right (RH) hemispheres (except for the midline PAG) in each ROI. The fit of the parameter estimates to the best model among the four nested models is also depicted. In
the ACCand PAG, the best model was determined as the INT+EXP model. Otherwise, the INT model was the best explanatory model. Bayesian model weights (BICw) for all different models are

illustrated in each ROL. Error bars indicate SEM across volunteers.

strong effect of the intensity cue on pain perception, in agreement
with previous findings (Koyama et al., 2005; Keltner et al., 2006;
Atlas et al., 2010; Atlas and Wager, 2012; Wiech, 2016). Using
computational modeling, activity patterns in the posterior insula
were best explained by pure intensity coding, whereas activity in
the dorsal anterior insula (dAI) was best explained by a model
comprising the expected intensity. Finally, activity in the vAI was
best explained by a model comprising stimulus intensity, cued
intensity, and the prediction error (i.e., the difference between
perceived and cued intensity) (Geuter et al., 2017). Finally, we
observed a significant two-way interaction between modality cue
and intensity cue, indicating a modality specific effect of expec-
tation (Langner et al., 2011). Using formal modeling, we could
reveal that the contribution of expectation in dAI and expecta-
tion plus prediction errors in vAI were only present for valid
modality cues. In cases of an invalid modality cue, insular regions
all showed simple intensity coding patterns.

Insular cortex
The insular cortex is crucial for pain processing (Ostrowsky et al.,
2002; for review, see Nieuwenhuys (2012). It is ideally suited to

represent pain intensity and related features because of its struc-
tural and functional organization (Barrett and Simmons, 2015;
Nomi et al., 2017). While the traditional assumption (Cerliani et
al., 2012; Cloutman et al., 2012; Jakab et al., 2012; Dennis et al.,
2014) refers to an anterior—posterior dichotomy within insular
cortex, more recent neuroimaging studies suggest a tripartite or-
ganization (Deen et al., 2011; Nomi et al., 2017).

In this tripartite organization, the posterior insula with its
direct spinothalamocortical projections (originating in lamina I
dorsal horn neurons) (Craig, 2002; Dum et al., 2009) as well as its
intense connectivity to the somatosensory cortices (Wiech et al.,
2014) makes it an ideal candidate for encoding the intensity of
nociceptive thermal stimuli. Such sensory coding within the PI
has previously been observed for both tonic and phasic pain (Seg-
erdahl et al., 2015; Geuter et al., 2017) and even innocuous ther-
mal stimuli (Davis et al., 1998). Our observation of a pure
intensity coding pattern in the posterior insula confirms these
findings.

The dAI is functionally connected to a cognitive control net-
work (Dosenbach et al., 2007) and has stronger connections to
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Table 3. Bayesian model weights for all ROIs, including the SlI, S, frontal medial
cortex, ACC, PCC, amygdala, hippocampus, thalamus, cerebellum, and PAG”

Region INT + EXP + PE INT + EXP INT + PE INT
ACC L 0.04 0.71 0.01 0.23
R 0.04 0.78 0.009 0.15
PCC L 0.01 0.18 0.05 0.75
R 0.02 0.32 0.04 0.61
Parietal operculum L 0.004 0.07 0.05 0.87
R 0.004 0.06 0.05 0.87
Postcentral L 0.03 0.56 0.02 0.38
R 0.007 0.12 0.04 0.81
Frontal medial cortex L 0.007 0.09 0.06 0.83
R 0.004 0.07 0.06 0.87
Hippocampus L 0.003 0.06 0.05 0.89
R 0.003 0.05 0.05 0.89
Amygdala L 0.006 0.10 0.04 0.83
R 0.005 0.08 0.05 0.85
Thalamus L 0.04 0.54 0.03 0.37
R 0.05 0.57 0.03 0.34
Cerebellum L 0.03 0.43 0.03 0.5
R 0.04 0.57 0.02 0.37
PAG 0.06 0.85 0.005 0.07

“Inall ROIs except for the ACCand PAG, the INT model was the winning model. In those regions, the best model was
determined as the INT + EXP model.

posterior regions of the cingulate cortex (Taylor et al., 2009).
Therefore, the dAI is presumably involved in expectation and
attentional mechanisms (Deen et al., 2011). Moreover, the dAl as
a part of cortical limbic areas with an agranular laminar structure
is considered to encode expectation signals (Barrett and Sim-
mons, 2015; Chanes and Barrett, 2016). This is in accordance
with our findings showing a representation of stimulus intensity
and expectation (INT+EXP model) in the dAI Previous studies
have also identified a role of this area in prestimulus effects and
attentional modulation (Ploner et al., 2010; Wiech et al., 2010).

In contrast, the vAI exhibits strong connectivity to the poste-
rior insula, ACC, thalamus, amygdala, and basal ganglia, which
are also contributing to pain processing (DuPont et al., 2003;
Baliki et al., 2009; Mutschler et al., 2009; Uddin et al., 2014). Such
a strong connection of the vAl to these limbic structures makes it
an ideal mediator between areas representing pain intensity
and expectation to evaluate the expectation against the sen-
sory input and estimating a prediction error (Downar et al.,
2002; Seymour et al., 2004; Geuter et al., 2017). Our observed
representation of stimulus intensity, expectation, and predic-
tion error (INT+EXP+PE model) in the vAI is in agreement
with these findings.

Expectation and prediction error in the valid modality

Predictions and prediction errors are key ingredients for percep-
tual theories, such as predictive coding (Knill and Pouget, 2004),
and theories of brain function, such as the free energy model,
including active inference (Knill and Pouget, 2004; Friston, 2005,
2008). In the predictive coding framework, the brain is relying on
its internal model of the physical reality but tries to make it an
adequate model by updating it based on the incoming data. Con-
sequently, the integration of “prediction errors” into this model
will change it over time to better reflect the physical reality. These
concepts can account for extra-classical-receptive-field effects
(Rao and Ballard, 1999), repetition suppression (Summerfield et
al., 2008; Todorovic and de Lange, 2012), illusory contours for-
mation (Dura-Bernal et al., 2011), and mismatch negativity (Yli-
nen etal., 2016). Such a mechanism was also proposed as a model
to account for expectation effects in pain (Geuter et al., 2017) and
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placebo hypoalgesia (Biichel et al., 2014; Grahl et al., 2018). Ac-
cording to predictive coding in the case of pain, we hypothesize
the presence of sensory specific representations of the expecta-
tion and prediction error terms at the hierarchical level where the
intensity of pain is encoded similar to other modalities (Rao and
Ballard, 1999; Friston, 2005). Crucially, this predicts that these
representations are restricted to the case in which the modality
cue is valid. As our second stimulus category comprised aversive
pictures, this allows to test whether aversiveness, which is shared
by pain and picture stimuli, can account for insula activation.

Importantly, our data show that the prediction error signal in
the anterior insula is not generally related to aversiveness, which
is shared by the pictures and the painful stimuli, but is limited to
the pain expectation. This is indicated by the fact that we could
only observe the “expectation” effect in the valid modality cue
conditions. In case the modality cue was invalid (when volunteers
expected an aversive picture but received pain), the intensity cue
had no effect on the response patterns in the insula. In other
words, an expectation that shares an aversiveness component
(i.e., aversive pictures) is not encoded in these areas. This is fur-
ther corroborated by the absence of a prediction error in the
insula in this case. As a consequence, our data suggest a more
specific role for the vAI representing expectations and prediction
errors related to pain. This indicates that this area is part of the
hierarchy where pain intensity integration occurs and can be seen
in analogy to other stimulus modalities, in which feature-
selective predictive coding within the fusiform face area in re-
sponse to faces, and within the parahippocampal place area in
response to houses (den Ouden et al., 2010; Egner et al., 2010;
Jiang et al., 2013) has been shown. Moreover, the observed func-
tional dissociation between insular subregions resonates with
previous accounts of insular subspecialization for different fea-
tures of aversive stimuli (Baliki et al., 2009; Deen et al., 2011;
Nomi et al., 2017).

Signed versus unsigned prediction errors
Prediction errors could either be represented as absolute devia-
tions (i.e., absolute deviation of outcome from expectation) or
signed deviations (i.e., more or less pain than expected). Unfor-
tunately, due to the design of our experiment, distinguishing
between unsigned and signed prediction errors cannot be disso-
ciated in our model. Our data indicate the representation of
unsigned prediction error in the anterior insula. Similar observa-
tions of unsigned prediction errors have been made in the ante-
rior insula, amygdala, and visual and auditory cortices (den
Oudenetal., 2009, 2010; Todorovicetal., 2011; Todorovic and de
Lange, 2012; Boll et al., 2013; Geuter et al., 2017). Unlike the
signed prediction error, which can be used to guide approach and
avoidance behavior, this type of error (i.e., absolute prediction
error) determines the captured attention, which is related to
stimulus saliency rather than its actual value (Kahnt et al., 2014).
In conclusion, the vAI exhibits all features necessary for the
implementation of a predictive coding type integration of pain.
Importantly, the functional organization revealed by our model
comparison is remarkably similar to the structurally defined tri-
partite organization of the insular cortex (Fischl et al., 2004;
Destrieux et al., 2010). Our results corroborate the previously
observed gradient from stimulus intensity coding to perceptual
coding from posterior to anterior insula (Geuter et al., 2017).
This might also reflect a gradient from nociception to pain, where
somatosensory information from posterior somatosensory re-
gions is more and more integrated with cognitive factors such as
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expectation, which finally allows the estimation of prediction
errors in the anterior insula.

References

Ashburner J (2007) A fast diffeomorphic image registration algorithm.
Neuroimage 38:95-113. CrossRef Medline

Atlas LY, Wager TD (2012) How expectations shape pain. Neurosci Lett
520:140-148. CrossRef Medline

Atlas LY, Bolger N, Lindquist MA, Wager TD (2010) Brain mediators of
predictive cue effects on perceived pain. ] Neurosci 30:12964-12977.
CrossRef Medline

Baliki MN, Geha PY, Apkarian AV (2009) Parsing pain perception between
nociceptive representation and magnitude estimation. ] Neurophysiol
101:875-887. CrossRef Medline

Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat
Rev Neurosci 16:419—-429. CrossRef Medline

Benedek M, Kaernbach C (2010) Decomposition of skin conductance data
by means of nonnegative deconvolution. Psychophysiology 47:647—658.
CrossRef Medline

Boll S, Gamer M, Gluth S, Finsterbusch J, Biichel C (2013) Separate
amygdala subregions signal surprise and predictiveness during associative
fear learning in humans. Eur ] Neurosci 37:758-767. CrossRef Medline

Biichel C, Geuter S, Sprenger C, Eippert F (2014) Placebo analgesia: a pre-
dictive coding perspective. Neuron 81:1223-1239. CrossRef Medline

Cerliani L, Thomas RM, Jbabdi S, Siero JC, Nanetti L, Crippa A, Gazzola V,
D’Arceuil H, Keysers C (2012) Probabilistic tractography recovers a ros-
trocaudal trajectory of connectivity variability in the human insular cor-
tex. Hum Brain Mapp 33:2005-2034. CrossRef Medline

Chanes L, Barrett LF (2016) Redefining the role of limbic areas in cortical
processing. Trends Cogn Sci 20:96—-106. CrossRef Medline

Cloutman LL, Binney RJ, Drakesmith M, Parker GJ, Lambon Ralph MA
(2012) The variation of function across the human insula mirrors its
patterns of structural connectivity: evidence from in vivo probabilistic
tractography. Neuroimage 59:3514-3521. CrossRef Medline

Craig AD (2002) How do you feel? Interoception: the sense of the physio-
logical condition of the body. Nat Rev Neurosci 3:655-666. CrossRef
Medline

Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study
of thalamic and cortical activations evoked by cutaneous heat, cold, and
tactile stimuli. ] Neurophysiol 80:1533—-1546. CrossRef Medline

Deen B, Pitskel NB, Pelphrey KA (2011) Three systems of insular functional
connectivity identified with cluster analysis. Cereb Cortex 21:1498-1506.
CrossRef Medline

den Ouden HE, Friston KJ, Daw ND, McIntosh AR, Stephan KE (2009) A
dual role for prediction error in associative learning. Cereb Cortex 19:
1175-1185. CrossRef Medline

den Ouden HE, Daunizeau J, Roiser J, Friston KJ, Stephan KE (2010) Stria-
tal prediction error modulates cortical coupling. ] Neurosci 30:3210—
3219. CrossRef Medline

Dennis EL, Jahanshad N, McMahon KL, de Zubicaray GI, Martin NG, Hickie
IB, Toga AW, Wright MJ, Thompson PM (2014) Development of insula
connectivity between ages 12 and 30 revealed by high angular resolution
diffusion imaging. Hum Brain Mapp 35:1790—-1800. CrossRef Medline

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buck-
ner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany R] (2006)
An automated labeling system for subdividing the human cerebral cortex
on MRI scans into gyral based regions of interest. Neuroimage 31:968—
980. CrossRef Medline

Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of
human cortical gyri and sulci using standard anatomical nomenclature.
Neuroimage 53:1-15. CrossRef Medline

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA,
Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE
(2007) Distinct brain networks for adaptive and stable task control in
humans. Proc Natl Acad Sci U S A 104:11073-11078. CrossRef Medline

Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A cortical network
sensitive to stimulus salience in a neutral behavioral context across mul-
tiple sensory modalities. ] Neurophysiol 87:615-620. CrossRef Medline

Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets
motor and sensory areas in the cerebral cortex of monkeys. ] Neurosci
29:14223-14235. CrossRef Medline

DuPont S, Bouilleret V, Hasboun D, Semah F, Baulac M (2003) Functional

J. Neurosci., July 18, 2018 - 38(29):6461— 6474 + 6473

anatomy of the insula: new insights from imaging. Surg Radiol Anat 25:
113-119. CrossRef Medline

Dura-Bernal S, Wennekers T, Denham SL (2011) The role of feedback in a
hierarchical model of object perception. Adv Exp Med Biol 718:165-179.
CrossRef Medline

Egner T, Monti JM, Summerfield C (2010) Expectation and surprise deter-
mine neural population responses in the ventral visual stream. ] Neurosci
30:16601-16608. CrossRef Medline

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M,
Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo
planar imaging for sub-second whole brain FMRI and fast diffusion im-
aging. PLoS One 5:e15710. CrossRef Medline

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa
E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B,
Dale AM (2004) Automatically parcellating the human cerebral cortex.
Cereb Cortex 14:11-22. CrossRef Medline

Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B
Biol Sci 360:815—-836. CrossRef Medline

Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol
4:¢1000211. CrossRef Medline

Geuter S, Boll S, Eippert F, Biichel C (2017) Functional dissociation of stim-
ulus intensity encoding and predictive coding of pain in the insula. eLife
6:€24770. CrossRef Medline

Grahl A, Onat S, Biichel C (2018) The periaqueductal gray and Bayesian
integration in placebo analgesia. eLife 7:¢32930. CrossRef Medline

Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer
B, Haase A (2002) Generalized autocalibrating partially parallel acquisi-
tions (GRAPPA). Magn Reson Med 47:1202-1210. CrossRef Medline

Hiuser W, Hansen E, Enck P (2012) Nocebo phenomena in medicine: their
relevance in everyday clinical practice. Dtsch Arztebl Int 109:459—465.
CrossRef Medline

Jakab A, Molnér PP, Bogner P, Béres M, Berényi EL (2012) Connectivity-
based parcellation reveals interhemispheric differences in the insula.
Brain Topogr 25:264-271. CrossRef Medline

Jiang J, Summerfield C, Egner T (2013) Attention sharpens the distinction
between expected and unexpected percepts in the visual brain. ] Neurosci
33:18438-18447. CrossRef Medline

Kahnt T, Park SQ, Haynes JD, Tobler PN (2014) Disentangling neural rep-
resentations of value and salience in the human brain. Proc Natl Acad Sci
U S A 111:5000-5005. CrossRef Medline

Keltner JR, Furst A, Fan C, Redfern R, Inglis B, Fields HL (2006) Isolating
the modulatory effect of expectation on pain transmission: a functional
magnetic resonance imaging study. ] Neurosci 26:4437—4443. CrossRef
Medline

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in
neural coding and computation. Trends Neurosci 27:712-719. CrossRef
Medline

Koyama T, McHaffie JG, Laurienti PJ, Coghill RC (2005) The subjective
experience of pain: where expectations become reality. Proc Natl Acad Sci
U S A 102:12950-12955. CrossRef Medline

Krishnan A, Woo CW, Chang LJ, Ruzic L, Gu X, Lépez-Sola M, Jackson PL,
Pujol J, Fan ], Wager TD (2016) Somatic and vicarious pain are repre-
sented by dissociable multivariate brain patterns. eLife 5:e15166.
CrossRef Medline

Lang PJ, Bradley MM, Cuthbert BN (2005) International affective picture
system (IAPS): affective ratings of pictures and instruction manual.
Gainesville, FL: National Institute of Mental Health, Center for the Study
of Emotion and Attention.

Langner R, Kellermann T, Boers F, Sturm W, Willmes K, Eickhoff SB (2011)
Modality-specific perceptual expectations selectively modulate baseline
activity in auditory, somatosensory, and visual cortices. Cereb Cortex
21:2850-2862. CrossRef Medline

Lewandowsky S, Farrell S (2010) Computational Modeling in Cognition:
Principles and Practice. California, CA: SAGE Publications, Inc.

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K
(2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration
using partial parallel imaging with application to high spatial and tempo-
ral whole-brain fMRI. Magn Reson Med 63:1144-1153. CrossRef
Medline

Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-
Bonhage A, Ball T (2009) Functional organization of the human ante-
rior insular cortex. Neurosci Lett 457:66—70. CrossRef Medline


http://dx.doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
http://dx.doi.org/10.1016/j.neulet.2012.03.039
http://www.ncbi.nlm.nih.gov/pubmed/22465136
http://dx.doi.org/10.1523/JNEUROSCI.0057-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20881115
http://dx.doi.org/10.1152/jn.91100.2008
http://www.ncbi.nlm.nih.gov/pubmed/19073802
http://dx.doi.org/10.1038/nrn3950
http://www.ncbi.nlm.nih.gov/pubmed/26016744
http://dx.doi.org/10.1111/j.1469-8986.2009.00972.x
http://www.ncbi.nlm.nih.gov/pubmed/20230512
http://dx.doi.org/10.1111/ejn.12094
http://www.ncbi.nlm.nih.gov/pubmed/23278978
http://dx.doi.org/10.1016/j.neuron.2014.02.042
http://www.ncbi.nlm.nih.gov/pubmed/24656247
http://dx.doi.org/10.1002/hbm.21338
http://www.ncbi.nlm.nih.gov/pubmed/21761507
http://dx.doi.org/10.1016/j.tics.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/26704857
http://dx.doi.org/10.1016/j.neuroimage.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22100771
http://dx.doi.org/10.1038/nrn894
http://www.ncbi.nlm.nih.gov/pubmed/12154366
http://dx.doi.org/10.1152/jn.1998.80.3.1533
http://www.ncbi.nlm.nih.gov/pubmed/9744957
http://dx.doi.org/10.1093/cercor/bhq186
http://www.ncbi.nlm.nih.gov/pubmed/21097516
http://dx.doi.org/10.1093/cercor/bhn161
http://www.ncbi.nlm.nih.gov/pubmed/18820290
http://dx.doi.org/10.1523/JNEUROSCI.4458-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20203180
http://dx.doi.org/10.1002/hbm.22292
http://www.ncbi.nlm.nih.gov/pubmed/23836455
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1016/j.neuroimage.2010.06.010
http://www.ncbi.nlm.nih.gov/pubmed/20547229
http://dx.doi.org/10.1073/pnas.0704320104
http://www.ncbi.nlm.nih.gov/pubmed/17576922
http://dx.doi.org/10.1152/jn.00636.2001
http://www.ncbi.nlm.nih.gov/pubmed/11784775
http://dx.doi.org/10.1523/JNEUROSCI.3398-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906970
http://dx.doi.org/10.1007/s00276-003-0103-4
http://www.ncbi.nlm.nih.gov/pubmed/12819943
http://dx.doi.org/10.1007/978-1-4614-0164-3_14
http://www.ncbi.nlm.nih.gov/pubmed/21744218
http://dx.doi.org/10.1523/JNEUROSCI.2770-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21147999
http://dx.doi.org/10.1371/journal.pone.0015710
http://www.ncbi.nlm.nih.gov/pubmed/21187930
http://dx.doi.org/10.1093/cercor/bhg087
http://www.ncbi.nlm.nih.gov/pubmed/14654453
http://dx.doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
http://dx.doi.org/10.1371/journal.pcbi.1000211
http://www.ncbi.nlm.nih.gov/pubmed/18989391
http://dx.doi.org/10.7554/eLife.24770
http://www.ncbi.nlm.nih.gov/pubmed/28524817
http://dx.doi.org/10.7554/eLife.32930
http://www.ncbi.nlm.nih.gov/pubmed/29555019
http://dx.doi.org/10.1002/mrm.10171
http://www.ncbi.nlm.nih.gov/pubmed/12111967
http://dx.doi.org/10.3238/arztebl.2012.0459
http://www.ncbi.nlm.nih.gov/pubmed/22833756
http://dx.doi.org/10.1007/s10548-011-0205-y
http://www.ncbi.nlm.nih.gov/pubmed/22002490
http://dx.doi.org/10.1523/JNEUROSCI.3308-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24259568
http://dx.doi.org/10.1073/pnas.1320189111
http://www.ncbi.nlm.nih.gov/pubmed/24639493
http://dx.doi.org/10.1523/JNEUROSCI.4463-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16624963
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://dx.doi.org/10.1073/pnas.0408576102
http://www.ncbi.nlm.nih.gov/pubmed/16150703
http://dx.doi.org/10.7554/eLife.15166
http://www.ncbi.nlm.nih.gov/pubmed/27296895
http://dx.doi.org/10.1093/cercor/bhr083
http://www.ncbi.nlm.nih.gov/pubmed/21527785
http://dx.doi.org/10.1002/mrm.22361
http://www.ncbi.nlm.nih.gov/pubmed/20432285
http://dx.doi.org/10.1016/j.neulet.2009.03.101
http://www.ncbi.nlm.nih.gov/pubmed/19429164

6474 - J. Neurosci., July 18,2018 - 38(29):6461- 6474

Nieuwenhuys R (2012) The insular cortex: a review. Prog Brain Res 195:
123-163. CrossRef Medline

NomiJS, Schettini E, Broce I, Dick AS, Uddin LQ (2017) Structural connec-
tions of functionally defined human insular subdivisions. Cereb Cortex
2017:1-12. CrossRef Medline

Okada K, Matchin W, Hickok G (2018) Neural evidence for predictive cod-
ing in auditory cortex during speech production. Psychon Bull Rev 25:
423-430. CrossRef Medline

Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guenot M, Mauguiére F (2002)
Representation of pain and somatic sensation in the human insula: a
study of responses to direct electrical cortical stimulation. Cereb Cortex
12:376-385. CrossRef Medline

Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus func-
tional connectivity determines pain perception in humans. Proc Natl
Acad Sci U S A 107:355-360. CrossRef Medline

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nat
Neurosci 2:79-87. CrossRef Medline

Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I (2015) The dorsal
posterior insula subserves a fundamental role in human pain. Nat Neu-
rosci 18:499-500. CrossRef Medline

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen V], Wald LL
(2012) Blipped-controlled aliasing in parallel imaging for simultaneous
multislice echo planar imaging with reduced g-factor penalty. Magn
Reson Med 67:1210—1224. CrossRef Medline

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ,
Friston KJ, Frackowiak RS (2004) Temporal difference models describe
higher-order learning in humans. Nature 429:664-667. CrossRef
Medline

Sterzer P, Frith C, Petrovic P (2008) Believing is seeing: expectations alter
visual awareness. Curr Biol 18:R697-R698. CrossRef Medline

Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T (2008)
Neural repetition suppression reflects fulfilled perceptual expectations.
Nat Neurosci 11:1004—1006. CrossRef Medline

Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state
connectivity between the insula and cingulate cortex. Hum Brain Mapp
30:2731-2745. CrossRef Medline

Fazeli and Biichel e Pain-Related Expectation and Prediction Error Signals in the Anterior Insula

Todorovic A, de Lange FP (2012) Repetition suppression and expectation
suppression are dissociable in time in early auditory evoked fields. ] Neu-
rosci 32:13389-13395. CrossRef Medline

Todorovic A, van Ede F, Maris E, de Lange FP (2011) Prior expectation
mediates neural adaptation to repeated sounds in the auditory cortex: an
MEG study. ] Neurosci 31:9118-9123. CrossRef Medline

Tracey I (2010) Getting the pain you expect: mechanisms of placebo, no-
cebo and reappraisal effects in humans. Nat Med 16:1277-1283. CrossRef
Medline

Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite
cognition-emotion-interoception model of the human insular cortex. J
Cogn Neurosci 26:16-27. CrossRef Medline

Wager TD, Atlas LY, Leotti LA, Rilling JK (2011) Predicting individual dif-
ferences in placebo analgesia: contributions of brain activity during an-
ticipation and pain experience. ] Neurosci 31:439 —452. CrossRef Medline

Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E (2013) An
fMRI-based neurologic signature of physical pain. N Engl ] Med 368:
1388-1397. CrossRef Medline

Wiech K (2016) Deconstructing the sensation of pain: the influence of cog-
nitive processes on pain perception. Science 354:584-587. CrossRef
Medline

Wiech K, Ploner M, Tracey I (2008) Neurocognitive aspects of pain percep-
tion. Trends Cogn Sci 12:306-313. CrossRef Medline

Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I (2010) An-
terior insula integrates information about salience into perceptual deci-
sions about pain. ] Neurosci 30:16324-16331. CrossRef Medline

Wiech K, Jbabdi S, Lin CS, Andersson J, Tracey I (2014) Differential
structural and resting state connectivity between insular subdivisions
and other pain-related brain regions. Pain 155:2047-2055. CrossRef
Medline

Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E,
Ugurbil K (2013) Evaluation of slice accelerations using multiband echo
planar imaging at 3 T. Neuroimage 83:991-1001. CrossRef Medline

Ylinen S, Huuskonen M, Mikkola K, Saure E, Sinkkonen T, Paavilainen P
(2016) Predictive coding of phonological rules in auditory cortex: a mis-
match negativity study. Brain Lang 162:72—80. CrossRef Medline


http://dx.doi.org/10.1016/B978-0-444-53860-4.00007-6
http://www.ncbi.nlm.nih.gov/pubmed/22230626
http://dx.doi.org/10.1093/cercor/bhx211
http://www.ncbi.nlm.nih.gov/pubmed/28968768
http://dx.doi.org/10.3758/s13423-017-1284-x
http://www.ncbi.nlm.nih.gov/pubmed/28397076
http://dx.doi.org/10.1093/cercor/12.4.376
http://www.ncbi.nlm.nih.gov/pubmed/11884353
http://dx.doi.org/10.1073/pnas.0906186106
http://www.ncbi.nlm.nih.gov/pubmed/19948949
http://dx.doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://dx.doi.org/10.1038/nn.3969
http://www.ncbi.nlm.nih.gov/pubmed/25751532
http://dx.doi.org/10.1002/mrm.23097
http://www.ncbi.nlm.nih.gov/pubmed/21858868
http://dx.doi.org/10.1038/nature02581
http://www.ncbi.nlm.nih.gov/pubmed/15190354
http://dx.doi.org/10.1016/j.cub.2008.06.021
http://www.ncbi.nlm.nih.gov/pubmed/18727901
http://dx.doi.org/10.1038/nn.2163
http://www.ncbi.nlm.nih.gov/pubmed/19160497
http://dx.doi.org/10.1002/hbm.20705
http://www.ncbi.nlm.nih.gov/pubmed/19072897
http://dx.doi.org/10.1523/JNEUROSCI.2227-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23015429
http://dx.doi.org/10.1523/JNEUROSCI.1425-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697363
http://dx.doi.org/10.1038/nm.2229
http://www.ncbi.nlm.nih.gov/pubmed/20948533
http://dx.doi.org/10.1162/jocn_a_00462
http://www.ncbi.nlm.nih.gov/pubmed/23937691
http://dx.doi.org/10.1523/JNEUROSCI.3420-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21228154
http://dx.doi.org/10.1056/NEJMoa1204471
http://www.ncbi.nlm.nih.gov/pubmed/23574118
http://dx.doi.org/10.1126/science.aaf8934
http://www.ncbi.nlm.nih.gov/pubmed/27811269
http://dx.doi.org/10.1016/j.tics.2008.05.005
http://www.ncbi.nlm.nih.gov/pubmed/18606561
http://dx.doi.org/10.1523/JNEUROSCI.2087-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21123578
http://dx.doi.org/10.1016/j.pain.2014.07.009
http://www.ncbi.nlm.nih.gov/pubmed/25047781
http://dx.doi.org/10.1016/j.neuroimage.2013.07.055
http://www.ncbi.nlm.nih.gov/pubmed/23899722
http://dx.doi.org/10.1016/j.bandl.2016.08.007
http://www.ncbi.nlm.nih.gov/pubmed/27588355

	Pain-Related Expectation and Prediction Error Signals in the Anterior Insula Are Not Related to Aversiveness
	Introduction
	Materials and Methods
	Results
	Discussion
	References


