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Evaluating the Columnar Stability of Acoustic Processing in
the Human Auditory Cortex
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Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex.
We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter
spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to
frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modu-
lations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between
feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar
manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary
auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary
auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features
systematically varies.
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In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional
processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown
whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural
sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex
contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are
performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally
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represent the content of our complex acoustic natural environment.
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Introduction

Vertical chains of neurons running orthogonal to the cortical
laminar pattern can be observed throughout the auditory cortex
(Jones, 2000). Early investigations in the cat primary auditory
cortex (PAC) already showed that, along these chains, termed
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microcolumns, neural tuning to sound frequency is stable (co-
lumnar) (Abeles and Goldstein, 1970; Merzenich et al., 1975).
Beyond sound frequency, also aurality (i.e., the relative influence
of input from the contralateral and ipsilateral ear on a neuron’s
response) (Brugge and Merzenich, 1973; but see also Phillips and
Irvine, 1983), intensity tuning (Clarey et al., 1994), and frequency
sweep tuning (Mendelson et al., 1993) were observed to be stable
along PAC columns. On the other hand, systematic variations in
processing throughout the depth of the auditory cortex have been
observed for a range of other sound features, including sound
latency (Phillips and Irvine, 1981; Atencio and Schreiner, 2010),
the bandwidth of spectral integration (Sugimoto et al., 1997;
Atencio and Schreiner, 2010), and the complexity of frequency
tuning curves (Atencio et al., 2009).

To date, it remains unclear to what extent these organization
principles observed in the nonhuman mammals apply to the hu-
man auditory cortex. Moreover, to what extent different acoustic
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features, whose maps are overlapping in auditory cortex, are sta-
ble through cortical depth (i.e., columnar) remains largely unex-
plored, both in nonhuman mammals and humans. While the role
of (micro)columns as a fundamental processing unit of the cere-
bral cortex is heavily debated (Mountcastle, 1997; Jones, 2000;
Horton and Adams, 2005), knowledge of both the columnar or-
ganization and stability or the cortical depth-dependent variabil-
ity of neural feature preferences sheds light on the cortical
computations that are in place. That is, while stability of feature
preference (columnarity) may provide an anchor along which
computations are performed, the presence of systematic varia-
tions in acoustic feature preferences, in regions where auditory
cortical columns exist, may highlight those features whose pro-
cessing undergoes a transformation in auditory cortex (Linden
and Schreiner, 2003). For example, if, at a specific cortical loca-
tion, temporal modulations of 4 Hz are stably processed through-
out depth while best frequency varies, the function of the local
cortical microcircuit is related to frequency processing occurring
at a temporal rate of 4 Hz. In this example, the temporal modu-
lation of 4 Hz functions as an anchor (i.e., the common part of the
processing occurring at this cortical location), yet the interesting
computation or transformation takes place in frequency domain
(e.g., the grouping of frequency bands into a harmonic complex).

The sensitivity and specificity gains at ultra-high field fMRI
have resulted in the successful mapping of columnar architec-
tures in human visual cortex. Studies spanning the past two de-
cades demonstrated ocular dominance (Menon et al., 1997;
Cheng et al., 2001; Yacoub et al., 2007) and orientation columns
in V1 (Yacoub et al., 2008), columnar color and disparity selec-
tivity in V2, V3, and V4 (Nasr et al., 2016; Tootell and Nasr,
2017), and columnar direction of motion selectivity in V5/hMT
(Zimmermann et al., 2011). In the human auditory cortex, top-
ographic maps of acoustic features can be reliably assessed with
fMRI (Formisano et al., 2003; Da Costa et al., 2011; Barton et al.,
2012; Herdener et al., 2013; Santoro et al., 2014). We recently
showed tuning to frequency to be stable (through cortical depth)
in a subset of primary auditory cortex, suggesting a preservation
of columnar frequency tuning in the human (De Martino et al.,
2015a).

In this work, we explored the cortical depth-dependent
stability (columnarity) of acoustic features beyond frequency.
Specifically, we focused on the processing of spectrotemporal
modulations. Spectrotemporal modulations are characteristic of
natural sounds, underlie neuronal tuning throughout the audi-
tory pathway (Joris et al., 2004; Rodriguez et al., 2010; Santoro et
al., 2014), and are crucial for fundamental human auditory skills
(e.g., speech intelligibility) (Chi et al., 1999; Elliott and Theunis-
sen, 2009). Consistent with previous fMRI studies, here we op-
erationalize columnar cortical regions as those regions where the
acoustic feature preference variation along the cortical sheet (tangen-
tially) divided by the acoustic feature preference variation
through depth (radially) is significantly greater than expected by
chance. With this definition, we do not intend to propose a gen-
eral definition for a cortical column. Instead, it represents a tool
by which we can statistically evaluate our results. In both primary
and nonprimary auditory cortex, we observed a relatively stable
tuning to temporal modulation rate. On the other hand, spectral
modulation scale tuning was significantly more variable through-
out the cortical depth. Columnar regions did not overlap across
acoustic feature maps, suggesting a cortical coding strategy in
which tuning to some features is kept stable while tuning to other
features systematically varies.
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Materials and Methods

Ethics statement

The experimental procedures were approved by the Institutional Review
Board for human subject research at the University of Minnesota. In-
formed consent was obtained from each participant before starting the
measurements.

Subjects

Six healthy volunteers participated in this study (mean = SD age, 28.5 =
7.8 years; 2 males and 4 females). The subjects had no history of hearing
disorder or neurological disease.

Experimental design and statistical analysis

Stimuli. The data analyzed in this study have been previously described in
amethodological study (Moerel et al., 2018), where the aim was to com-
pare the performance of T,- with T,-weighted data using high-end fMRI
analyses. Results of that study indicated that, while both the estimated
voxels feature preference and selectivity were biased by the presence of
large veins in the gradient echo EPI (T,-weighted data) dataset, the 3D
GRASE (i.e., T,-weighted) fMRI data did not show such biases. In con-
clusion, 3D GRASE was preferable to gradient echo EPI for the examina-
tion of cortical depth-dependent feature processing in the auditory
cortex (Moerel etal., 2018). Accordingly, here we explored the stability of
feature preference throughout cortical depth-based on the 7T high-
resolution 3D GRASE fMRI dataset. The original dataset consisted of
three scanning sessions. In the current study, we used the data of the first
and third of those sessions. In the first session, high-resolution anatom-
ical data were collected for the purpose of segmentation, cortical layer
sampling (Zimmermann et al., 2011), and the computation of myelin-
related contrast (Dick et al., 2012; De Martino et al., 2015b). In the third
session, high-resolution 3D GRASE (Oshio and Feinberg, 1991; Feinberg
etal., 2008) (T,-weighted) data were collected while subjects listened to
complex, natural sounds in an event-related design. The natural sounds
included recordings of the following sound categories: speech, voices,
animal cries, music, tools, and nature scenes (144 sounds in total; 24
sounds per category; for the frequency and spectrotemporal modulation
content of the sounds, see Fig. 1A). Sounds were sampled at 16 kHz, and
their duration was 1000 ms. Sound onset and offset were ramped with a
10 ms linear slope, and their energy (RMS) levels were equalized. Subjects
were instructed to attend to the sounds and perform a one-back task.
That is, they indicated with a button press if the exact same sound was
played on consecutive trials (occurring on 6% of the trials; repeat trials
were not considered in the training and testing of encoding models).
Performance was recorded for 5 of 6 subjects (as a failure of the button
box occurred for 1 subject), and across these 5 subjects the mean = SEM
hit rate = 94.2 = 4.3%.

Session 3 consisted of 16 fMRI data collection runs. We divided the
144 natural sounds into 4 nonoverlapping sound sets (36 sounds per set).
Each sound set contained 6 sounds of each of the categories, and all 36
sounds belonging to the same set were presented once in a run. Each
sound was repeated four times in Session 3 (i.e., each of the 4 sound sets
was presented in 4 of 16 runs). Stimuli were presented in silent gaps
between functional volume acquisitions and were played at a jittered
interstimulus interval of 2, 3, or 4 TRs (with additional random jitter).

MRI acquisition. All measurements were performed on a 90 cm bore 7
tesla whole-body magnet (Magnex Scientific) driven by a console (Sie-
mens Medical Systems) using a custom whole-head 32 channel loop
transceiver and a high-performance head gradient insert. In the first
session, T}, proton density (PD), and T,-weighted data were collected at
a voxel size of 0.6 mm isotropic. Two T,-weighted scans were acquired
using a modified MPRAGE sequence (TR = 3100 ms; time to inver-
sion = 1500 ms; TE = 3.45 ms; flip angle = 4°; generalized autocalibrat-
ing partially parallel acquisition [GRAPPA]| = 3; matrix size = 384 X
384; 256 slices). PD images were acquired with the same MPRAGE as the
T,-weighted image, but without the inversion pulse (TR = 2160 ms;
TE = 3.45 ms; flip angle = 4°; GRAPPA = 3; matrix size = 384 X 384;
256 slices; pixel bandwidth = 200 Hz/pixel). A T,-weighted anatomical
dataset was acquired using a modified MPRAGE sequence that allows
freely setting the TE (TR = 3700 ms; TE = 16 ms; flip angle = 4%
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GRAPPA = 3; matrix size = 384 X 384; 256 slices). Acquisition time for
the T, PD, and T; datasets were ~ 14, 5, and 8 min, respectively.

In the third session, inner volume selective reduced FOV 3D data were
acquired (0.8 mm isotropic; TR = 2000 ms; TE = 29.2 ms; time of
volume acquisition = 310 ms; silent gap = 1690 ms; slices = 16). An
additional T, -weighted scan was acquired for the purpose of realignment
across sessions and slice placement. As a result of the limited FOV of the
3D GRASE protocol, slice placement only included Heschl’s gyrus (HG)
and regions at its anterior and posterior adjacency (see Fig. 1B). In 3 of 6
subjects, these regions were covered bilaterally; and in the other subjects,
only the left hemisphere was covered. This session consisted of 16 runs
which were ~4 min in duration each.

Anatomical data analysis. Following Van de Moortele et al. (2009), we
used the PD images to minimize receive coil inhomogeneities in T,-
weighted images by taking the ratio between the T, and PD images. These
datasets were then corrected for residual inhomogeneities, downsampled
to 0.8 mm isotropic resolution, matching the resolution of the functional
data, and then brought to anterior and posterior commissural space. We
detected the white matter—gray matter boundary and the gray matter-
(cerebral spinal fluid) CSF boundary using the automatic tools of Brain-
Voyager QX, and then manually edited these boundaries to refine them.
The manual corrections were applied with great detail to the ROIs (the
supratemporal plane, including HG and regions at its anterior and pos-
terior adjacency). Next, cortical thickness was measured per the imple-
mentation in BrainVoyager QX 2.8 (Brain Innovation) (Jones et al.,
2000; Zimmermann et al., 2011; De Martino et al., 2013) For each subject
and hemisphere, a cortical depth-dependent grid of three depths ranging
from 0.25 (close to white matter) to 0.75 (close to CSF) cortical depth and
agrid of nine depths (ranging from 0.1 to 0.9 cortical depth) were defined
using an equidistant approach (for details and comparisons to other
approaches, such as equivolume sampling, see, e.g., Waehnert et al.,
2014; Kemper et al., 2018). The tangential resolution of the cortical
depth-dependent grid was 0.4 mm (half of the voxel size) but may be of
higher or lower resolution at deep or superficial cortical depth due to
local curvature (i.e., the depths are sampled relative to cortical depth). To
ensure that gridpoints across depth correspond uniquely to each other,
this variability in resolution cannot be avoided.

As the PAC is more densely myelinated than surrounding auditory
regions (Hackett et al., 2001; Nieuwenhuys, 2013), we used the myelin-
related contrast to obtain a noninvasive estimate of the PAC in each
hemisphere. Myelin-related contrast maps were created following the
procedure described by De Martino et al. (2015a). After dividing the
T,-weighted dataset by the T,-weighted dataset, to enhance the intracor-
tical anatomical contrast and reduced receive coil inhomogeneities
(Glasser and Van Essen, 2011), we corrected the TI/T; dataset for resid-
ual inhomogeneities and brought it to anterior and posterior commis-
sural space. Veins were identified based on the T,-weighted images as
described previously (Moerel et al., 2018) and subsequently removed.
Myelin-related contrast maps were sampled on the cortical depth-
dependent grids and averaged across depth. We refer to the half of the
grid with the highest myelin-related contrast as PAC, and to the half of
the grid with lowest myelin-related contrast as non-PAC. As grid local-
ization is based on anatomical information and the GRASE acquisition
FOV is in general larger than the grid, this PAC definition does not
depend on the FOV of the GRASE acquisition.

Functional data analysis. We used BrainVoyager QX and custom
MATLAB code (The MathWorks) to analyze the functional data. Prepro-
cessing consisted of slice scan-time correction (with sinc interpolation),
3D motion correction, temporal high pass filtering (removing drifts of 2
cycles and less per run), and temporal smoothing of the time series (2
data points). Functional data were coregistered to the anatomical data
and brought to anterior and posterior commissural space.

We followed an fMRI encoding approach (Kay et al., 2008b; Moerel et
al., 2012; Santoro et al., 2014) to obtain topographic maps of frequency,
spectral modulation scale, and temporal modulation rates. We estimated
the response in each voxel to the natural sounds following the procedure
outlined by Moerel et al. (2012, 2015) and below. The main encoding
model that we used described cortical sound processing as the frequency-
specific tuning of neuronal populations to combined spectral and tem-

Moerel et al. ® Columnar Processing in Human Auditory Cortex

poral modulations (spectrotemporal modulation model [STM]). It was
constructed by passing the output of a first (early) stage of a biologically
inspired model of auditory processing (Chi et al., 2005) (NSL Tools
package, available at http://www.isr.umd.edu/Labs/NSL/Software.htm)
to a second model stage, which represented cortical auditory processing
as a set of modulation filters. The filter output was computed at each
frequency bin and averaged over time. As the goal of the current study
was the comparison of map stability across acoustic features, we used an
equal number of temporal modulation rate, spectral modulation scale,
and frequency bins in the model (5 frequency bins logarithmically spaced
between 180 and 7040 Hz, 5 temporal modulation rates of = (2, 4, 8,
16, 32] Hz, and 5 spectral modulation scales of ) = [0.25, 0.5, 1, 2, 4]
cycles/octave). We refer to this model as STM-555, where the numbers
indicate the use of 5 bins for each of the three acoustic features in the
model. To validate the STM-555 model, we compared its performance
with that of two models that we implemented previously: (1) the fre-
quency model, obtained as the output of the first stage of the NSL model
(128 logarithmically spaced frequency bins, ranging from 180 to 7040
Hz); and (2) the frequency-specific STM, obtained as the STM-555
model but with 8 frequency bins, 4 temporal modulation rates of w =
[1, 39, 27] Hz, and 4 spectral modulation scales of ) = [0.5, 1, 2, 4]
cycles/octave (referred to as the STM-844 model). Passing the natural
sounds through the encoding models results in a [S X F] feature matrix
W per model, where S is the number of natural sounds and F is the
number of features to estimate.

Next, per voxel, the response to the sounds was estimated in fourfold
cross-validation (each cross-validation consists of 108 training sounds
S,rain and 36 testing sounds S,,,,). Per cross-validation, we first denoise
the data (Kay et al., 2013) (http://kendrickkay.net/ GLMdenoise/), then
estimate a voxelwise HRF common to all sounds (Kay et al., 2008a), and
use this HRF to compute a B weight per each sound Y,,,;, [S;ain X N,
where N is the number of voxels]. Responses to the testing sounds, Y.,
[S,., X NI, was computed using the HRF as estimated on the training
sounds.

The encoding models were fit in those voxels that showed a significant
response (p < 0.05, uncorrected) to the sounds. The response to the
training sounds in each voxel i was modeled as a linear transformation of
the representation of the training sounds in the model space W, s
follows:

rain &

thivx,i = WtrainRi (1)

where R; is an [Fx1] vector of model parameters whose elements quantify
the contribution of each feature to the overall response of voxel i. Equa-
tion 1 was solved using ridge regression (Hoerl and Kennard, 1970a),
where regularization parameter A was determined per voxel after auto-
matically inspecting the stability of the ridge trace (Hoerl and Kennard,
1970b; Santoro et al., 2014). Model performance was assessed as its pre-
dicting accuracy of responses to the testing sounds (“sound identification
analysis”) (Kay et al., 2008b; Moerel et al., 2013; Santoro et al., 2014).
That is, we predicted the response to the testing sounds Y., ; in voxel i as
follows:

Yieswi = WiestRi (2)

Next, we computed a sound identification score, which quantifies the
accuracy of the model in predicting the brain response to the 36 testing
sounds. Specifically, the predicted brain responses to all testing sounds
Yoot [Siese X V] (horizontally concatenated across cross-validations) are
correlated with measured brain responses to all testing sounds Y.
[S;es: X V] (horizontally concatenated across cross-validations). For each
sound, the rank of the correlation between predicted and measured re-
sponses to that specific sound quantifies the model’s performance (a rank
of 1 indicates perfect prediction, whereas a rank of 36 represents the
worst outcome). After averaging across test sounds, prediction accuracy
was defined as (1 minus the normalized rank) ranging between 0 and 1
(perfect prediction = 1 and chance = 0.5). We tested whether the STM-
555 model performed above chance with a ¢ test after Fisher transform of
the data and statistically compared the performance of the three models
based on sound responses in the STP as a whole by performing paired ¢
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tests after Fisher transformation of the prediction accuracy values. Cor-
tical depth-dependent results were assessed by sampling the responses to
the sounds and the output of the encoding analysis at 9 cortical depths,
and computing model performance per cortical depth. Statistical differ-
ences in model performance were assessed at deep, middle, and superfi-
cial cortical depths (cortical depth = 0.2, 0.5, and 0.8) with a two-way
repeated-measures ANOVA with the factors computational model and
cortical depth after Fisher transformation of the prediction accuracy
values and subsequent paired t tests were performed.

Next, we created cortical maps (averaged across cortical depths) to
assess the correspondence of topographic maps with previous studies.
The cortical maps of feature preference were created by extracting for
each voxel the frequency, temporal modulation rate, and spectral mod-
ulation scale with the highest weight in the trained STM-555 model,
averaging across cross-validations, and by color-coding each voxel ac-
cording to the resulting best frequency, temporal modulation rate, and
spectral modulation scale. Maps were smoothed (FWHM = 3 voxels),
and a red/yellow/green/blue color scale was used to create maps of the
voxels’ best frequency (tonotopy maps), where preference for low and
high frequencies was assigned to red and blue, respectively. A yellow/
green/blue/purple color scale was used for the maps of temporal modu-
lation rate and spectral modulation scale, where low and high rates and
scales were assigned with yellow and purple colors, respectively. Group
topographic maps were created by bringing the individual left hemi-
spheres and corresponding topographic maps to cortex-based aligned
space (Goebel et al., 2006), and averaging maps in those locations that
were included in at least 4 individual maps.

Cortical depth-dependent topographic maps were created by sam-
pling the weights in the trained STM-555 model on grids with 3 and 9
cortical depths, for the purpose of evaluating cortical depth-dependent
stability of preferences and for visualization, respectively. Feature pref-
erence of each gridpoint and cross-validation was assigned as the fre-
quency, temporal modulation rate, and spectral modulation scale with
the highest weight in the trained STM-555 model. For the visualization of
cortical depth-dependent topographic maps, feature preferences sam-
pled on the grids with 9 cortical depths were averaged across cross-
validations, smoothed per cortical depth (FWHM = 3 gridpoints; for
display purpose only), and color-coded as described above.

Columnar organization. We took two approaches to assess the stability
of feature preference. Both analyses were performed on the topographic
maps sampled on grids with 3 cortical depths. First, the stability of feature
preference was assessed following De Martino et al. (2015a). Maps were
smoothed per cortical depth (FWHM = 3 gridpoints). Separately for
each hemisphere, feature map, and grid point, we computed the 3D
gradient of the map (g, = df,/d,, g, = df /d,, g, = df,/d, where df, is the
change in feature preference in direction x, and d, is the spatial extent [in
mm] over which this variation took place). Radial changes (i.e., orthog-
onal to the cortical sheet) and tangential changes in feature preference
(i.e., along the cortical sheet) are quantified by g, and g7 + g7, respec-
tively. Consequently, the ratio of these measurements (columnarity in-
dex C = [g} + gi]/gi) reflects the relative stability of feature preference
orthogonal to the cortical sheet. C will be high for regions that have a
relatively stable radial feature preference or a rapid change in tangential
feature preference. To obtain a single measure over the cortical sheet, the
final measure of columnarity index C was the local average of the esti-
mated C in a neighborhood of 3 X 3 X 3 grid points. We assessed
significance of C as follows. We permuted (N = 1000) the feature maps
while preserving the 3D smoothness, and set the threshold at those values
of C that occurred <5% of the time in the permuted maps (p = 0.05,
uncorrected). As columnarity index C may be affected by cortical thick-
ness (i.e., a higher columnarity for regions with a thinner cortex), the
permutations and corresponding thresholds were computed in a
gridpoint-specific manner. Correction for multiple comparisons was
done using a cluster threshold. In the permuted and thresholded maps
(N = 1000), we counted how often a cluster of a specific size appeared.
The cluster threshold was set at the size that occurred <5% of the time in
the permuted maps. We compared the columnarity index C across fea-
tures by computing percentage of PAC and non-PAC that was signifi-
cantly columnar, separately for the frequency, temporal modulation rate,
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and spectral modulation scale maps. Differences across features and re-
gions were tested for significance using a two-way repeated-measures
ANOVA with factors Feature [frequency, rate, scale] X Region [PAC,
non-PAC], followed by paired t tests. The stability of significantly colum-
nar regions was assessed by additionally computing columnarity index C
per cross-validation, and counting the number of occurrences that sig-
nificantly columnar regions in the average feature maps were signifi-
cantly columnar in each of the four cross-validation maps.

Second, we evaluated the stability of feature preference following Nasr
etal. (2016; see also Tootell and Nasr, 2017). Per hemisphere and feature
map, but across all gridpoints in either PAC or non-PAC, we computed
the correlation between the map in deep and superficial cortical depths.
As a control for both analyses, we evaluated the smoothness of the feature
maps along the cortical sheet. In accordance with Nasr et al. (2016), this
analysis was performed on the deepest cortical depth. Per hemisphere
and feature map, we computed the correlation between the map and a
map sampled within the same depth but ata mean sampling distance that
varied from 0.15 to 4.65 mm (in 0.3 mm intervals).

Results

The STM-555 encoding model fit the data significantly above
chance (mean * SEM score = 0.69 = 0.033; t5, = 5.05; p =
0.004) and performed significantly better than the frequency
model (0.61 = 0.030; 5, = 2.43; p = 0.030). The STM-555 and
STM-844 models were similar in performance (STM-844: 0.69 *
0.033; Fig. 1C). This pattern observed for the dataset as a whole
was preserved when the results were evaluated per cortical depth.
A repeated-measures two-way ANOVA with factors Model [Fre-
quency, STM-844, STM-555] X Depth [deep, middle, superfi-
cial] showed that the performance was different across models
(main effect of Model; F, ;) = 6.02, p = 0.011; no significant
interaction; Fig. 1D), but not across cortical depth. Subsequent
paired f tests showed that the SWT-555 and SWT-844 models
performed significantly better than the frequency model (¢, =
2.61, p (corrected) = 0.031, and ¢t = 2.75, p (corrected) =
0.025, respectively).

Large-scale feature maps derived from the STM-555 model
fitted on training data are shown in Figure 2. Tonotopic maps
were in accordance with previous results at both single subject
and group level (Da Costa et al., 2011; Langers and van Dijk,
2012; Moerel et al., 2012) and showed a region of low-frequency
preference on HG, surrounded anteriorly (first temporal sulcus)
and posteriorly (Heschl’s sulcus, anterior part of planum tempo-
rale) by regions preferring higher frequencies. An additional low-
frequency cluster was located on middle superior temporal gyrus.
In line with previous findings (Schonwiesner and Zatorre, 2009;
Santoro etal., 2014), the tuning to fast temporal modulation rates
was observed in regions tuned to low spectral modulation scales, and
vice versa. The limited coverage of our dataset hampers the compar-
ison of spectral modulation scale and temporal modulation rate
maps to previous results. However, the medial-to-lateral tuning to
fast-to-slow temporal modulation rates is in accordance with results
of both Santoro et al. (2014) and Herdener et al. (2013).

By sampling the large-scale feature maps on the cortical
depth-dependent grids, their stability and variability throughout
the cortical depth were visualized. Throughout the cortical depth,
both regions with relatively stable and with variable preference
were observed (Fig. 3; maps sampled on nine cortical depths and
smoothed for display purpose only). For the purpose of signifi-
cance testing, we next quantified the columnar feature stability
through the computation of columnarity index C. This analysis
follows De Martino et al. (2015a) and defines columnarity index
C as the ratio between the tuning gradients along and orthogonal
to the cortical sheet. In the case of smooth maps, gridpoints tuned



7826 - J. Neurosci., September 5, 2018 - 38(36):7822-7832

to the same value in deep, middle, and
superficial depths may not be significantly
columnar. This is therefore a stricter test
than only evaluating the percentage of grid-
points with the same tuning throughout
depth. For each feature and hemisphere, we
observed both regions with a significant co-
lumnarity index (significance based on
gridpoint-specific permutation-based thre-
shold) and regions where preference var-
ied throughout the cortical depth (Fig. 44;
for results from all hemispheres, see Fig.
5). In a subset of hemispheres, regions
with a significant columnarity index were
consistent across cross-validations (e.g.,
the right hemispheres of S3 and S5, and
the left hemispheres of S5 and S6; Fig. 6).
In other hemispheres, consistency was
weaker (the left hemispheres of S3 and
S4). Regions with a significant columnar-
ity index did not overlap across features
(Fig. 4B; for results from all hemispheres,
see Fig. 5). Only 0.7% of gridpoints were
significant for all three features (com-
puted as the median across hemispheres).
A combined significance for two of three
features was slightly more common (8.5%
of gridpoints), yet the majority of grid-
points were either significant for one or
none of the features (32.6% and 58.2% of
the gridpoints, respectively).

Both methods of analyzing the stability
of feature preference throughout cortical
depth, either as the columnarity index (i.e.,
the ratio of map gradients; Fig. 4C) (De
Martino et al., 2015a) or as the correlation
between maps at deep and superficial corti-
cal depth (Deep-Sup; Fig. 7) (Nasr et al.,
2016; Tootell and Nasr, 2017) showed that
cortical depth-dependent stability was low-
est for neural population tuning to spectral
modulation scale and similar for maps of
frequency and temporal modulation rate
preference. We statistically tested differ-
ences in the columnarity index across fea-
ture maps on the results shown in Figure 4C.
A two-way repeated-measures ANOVA with
factors Feature [frequency, rate, scale] X
Region [PAC, non-PAC] showed that the
percentage of columnar cortex was differ-
entacross features (main effect of Feature;
Fi16 = 6.98, p = 0.007) and between
primary and nonprimary cortex (main ef-
fect of Region; F, 15 = 10.94, p = 0.011;
no significant interaction; Fig. 4C).
Across regions, subsequent paired ¢ tests
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Figure 1. Sound characteristics, brain coverage, and performance of the encoding models. A, Mean and SD (in black and red,
respectively) of the frequency, temporal modulation rate, and spectral modulation scale content of the 144 natural sounds is shown
from left to right. B, The 3D GRASE acquisition covered HG, in addition to regions at its anterior and posterior adjacency.
€, Performance of the models evaluated by the prediction accuracy of responses to test sounds (i.e., sound identification score) on
the full dataset covering HG and regions at its anterior and posterior vicinity bilaterally (in 3 of 6 subjects) or on the left hemisphere
(in 3 of 6 subjects). The performance of a frequency model is compared with that of two frequency-specific STM models, either with
dimensions [8 frequencies X 4 spectral scales X 4 temporal rates] (STM-844), or with dimensions [5 frequencies X 5 spectral scales X 5
temporal rates] (STM-555). Dashed line indicates chance performance (score = 0.5). Error bars indicate the SE across subjects (N = 6).
D, The cortical depth-dependent model performance, from deep (0.1) to superficial (0.9) gray matter. Error bars indicate the SE across
hemispheres (N = 9).

A B Tonotopy Spectral modulations Temporal modulations
Superior E
Medial Posterior g’
v
©
=
°
Anterior Lateral =
Inferior 2

Group

cycl/oct
[
0.25 4

Figure2. Individual and group topographic maps. 4, Macroanatomy of the superior temporal plane. FTS, First temporal sulcus;
PP, planum polare; HS, Heschl’s sulcus; PT, planum temporale; STG, superior temporal gyrus. White dashed line outlines HG.
B, Topographic maps in the left hemisphere of an individual subject (top) and as resulting from the cortex-based aligned-based
group analysis (bottom) for preferred frequency (tonotopy), spectral modulation scale, and temporal modulation rate. Maps are
shown on aninflated representation of the left hemisphere, where the white dashed line outlines HG. The size of topographic maps
is limited by the coverage of the 3D GRASE FOV.

showed that the temporal rate maps had a significantly higher
columnarity index than the spectral scale maps (¢, = 4.15, p
(corrected) = 0.005). A larger part of the frequency maps than
the spectral scale maps was columnar, but this difference did
not reach statistical significance after correction for multiple
comparisons (fg) = 2.52; p (corrected) = 0.054 for the
frequency-scale comparison). No difference was observed be-

tween the temporal modulation rate and frequency maps
(tisy = 1.44; p (corrected) = 0.282 for the rate-frequency
comparison).

As a result of the definition of the columnarity index (i.e., the
ratio between changes along vs orthogonal to the cortical sheet),
this index is susceptible to differences in cortical thickness. To coun-
teract this bias, the permutation-based threshold was computed per
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Figure 3.  Cortical depth-dependent topographic maps in an individual. 4, Topographic maps in the left hemisphere of an
individual subject are sampled on cortical depth-dependent grids, allowing visualization of these maps throughout cortical depth.
In maps of (B) frequency preference (tonotopy), (€) spectral modulation scale, and (D) temporal modulation rate, both stable and
variable feature preference throughout cortical depth could be observed. The location of the three cuts through the cortical depth
displayed in B-D are indicated by the black dashed lines labeled as 1-2-3 in A. White dashed lines outline HG.
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Figure4. Columnarityindexacross feature maps. 4, Significantly columnar regions for maps of preferred frequency (tonotopy),
temporal modulation rate, and spectral modulation scale are shown in orange/yellow (statistics based on permutation testing) for
anindividual right and left hemisphere (top and bottom, respectively). The overlap of regions with a significant columnarity index
across feature maps is shown in the fourth column, and thickness of the cortical grid is shown in the right-most column. Black
dashed lines approximate the outline of PAC defined based on myelin-related contrast. B, The percentage of gridpoints that are not
columnar in any of the feature maps (0/3), or are columnar for a subset of feature maps ranging from 1/3 to 3/3 feature maps.
Boxplots show the average across hemispheres (circles), the first (q1) and third (¢3) quartile (boxes), and the whiskers extend from
[q1 —1.5(g3—q)]to[g3 + 1.5 (g3 —q1)]. Points are shown as outliers beyond that range. C, Percentage of the grid that was
columnar per feature map, separately for PACand non-PAC.

gridpoint. Accordingly, we observed a negative correlation between
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threshold for significance was higher in re-
gions where the cortex was thinner. Use of
this gridpoint-specific threshold ensured
that no significant difference in cortical
thickness between columnar and nonco-
lumnar regions was observed (mean thick-
ness: 2.68 mm and 2.80 mm inside and
outside columnar regions, respectively;
paired ¢ test: £ = 1.503, p = 0.171).

The columnarity index will be high for
regions that have relatively stable radial
feature preference and for regions with a
rapid change in feature preference in the
tangential direction. To discriminate be-
tween these two scenarios, we next evalu-
ated the smoothness of the feature maps
in the tangential direction as the correla-
tion of feature preference in deep cortical
depths across cortical distance (Fig. 7).
Higher and lower correlation across cor-
tical distance reflects more and less
smooth feature maps, respectively. Across
feature maps, the correlation dropped
rapidly with increasing cortical distance.
This drop was marginally faster for the
spectral modulation scale maps than for
the other two topographic maps but was
overall very similar across features and be-
tween PAC and non-PAC.

Finally, we also evaluated the correlation
between deep and superficial layers for
maps of frequency, temporal modulation
rate, and spectral modulation scale. In PAC,
this correlation equals 0.10, 0.14, and 0.04;
and in non-PAC, it equals 0.14, 0.11, and
0.04 for the three feature maps. In compar-
ison, cortical regions at the same depth at a
distance of 2.68 mm, which is equal to the
average thickness of the grid, showed an av-
erage correlation of 0.07 and 0.08 in PAC
and non-PAC, respectively. These results
corroborate the finding of parts of auditory
cortex with stable tuning to frequency and
temporal modulation rate throughout cor-
tical depth. However, the overall relatively
low correlation between feature tuning
on deep and superficial cortical depths
also highlights the fact that substantial
regions of both PAC and non-PAC are
not columnar.

Discussion

We combined fMRI encoding with ultra-
high field functional measurements of the
auditory cortex to evaluate the cortical
depth-dependent stability (implemented
through the computation of a columnarity
index) of tuning to frequency, temporal
modulation rate, and spectral modulation

permutation-based threshold and thickness (mean correlation  scale. Results suggest relatively stable tuning to temporal modulation
across hemispheres: r = —0.078, r = —0.066, and r = —0.058, for  rates and frequency, but a transformation in spectral modulation
frequency, temporal rate, and spectral scale, respectively). Thus, the  tuning throughout the depth of HG. Across sound features, tuning
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regularity of a columnar pattern is known
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1 1 (i.e., in cases of hypothesis testing in a
.- il — Frequency  predefined ROI), it is not feasible to set a
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©0.2 3 ©0.2 3 tween the tuning gradients along and
3 3 orthogonal to the cortical sheet, and as-
9 9 signed significance based on permutation
0 1 2 3 4  Deep-Sup 0 1 2 3 4 Deep-Sup testing (De Martino etal., 2015a). The ad-

Distance in mm

Figure 7.

Distance in mm

Correlation of feature preference along and orthogonal to the cortical sheet. Graphs represent the correlation be-

vantage of this approach is that it does not
require a priori knowledge about the spa-
tial regularity of underlying maps (i.e., itis

tween feature preference in deep cortical depths across various distances, and between deep and superficial cortical depth (i.e.,
“Deep-Sup”) in (4) PAC and (B) non-PAC. Higher and lower correlation across cortical distance reflects more and less smooth
feature maps, respectively. Higher correlation between deep and superficial cortical depth indicates a more columnar organization.

suitable for an exploratory analysis), but it
has the disadvantage that the interpreta-

of a larger cortical region in PAC than non-PAC was stable across
cortical depth.

The term “columnar” has been used with different meaning
across previous investigations (Horton and Adams, 2005; Rakic,
2008). Recent fMRI studies explored the presence of columnar
preferences in two ways. First, Nasr et al. (2016) related the cor-
relation in neural tuning throughout depth to the correlation in
deep gray matter at a cortical distance for which a difference in
neural tuning was expected (see also Tootell and Nasr, 2017).
While this approach works well for regions where the spatial

tion of results can be ambiguous. That s, a

higher columnarity index will be observed
for regions with a more stable feature preference throughout
depth, but also for regions with more rapid changes in feature
preference along the cortical sheet. A lower columnarity index
will be observed for regions with a variable preference through-
out the cortical depth, but also for regions where feature prefer-
ence varies little along the cortical sheet (i.e., smooth maps). Here
we ran statistical analyses on results from the second approach
but used results of the first approach (i.e., the decrease in corre-
lation with increased distance between gridpoints) to evaluate
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map smoothness. Results across methods were in agreement; and
because the spectral modulation scale maps were less smooth
(i.e., feature preference changed more rapidly along the cortical
sheet) than maps of temporal modulation rate and frequency,
this ruled out map smoothness as an explanation for the lower
columnarity index observed in spectral modulation maps.

The higher variability in spectral modulation tuning through-
out cortical depth compared with temporal modulation rate and
frequency tuning is in accordance with previous electrophysio-
logical results. That is, based on invasive recordings in cat PAC, it
was observed that tuning to temporal modulations was strongly
columnar, whereas tuning to spectral modulations displayed
more variability within a column (columnar in ~70% vs 30% of
the penetrations for temporal and spectral modulation tuning,
respectively) (Atencio and Schreiner, 2010). Spectral modulation
tuning was observed to change quite drastically with depth posi-
tion, and this depth-dependent change was different across
cortical locations. This was suggested to reflect a diversity in co-
lumnar processing, as opposed to the presence of a common
information flow through the vertical canonical microcircuit
(Atencio and Schreiner, 2010). While the cortical depth-
dependent variation in spectral modulation scale tuning ob-
served in the current study could reflect a similar change in
spectral modulation tuning as observed in the auditory cortex of
the cat, the resolution at which we map tuning to spectral mod-
ulations (5 logarithmically spaced bins ranging from 0.25 to 4
cycles/octave) limits the suitability of our current analysis to
answer questions regarding the exact shape and complexity of
spectral modulation tuning. In future studies, comparing the
performance of encoding models that vary in shape restrictions
of resulting voxel receptive fields (e.g., testing independent vs
joint feature tuning) (Santoro et al., 2014) may be used to test
the presence (or absence) of regular changes in spectral mod-
ulation processing throughout the auditory cortical canonical
microcircuit.

For each of the mapped features, we observed columnar re-
gions and regions with variable preference throughout cortical
depth. The observation of noncolumnar regions in maps of
temporal and spectral modulation preference in PAC is in acc-
ordance with results from electrophysiology (Atencio and
Schreiner, 2010), yet results from invasive electrophysiology
studies reported columnar frequency tuning throughout PAC
(Abeles and Goldstein, 1970; Merzenich et al., 1975). As fMRI has
better coverage than invasive electrophysiology, previous inva-
sive studies could have missed depth-dependent variations in
frequency preference. Alternatively, our results could represent a
difference across species. Finally, our results could reflect the
restrictive nature of the columnarity index used here. That is, our
operationalization of columnar cortical regions may have caused
us to underestimate the columnarity in auditory cortex. That is,
we define columnar cortical regions as those regions where the
acoustic feature preference variation along the cortical sheet (tan-
gentially) divided by the acoustic feature preference variation
through depth (radially) is significantly greater than expected by
chance. This implies that significantly columnar regions may
only be found in regions where the tangential map varies in at
least one direction along the cortical surface. If the tangential
map does not vary in a specific location, that location will not
be indicated as being columnar, even if it is tuned to the exact
same value in deep, middle, and superficial depths (such loca-
tions would be interpreted as “columnar” following the defi-
nition used in electrophysiology studies). Especially for
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smooth maps (e.g., tonotopy), our columnarity results repre-
senta strict and lower boundary estimate of the columnar part
of auditory cortex.

The observation that columnar regions did not overlap across
feature maps suggests that the sound transformation throughout
the auditory cortical microcircuit may vary from location to lo-
cation. That is, our results support a coding strategy consisting of
spatially confined modules in which part of the neuronal tuning
properties is kept constant throughout cortical depth, whereas
tuning to other features is systematically varied. Such a coding
strategy would be in accordance with tuning to other acoustic
features in auditory cortex (e.g., binaural interactions, intensity
threshold, and range of spectral integration), which also display a
modular organization of neural tuning preference along the au-
ditory cortical sheet (Read et al., 2001, 2002; Linden and
Schreiner, 2003).

We observed that columnar feature processing was more
extensive in PAC than non-PAC as defined on the basis of
myelin-related anatomical images. So far, electrophysiological
investigations of columnar processing did not extend beyond
primary regions in auditory cortex (Schreiner et al., 2011), and
our result highlights the advantage in coverage that fMRI has
compared with other methods of neuroscientific investigation.
As a cautionary note, it is important to point out that our results
could be due to the noninvasive PAC definition that we used. The
PAC cannot be defined based on gyral/sulcal landmarks as the
location of PAC varies with macroanatomy (Hackett et al., 2001;
Da Costa et al., 2011). Neither can it be based on tonotopic maps
(Rauschecker and Tian, 2004); and, as a result, a variety of non-
invasive functional and anatomical measures beyond tonotopy
have been proposed to identify the PAC (Wessinger et al., 2001;
Barton et al., 2012; Moerel et al., 2012). Here we used myelin-
related contrast maps to noninvasively identify PAC (Glasser and
Van Essen, 2011; Dick et al., 2012; De Martino et al., 2015b).
However, as myelination varies gradually throughout the STP,
the applied threshold to segregate PAC from non-PAC is neces-
sarily arbitrary and the PAC definition necessarily suboptimal.
We considered the half of the grid with the highest myelin-related
contrast as the PAC. Throughout hemispheres, we localized PAC
to the posteromedial part of HG, consistent with results from
cytoarchitecture (Galaburda and Sanides, 1980; Rivier and
Clarke, 1997; Hackett et al., 2001; Morosan et al., 2001). It is
certainly possible that our definition of PAC did not cover the
complete PAC, but it is likely that the region we refer to as PAC is
indeed fully situated within the primary auditory cortex.

In conclusion, using high field high-resolution fMRI, we have
shown a relatively stable (columnar) tuning to frequency and
temporal modulations, but more variable spectral modulation
tuning throughout the cortical depth of both primary and
nonprimary human auditory cortex. Furthermore, the observed
lack of overlap of columnar regions across acoustic features sug-
gests a modular coding strategy throughout cortical depth, with
stable tuning to some features and variable tuning to others. Re-
cent work has shown that neural tuning to acoustic features in the
auditory cortex is extremely flexible and can rapidly adapt to
changing task demands (Fritz et al., 2003). Moreover, as
attention-induced changes were shown to be cortical depth-
dependent (O’Connell et al., 2014; De Martino et al., 2015a), it is
feasible that the columnar organizational principles of auditory
cortex will only fully emerge when subjects are engaged in mean-
ingful tasks. It is therefore imperative that future studies explore



Moerel et al. ® Columnar Processing in Human Auditory Cortex

columnar processing during changes in context, attention, and
task performance.
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