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Inhibitory control requires precise regulation of activity and connectivity within multiple brain networks. Previous studies have typically
evaluated age-related changes in regional activity or changes in interregional interactions. Instead, we test the hypothesis that activity
and connectivity make distinct, complementary contributions to performance across the life span and the maintenance of successful
inhibitory control systems. A representative sample of healthy human adults in a large, population-based life span cohort performed an
integrated Stop-Signal (SS)/No-Go task during functional magnetic resonance imaging (n � 119; age range, 18 – 88 years). Individual
differences in inhibitory control were measured in terms of the SS reaction time (SSRT), using the blocked integration method. Linear
models and independent components analysis revealed that individual differences in SSRT correlated with both activity and connectivity
in a distributed inhibition network, comprising prefrontal, premotor, and motor regions. Importantly, this pattern was moderated by
age, such that the association between inhibitory control and connectivity, but not activity, differed with age. Multivariate statistics and
out-of-sample validation tests of multifactorial functional organization identified differential roles of activity and connectivity in deter-
mining an individual’s SSRT across the life span. We propose that age-related differences in adaptive cognitive control are best charac-
terized by the joint consideration of multifocal activity and connectivity within distributed brain networks. These insights may facilitate
the development of new strategies to support cognitive ability in old age.
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Introduction
The preservation of cognitive and motor control is crucial for
maintaining well being across the life span (Diamond, 2013).

Inhibitory control is critically dependent on frontostriatal cir-
cuitry (Aron et al., 2014), in terms of both functional segregation
and integration, which can be studied using brain activity and
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Significance Statement

The preservation of cognitive and motor control is crucial for maintaining well being across the life span. We show that such
control is determined by both activity and connectivity within distributed brain networks. In a large, population-based cohort, we
used a novel whole-brain multivariate approach to estimate the functional components of inhibitory control, in terms of their
activity and connectivity. Both activity and connectivity in the inhibition network changed with age. But only the association
between performance and connectivity, not activity, differed with age. The results suggest that adaptive control is best character-
ized by the joint consideration of multifocal activity and connectivity. These insights may facilitate the development of new
strategies to maintain cognitive ability across the life span in health and disease.

The Journal of Neuroscience, September 5, 2018 • 38(36):7887–7900 • 7887



connectivity (Razi and Friston 2016). However, the distinction
and complementarity between activity (Zhang et al., 2017) and
connectivity (Whelan et al., 2012) within inhibition circuits has
yet to be clarified, particularly in terms of the potentially differ-
ential effects of age on them (Sebastian et al., 2013). We propose
that their joint consideration provides a richer repertoire of brain
dynamics underlying cognitive processes than separate consider-
ation of activity and connectivity.

We focus on inhibitory control, which is a central executive
function and a determinant of individual differences across mul-
tiple cognitive tasks (Miyake and Friedman 2012). Experimental
paradigms to isolate inhibitory control from other executive
functions typically include abrupt moderations of prepotent re-
sponses (Miyake et al., 2000), whether one eventually proceeds to
the prepotent action, an alternative action, or no action at all. We
assess inhibitory control with a Stop-Signal task, in which partic-
ipants perform a reaction time task but must occasionally cancel
an action after it has been initiated. From the perspective of com-
putational models, the task establishes “race” between the follow-
ing two largely independent processes: “going” and “stopping”
(Logan et al., 2014). Late in a trial, they interact such that stop-
ping can interrupt going leading to no response (Boucher et al.,
2007) or delay responses sufficiently to allow reevaluation of the
optimal decision under uncertainty or risk (Wiecki and Frank
2013).

The efficiency of inhibitory control changes across the life
span (Williams et al., 1999). This arises from differential changes
in the speed of going and the probability of successful stopping,
which can be summarized in the Stop-Signal response time
(SSRT; Verbruggen and Logan 2008). Response inhibition is de-
pendent on distinct but interacting neural circuits that include
the right inferior frontal gyrus, pre-supplementary motor area
(SMA)/dorsal anterior cingulate cortex (dACC), and basal gan-
glia (Rae et al., 2014, 2015). These regions are important for
inhibiting a motor response in human (Swick et al., 2011) and
animal models (Eagle et al., 2008). They are sensitive to selective

pharmacological interventions (Ye et al., 2014, 2015) and normal
aging (Sebastian et al., 2013). Although studies of functional lo-
calization (Swick et al., 2011) and focal brain lesions (Eagle et al.,
2008) have suggested that these regions form a circuit or network
for inhibitory control, they do not distinguish signals arising
from local processing (regional activity) and hierarchically dis-
tributed processing (within- and between-network connectivity;
Razi and Friston 2016). The latter calls for measures of connec-
tivity in the network related to response inhibition.

Previous studies of individual differences in response inhibi-
tion have often focused on a limited number of brain regions
(Rae et al., 2015) or constrained networks (Cai et al., 2014), or
have examined the contributions of activation and connectivity
separately (Zhang et al., 2014). Task-based fMRI studies of re-
sponse inhibition in aging populations have largely reported
changes in inhibition-related activity rather than connectivity
(Sebastian et al., 2013; Coxon et al., 2016). This leaves unan-
swered the question of whether changes in activity and/or con-
nectivity provide a better account of individual differences in
inhibitory control and resilience across the life span.

We therefore used a whole-brain data-driven approach to
identify both activity and connectivity related to inhibitory con-
trol across the life span. We had three related aims. First, to
characterize the functional components of response inhibition
induced by restraint and cancellation of responses during a well
established paradigm, the Stop-Signal/No-Go (SNG) task (Ye et
al., 2014, 2015). This unbiased, data-driven approach tested whe-
ther these components are similar to previously reported data.
Second, to test whether context-dependent activity and context-
dependent connectivity predict individual differences in inhibitory
control, and do so better than context-independent (spontaneous)
connectivity. Third, to test the hypothesis that regional activity and
context-dependent connectivity are independent determinants of
inhibitory control, and that their joint contribution provides a better
model for brain dynamics across the life span.

Materials and Methods
Participants
A cohort of 119 healthy human adults was uniformly sampled from a
large population-based study of the healthy adult life span (N � 658; age
range, 18 – 88 years) in the Cambridge Centre for Aging and Neurosci-
ence (for full details including recruitment strategy, see Shafto et al.,
2014). Demographic characteristics of the sample are summarized in
Table 1. Ethical approval was obtained from the Cambridge 2 Research
Ethics Committee, and written informed consent was given by all partic-
ipants. Exclusion criteria included poor hearing (threshold, 35 dB at 1000
Hz in both ears) and poor vision (below 20/50 on the Snellen test; Snel-
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Table 1. Participants’ demographic information

Decile Statistical testsa

1 2 3 4 5 6 7 K2 or F test p value

Age range (years) 18 –27 28 –37 38 – 47 48 –57 58 – 67 68 –77 78 –90
Gender 0.10 0.996

Men 4 (50) 12 (57.1) 9 (47.4) 10 (52.6) 9 (47.4) 8 (50) 8 (47.1)
Women 4 (50) 9 (42.9) 10 (52.6) 9 (47.4) 10 (52.6) 8 (50) 9 (52.9)

Handednessb 1.82 0.102
Mean/SD 59/67 88/36 82/36 92/11 69/58 98/5 89/19
Range (minimum/maximum) �100/100 �65/100 �56/100 70/100 �78/100 87/100 25/100

Mini-Mental State Examination 2.92 0.011
Mean/SD 29.5/0.8 29.7/0.5 29.2/1 29.2/1 29.3/0.9 28.4/1.3 28.8/1.5
Range (minimum/maximum) 28/30 29/30 26/30 26/30 27/30 26/30 25/30

Percentage of the age decile is given in parentheses.
aStatistical test to indicate whether demographics vary between deciles.
bHigher scores indicate greater right-hand preference.
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len, 1862), a history of serious drug abuse as assessed by the Drug Abuse
Screening Test (DAST-20; Skinner, 1982), significant psychiatric disor-
ders (e.g., schizophrenia, bipolar disorder, personality disorder), or neu-
rological diseases (e.g., known stroke, epilepsy, traumatic brain injury).

Stimuli, task, and procedure
Figure 1 provides a schematic representation of the task and imaging
data-processing pipeline. This task assessed cognitive control systems
involved in action restraint and action cancellation using No-Go trials
(n � 40; 10%) and Stop-Signal trials (n � 80, 20%, �50% of which were
successful), respectively, which were randomly interleaved with Go trials
(n � 360; 70%) during two consecutive scanning runs. On Go partici-
pants saw a black arrow (duration, 1000 ms) and indicated its direction
by pressing left or right buttons with the index or middle finger of their
right hand. On Stop-Signal trials, the black arrow changed color (from
black to red) concurrent with a tone, after a short, variable SS delay
(SSD). Participants were instructed to withhold button pressing if the
arrow was red or became red. The length of the SSD varied between stop
trials in steps of 50 ms, and was titrated to participants’ performance
using an on-line tracking algorithm to maintain a 50% successful re-
sponse cancellation. In No-Go trials, the arrow was red from the outset
(duration, 1000 ms) along with a concurrent auditory tone, equivalent to

a Stop-Signal trial with an SSD of 0. The following four key parameters of
interest were measured: the rate of Go commission errors (left/right
response was incorrect), the mean reaction time of correct Go trials, the
rate of No-Go commission errors, and the SSRT.

SSRT was estimated using the block-based integration method to ac-
count for skewing and response slowing that may introduce spurious
inhibitory differences (Verbruggen et al., 2013). Due to the randomized
nature of the task, we redefined blocks to ensure that each block con-
tained 30 Stop-Signal trials. In short, SSRT for each block was estimated
by subtracting the mean SSD from the “critical Go RT” and corrected for
the Go omission rate (Ye et al., 2015). The critical Go RT was the nth RT
in the ranked Go RT distribution, where n was determined by the mean
p(respond�signal) and the total number of correct Go trials in each block.
We controlled for rare cases where a response in Stop-Signal trials was
shorter than SSD (i.e., participants responded before signal for cancella-
tion was given by the arrow color turning from black to red) using the
following formula p(respond�signal) � (NStopSignal � NSuccStop �
NRT�SSD)/(NStopSignal � NRT�SSD). Given that a high number of
NRT�SSD trials would affect the estimation of p(respond�signal) and
SSRT, we excluded seven individuals having �70 Stop-Signal trials (i.e.,
�10 NRT�SSD trials) in line with the recommended minimum number

Figure 1. Schematic representation of the task, imaging processing, analysis pipeline and hypotheses in the current study. SSD, Period of variable length to titrate participants’ performance at
50% successful response cancellation of all Stop trials (20% of all trials; i.e., the number of successful inhibition trials, unsuccessful inhibition trials, and No-Go trials was similar; �10% of all trials,
see text); Ti, time course of ith component; �, � coefficients; C1, HRF-convolved time course for condition 1; X, regressors for covariates of no interest including head motion, WM, and CSF.
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of Stop-Signal trials required for the block-based integration method
(Verbruggen et al., 2013). The number of NRT�SSD did not correlate with
age (r � 0.15, p � 0.10).

MRI acquisition and preprocessing
Imaging data were acquired using a 3 T Siemens TIM Trio with a 32-
channel head coil. A 3D structural MRI was acquired on each participant
using a T1-weighted sequence with generalized autocalibrating partially
parallel acquisition with the following parameters: acceleration factor, 2;
repetition time (TR) � 2250 ms; echo time (TE) � 2.99 ms; inversion
time � 900 ms; flip angle � � 9°; field of view (FOV) � 256 � 240 � 192
mm; resolution � 1 mm isotropic); acquisition time, 4 min and 32 s.

For fMRI, echoplanar imaging (EPI) of 314 volumes captured 32 slices
(sequential descending order), slice thickness of 3.7 mm with a slice gap
of 20% for whole-brain coverage with the following parameters: TR �
2000 ms; TE � 30 ms; flip angle � � 78°; FOV � 192 � 192 mm;
resolution � 3 � 3 � 4.44 mm, with a total duration of �10.5 min. For
preprocessing details, see Taylor et al. (2017). In short, we used Auto-
matic Analysis (AA version 4.0; Cusack et al., 2014) pipelines and mod-
ules, which called functions from SPM12 (Wellcome Department of
Imaging Neuroscience, London, UK; Friston et al., 2007). The T1 image
was initially coregistered to the MNI template, and the T2 image was then
coregistered to the T1 image using a rigid-body transformation. The
coregistered T1 and T2 images were used in a multichannel segmentation
to extract probabilistic maps of six tissue classes: gray matter (GM), white
matter (WM), CSF, bone, soft tissue, and residual noise. The native-
space GM and WM images were submitted to diffeomorphic registration
(DARTEL; Ashburner, 2007) to create group template images. Each tem-
plate was normalized to the MNI template using a 12-parameter affine
transformation. After applying the normalization parameters from the
T1 stream to warp preprocessed functional images into MNI space, the
normalized images were smoothed using an 8 mm Gaussian kernel (Tay-
lor et al., 2017). EPI data preprocessing included (1) spatial realignment
to correct for head movement and movement by distortion interactions,
(2) temporal realignment of all slices to the middle slice, and (3) coregistra-
tion of the EPI to the participant’s T1 anatomical scan (Taylor et al., 2017).

To quantify the total motion for each participant, the root mean
square volume-to-volume displacement was computed using the ap-
proach of Jenkinson et al. (2002). Participants with �3.5 SDs above the
group mean motion displacement beyond age effects were excluded from
further analysis (N � 1). We did not use a strict cutoff for identifying
participants with excessive head motion, since (1) framewise measures
are dependent on the sampling rate (i.e., repetition time of BOLD data),
(2) the degree of motion in our sample during the SNG task is compara-
ble to previous reports (see below), and (3) the use of another conserva-
tive approach in the effort to ensure that our findings do not reflect
differences in head motion (see below).

In particular, to minimize the impact of head motion on later analysis
of connectivity, we took four further processing steps. On a within-
subject level, fMRI data were processed using whole-brain independent
component analysis (ICA) of single-subject time series denoising, with
noise components selected and removed automatically using a priori
heuristics using the ICA-based Automatic Removal of Motion Artifacts
toolbox (AROMA; Pruim et al., 2015a,b). This was complemented with
linear detrending of the fMRI signal, covarying out six realignment pa-
rameters, WM and CSF signals, their first derivatives, and quadratic
terms (Pruim et al., 2015a). Global WM and CSF signals were estimated
for each volume from the mean value of WM and CSF masks derived by
thresholding SPM tissue probability maps at 0.75. On a between-subject
level, we used group ICA to dissociate task-relevant and other physiolog-
ical components (see below) and included a subject-specific summary
estimate of head movement for each participant (Jenkinson et al., 2002)
as a covariate throughout all group-level regression-based analyses (Sat-
terthwaite et al., 2013; Yan et al., 2013; Power et al., 2014; see below).

Definition of functional components
We used group ICA to identify components that are activated in a specific
experimental conditions and/or contrasts. All participants’ data were
temporally concatenated and submitted to an ICA analysis with 100

ICASSO (software for investigating the reliability of ICA estimates by
clustering and visualization; Himberg and Hyvarinen 2003) iterations,
using the Group ICA of fMRI Toolbox (http://mialab.mrn.org/software/
gift/index.html; Calhoun et al., 2001). This method decomposes the
fMRI signal into a set of independent components, each with a set of
subject-specific spatial maps and time courses (TCs), which were stan-
dardized using z-scoring. The optimal number of components of the ICA
decomposition was determined using PCA with minimum description
length (MDL) model order selection criteria (Hui et al., 2011). Each
spatial map indicates a constellation of voxels (i.e., functional brain re-
gions) that share a common time course over the duration of the exper-
iment, where the strength of the loading value of each voxel reflects the
extent to which the given voxel expresses the common time course. The
time course of each component was used in a subsequent temporal re-
gression analysis to assess the activity of the component to the cognitive
condition of interest, termed here as “component responsivity.”

Physiological noise components were identified and rejected based on
spatial and temporal features of the components (Allen et al., 2011,
2014), with reference to the spatial overlap of each component with
previously reported network templates (Shirer et al., 2012) and temporal
features, using a ratio of 0.9 between high- and low-frequency fluctua-
tions in the signal of the components as a threshold for physiological
noise components (Allen et al., 2011, 2014). To further validate our
results of the group ICA decomposition in our sample, we split the whole
sample to two groups of slow-SSRT and fast-SSRT individuals, according
to median SSRT (N � 59 in each group). Spatial and temporal features
for each subgroup-ICA were compared with those of the main-ICA using
the whole sample. Spatial feature similarity was based on the correlation
of vectorized spatial maps for each pair of independent components (ICs;
e.g., ICrIFG(Main) � ICrIFG(SlowSSRT) and ICrIFG(Main) � ICrIFG(FastSSRT)).
Next, we tested whether the similarities for each subgroup (with the
whole group) differed across subgroups using repeated-measures
ANOVA. Temporal feature similarity was based on within-subject and
between-subject intraclass correlation coefficients (ICC). Between-
subject ICC was based on the (concatenated) time series for a given IC
across individuals assigned in the subgroup-ICA and in the whole-group
ICA. The within-subject ICC was based on the (vectorized) functional
connectivity profile for a given individual in the main-ICA and the cor-
responding subgroup-ICA. We tested for differences in similarity be-
tween slow SSRT and fast SSRT groups using nonparametric one-way
ANOVA and repeated-measures ANOVA for between- and within-
subject ICCs, respectively. Insignificant results would indicate no differ-
ences in the similarity between subgroup-ICAs and the whole-group
ICA. All tests for differences in similarity between groups were based on
fisher z-transformations of the correlation values.

Characterizing functional substrates of response inhibition
Two contrasts are commonly used to identify inhibition-related activa-
tions, as follows: comparing successful Stop-Signal trials (SuccStop)
versus correct Go trials or comparing SuccStop versus unsuccessful Stop-
Signal trials (UnsuccStop). Here, we are using the latter approach, as a
contrast that has associated differences in neural processes directly with
differences in SSRT (Rubia et al., 2003, 2007, Li et al., 2006, 2008; Duann
et al., 2009; Boehler et al., 2010; Congdon et al., 2010; Padmala and
Pessoa 2010; Whelan et al., 2012). The No-Go trials in the SNG task allow
the option for analysis of action restraint, which has been proposed to be
anatomically and pharmacologically distinct (Ye et al., 2014, 2015).
However, we did not consider the behavioral relevance of activity during
No-Go trials, as No-Go performance was near the ceiling across the life
span (see Results), while the method we present is suited to examine
multivariate influences on individual differences in performance.

Below we describe three types of functional measures for the compo-
nents of interest (i.e., excluding physiological noise components), as
follows: component activity/responsivity, context-independent (sponta-
neous) functional connectivity, and context-dependent connectivity.

Component responsivity. For each functional component for each par-
ticipant, we estimated the responsivity index (i.e., the � weight difference
between SuccStop and UnsuccStop conditions averaged across the two
recording sessions) using a general linear model (GLM; equivalent to
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voxel-based group-level GLM analysis). Each model included regressors
for the onset of the following key parameters: correct Go trials, correct
No-Go trials (successfully restrained response), SuccStop (successfully
cancelled response), and UnsuccStop (commission error matching ar-
row orientation). Regressors of no interest included incorrect Go trials
(commission and omission errors), incorrect No-Go trials (commission
error), early response of SS trials (response shorter than SSD), incorrect
SS trials (commission error not matching arrow orientation), six realign-
ment parameters, session index, and standard harmonic regressors that
capture low-frequency changes (1/128 Hz) in the signal typically associ-
ated with scanner and physiological noise. The events in the trials were
modeled using the shape of the hemodynamic response function (HRF)
as implemented in SPM12.

To identify group-level functional components of response inhibition,
we computed the responsivity index of the contrast SuccStop � UnsuccStop
across all 119 individuals (one-sample t test, corrected for multiple compar-
isons using false discovery rate (FDR) correction with an �� 0.01). It should
be noted that this contrast identified condition-relevant activity differences
between Unsuccessful and Successful Stop-Signal trial types. To further de-
termine age-dependent components, we used a robust linear regression with
component responsivity and covariates of no interest (gender, handedness,
and level of education) as independent variables, and age as a dependent
variable, where FDR correction at � � 0.05 was used to account for multiple
comparisons. The significance level in the analysis of group effects ( p �
0.01, FDR corrected) was more conservative than the analysis of age
effects ( p � 0.05, FDR corrected) given the different nature of the tests
(i.e., differences between group means vs correlating a continuous vari-
able), resulting in a high magnitude of group effects relative to age effects.
Importantly, the same threshold levels were used for context-dependent
and context-independent functional connectivity to ensure comparabil-
ity in their analysis with SSRT performance (see below).

Context-independent functional connectivity. To derive a subject-
specific measure of context-independent functional connectivity be-
tween each pair of responsive components (e.g., between time courses of
TCi and TCj of the ith and jth ICs, similar to resting-state functional
connectivity), we used multiple linear regression (MLR) with TCj, re-
gressors for all experimental conditions of interest and no interest (see
Component responsivity), six realignment parameters, WM, CSF, and
session run as independent variables, and TCi as a dependent variable for
each participant (for more details, see Fornito et al., 2012). Group and
age effects of each connection pair were identified in a manner similar to
that for the responsive components (see Definition of functional com-
ponents), where FDR correction at � levels 0.01 and 0.05 were used to
account for multiple comparisons, respectively.

Context-dependent functional connectivity. Context-specific functional
connectivity analyses have typically used correlational psychophysiolog-
ical interactions (cPPIs; Fornito et al., 2012). cPPI analysis provides con-
firmatory evidence for the pattern of connectivity modulation between
IC pairs responsive in the contrast SuccStop � UnsuccStop. These cPPI
measures are based on the partial association between their interaction
terms (ITCj�Cn � TCi�Contrast; ITCi�Cn � TCi � Contrast), after being
orthogonalized against experimental design (�), IC time series (TCj;
TCi) and other covariates (C, including head motion, WM, and CSF
signal; i.e., rITCj�Cn, ITCi�Cn�Z, where Z � {TCj, TCi, �, C} and the period in the
subscript separating the correlated variables and the controlled for vari-
able; Fig. 1; Fornito et al., 2012). Consistent effects across subjects were
then tested using two-sample t tests in a model that assumed neither
independence nor equal variance between the conditions.

We assessed whether context-specific connectivity between each pair
of responsive ICs (1) were expressed consistently across all 119 individ-
uals, using a one-sample t test on the group level; and (2) changed as a
function of age, using multiple linear regression with age as a dependent
variable and cPPI between IC pairs as an independent variable (similar to
the analysis of responsive components (see Definition of functional
components and Context-independent functional connectivity).
Connections at significance levels of p � 0.01 and p � 0.05 (FDR
corrected) were considered for subsequent group effects and age ef-
fects analysis, respectively.

Behavioral relevance of functional substrates of response inhibition
The predictive performance of these three sets of functional measures
(see Characterizing functional substrates of response inhibition) on in-
dividual variability in SSRT (see Stimuli, task, and procedure) was as-
sessed separately for component responsivity (Model 1), spontaneous
connectivity (Model 2), and context-specific connectivity (Model 3), and
was compared across models. For the significant models, we then con-
structed a set of mixture models post hoc to investigate their joint predic-
tive contribution; that is, given that component activity and cPPI predict
performance reliably (Model 1 and Model 3 were significant), a new
model will test how well activity and cPPI can jointly predict perfor-
mance (Model 4). For this purpose, we used MLR with well conditioned
shrinkage regularization (Ledoit and Wolf 2004; Blankertz et al., 2011)
and permutation-based 10-fold cross-validation (Lemm et al., 2011) to
investigate the corresponding structure coefficients (Thompson and
Borrello, 1985) of activity and connectivity to performance across the life
span. We used a dataset-wise permutation-based cross-validation
scheme (Etzel and Braver, 2013) to enable comparison between models
with varying complexity (Browne, 2000; Zucchini, 2000). Specifically, we
adopted a three-stage procedure, where in the first stage we used MLR in
the training set (9 of 10 samples) to produce parameter weights defining
a latent variable of the functional measures that highly correlates with
SSRT. These parameter weights from the training data were then used in
a second stage to estimate the subject scores for subjects left out of the
training set (i.e., testing sample, the 10th sample). We repeated the first
two stages for each testing sample, so that we estimate subject scores for
each subject (equivalent to predicted value ŷ in regression). In the final
stage, we correlated subject scores to SSRT ( predicted value ŷ and ob-
served value y in the regression, respectively). Therefore, the reported r
values for various models are always based on a bivariate correlation
between observed and predicted SSRTs (i.e., same model complexity
regardless of the initial number of predictors in the model; overfitting in
more complex models may only occur in the first stage, not in the third
stage, of this approach; Zucchini 2000; for more details, see Browne
2000). In addition, the model significance was evaluated against its null
distribution based on 1000 permutations of the SSRT values following
the three-stage procedure.

To further minimize the non-negligible variance of k-fold cross-
validations and to enable statistical comparisons between various mod-
els, we repeated each k-fold (and its 1000 permutations) 1000 times with
random partitioning of the folds to produce an R value distribution for
each model. Model comparison was based on the mean difference model
evidence for correctly labeled SSRTs, compared with the null distribution
of mean differences across permuted SSRTs (Nichols and Holmes 2002).

To further investigate whether the reliable associations between func-
tional measures and behavioral performance were age dependent and/or
age independent in nature (i.e., over and above the effects of aging), we
used a moderation analysis. Specifically, we constructed a multiple linear
model where subject scores (the linear combination of functional vari-
ables correlated with behavioral performance for a given model), age,
and their interaction (subject scores � age) were used as independent
variables and behavioral performance (i.e., SSRT) was used as a depen-
dent variable. Covariates of no interest in the MLR and moderation
analysis included gender, handedness, level of education, mean head
movement, and mean response time on Go trials.

Results
Behavioral data
In accordance with previous studies, there were strong age-
related differences in GoRT and SSRT but not in Go or No-Go
accuracy (Fig. 2). The average SSRT and p(respond�signal) were
171 ms and 47%, respectively, both of which were within the
range of the values reported in previous studies of healthy adults
(Whelan et al., 2012; Hu et al., 2014; Zhang et al., 2015). The
results indicated that life span trends for the inhibition of a
speeded response are independent from those governing its exe-
cution, corroborating previous findings (Williams et al., 1999).
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Head motion during SNG task
Head motion during the SNG task correlated positively with par-
ticipants’ age (r � 0.50, p � 0.001), and was not statistically
different from their head motion during resting state and the
Cattell fMRI acquisitions (Geerligs et al., 2017; Samu et al., 2017),
as informed by repeated-measures ANOVA (F � 1.11, p �
0.332). Head motion was significantly lower during movie
watching (Campbell et al., 2015) relative to resting state, SNG,
and Cattell tasks (F � 14.44, p � 0.001), which is consistent with
previous reports showing that individuals are more compliant
during movie watching (Vanderwal et al., 2015). Moreover, head
motion across the three cognitive states (resting state, movie
watching, and Cattell task) was highly correlated with head mo-
tion during SNG (r � 0.81, p � 0.001) and did not interact with
age (F � 1.84, p � 0.139). The results indicate that head motion
in our sample during SNG is comparable to the head motion
during other cognitive states (Campbell et al., 2015; Geerligs et
al., 2017; Samu et al., 2017).

Brain components responsive to response inhibition
The optimal number of components (n � 49) was detected with
MDL criteria, supported by high-stability indices across 100
ICASSO runs (mean � 0.97, SD � 0.02). To further validate that
the group ICA decomposition was not biased by the overall sam-
ple, we explored the similarity of spatial and temporal features
from the main-ICA with two subgroup-ICAs, based on a median
split of SSRT (see Materials and Methods). On average, the cor-
relation in spatial overlap across responsive ICs (see below) be-
tween subgroup-ICA and the main-ICA was very high (mean r
values of 0.975 and 0.972 for fast-SSRT and slow-SSRT sub-
groups, respectively) and the similar pattern across ICs between
subgroups did not differ (F � 0.08, p � 0.775). The between-
subject ICC indicated high levels of temporal similarity with the
main-ICA across responsive ICs (mean r � 0.904 and 0.893 for
fast- and slow-SSRT subgroups, respectively) and showed no sig-
nificant difference between subgroups (F � 1.16 and p � 0.287).
Finally, the within-subject ICC indicated a high correspondence
of the functional connectivity pattern for individuals in sub-
group-ICA and main-ICA (mean r value 0.906 and 0.895 for fast-
and slow-SSRT subgroups, respectively), which did not differ

between subgroups (F � 1.58, p � 0.118). The above findings
indicate the high stability of spatial and temporal decomposition
of the data based on group ICA across all individuals in our
sample. The exclusion of physiological noise components (see
Materials and Methods) left 23 functional components. After
fitting the task events to the context-dependent (task-specific)
time course of each component, we calculated a responsivity in-
dex (i.e., the � weight difference between conditions of interest)
for each functional component.

Brain components reactive to SuccStop � UnsuccStop con-
trast across participants are shown in Figure 3. We assigned a
heuristic descriptive name to each of these components, based on
its highest correspondence with previously reported functional
region-specific templates based on task-based fMRI data (Shirer
et al., 2012). Most of the components were restricted within a
single template region (i.e., node within a network), suggesting
that the resulting components reflect the activity from an indi-
vidual functional region, rather than synchronized network ac-
tivity. Components consistently responsive to the SuccStop �
UnsuccStop contrast across individual participants included the
following: (1) a set of regions showing higher activity during
UnsuccStop: right inferior-frontal gyrus (rIFG), pre-SMA/
dACC, and sensorimotor regions [left posterior central gyrus
(lPoCG), right PoCG, bilateral precentral gyrus (Pre-CG), and
SMA], and precuneus (Precun); and (2) a set of regions showing
higher activity during SuccStop: right intraparietal lobule, bilat-
eral inferio-medial frontal gyrus (MiFG) and bilateral medial oc-
cipital gyrus (MOG; Fig. 3, the spatial extent of the components
and their event-related time courses for different conditions).
The ICA results were highly consistent with the results using the
traditional univariate GLM approach in SPM12 (spatial overlap
with r � 0.59, p � 0.001; Fig. 3, top right). In terms of aging, we
found that the task-positive components (functional compo-
nents positively associated with task performance) were activated
to a lesser extent by older adults, accompanied by a weaker deac-
tivation (or suppression) of task-negative components. However,
only one component survived correction for multiple compari-
sons, namely the pre-SMA/dACC, with an age-related decrease in
absolute responsivity values, between SuccStop and UnsuccStop
(Fig. 4, bottom left).

Figure 2. Latency (left) and accuracy (right) measures for Go, No-Go, and Stop-Signal trials of each subject, where each subject’s performance is denoted with a circle in the scatter plots and red
solid lines denote linear trends across the lifespan with corresponding effect sizes; denoted lines are 95% confidence bounds for the fitted coefficients.
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Context-independent functional connectivity of
responsive components
We next looked at context-independent (also called spontaneous)
functional connectivity over the duration of the experiment, while
controlling for variability associated with the experimental design
and events of no interest (see Materials and Methods). This analysis
revealed that the SNG task positively modulates context-
independent functional connectivity between components re-
sponsive to the SuccStop � UnsuccStop contrast (Fig. 4, top
left). In particular, we observed strong spontaneous connectivity
between ICs within each network (high within-network connectiv-
ity) and spontaneous connectivity between some ICs belonging to
different networks (between-network connectivity). This included
modulated spontaneous connectivity of (1) sensorimotor network
with cingulo-opercular network ICs and (2) cognitive-control ICs
with cingulo-opercular network, default mode network, and visual
network. There was a weak spontaneous connectivity between cog-
nitive control and sensorimotor ICs and between primary sensory
network connections (sensorimotor vs visual networks compo-
nents). In terms of aging, spontaneous connectivity between all but
two ICs decreased as a function of age (Fig. 4, bottom left).

Context-dependent functional connectivity of
responsive components
To address the extent to which activity (i.e., component responsiv-
ity) and connectivity of the 11 responsive components are important

for successful performance, we estimated context-specific connec-
tivity (i.e., cPPI) between each pair of responsive components (see
Materials and Methods). For each pair of responsive components,
we estimated context-dependent connectivity by contrasting con-
nectivity during successful and unsuccessful stopping (SuccStop �
UnsuccStop), indicating the changes in connectivity strength be-
tween unsuccessful and successful stopping, using a significance
level of p � 0.05 (FDR corrected). Context-dependent connectivity
between pairs of responsive components was stronger during
SuccStop compared with UnsuccStop events with a pattern of
connectivity modulation very similar to the pattern of context-
independent connectivity (Fig. 4, top right; see Context-independent
functionalconnectivity).Eventhoughtherewasasignificantdecrease in
the context-dependent connectivity differences between SuccStop and
UnsuccStop, the effects of aging on context-specific connectivity were
weaker than those on context-independent spontaneous connectivity
(in terms of effect sizes and number of connections; Fig. 4, bottom
right), indicating that the ability to efficiently modulate connectivity be-
tween conditions is fairly preserved across the life span.

Individual variability of response inhibition determined by
brain function
Component responsivity
The behavioral relevance of all responsive components (n � 11)
was assessed by examining their relationship to the SSRT. We
used an MLR (see Materials and Methods) with 10-fold cross-

Figure 3. Top left, Group-level component responsivity (difference in condition-specific component activity across contrast) for the contrast SuccStop � UnsuccStop, where each component is
shown in a unique color scheme. Lighter color within a given color scheme reflects a higher loading value for a given voxel (i.e., a stronger association between the time course of the voxel and the
time course of the component). Top center, Direction of reactivity of the reactive components—higher (hot colors) and lower (cold colors) reactivity for SuccStop � UnsuccStop, where the reactivity
of the component is weighted by the loading value of the voxel on the component (see Materials and Methods). Top right, Group effects using traditional univariate GLM analysis in SPM. Regional
brain activation for SuccStop � UnsuccStop, warm color scheme; and for UnsuccStop � SuccStop, cold color scheme. Thresholded at a significance level of p � 0.001, uncorrected. There was a high
spatial overlap in gray matter activations between the group ICA and GLM methods (r � 0.59, p � 0.001). The differences between the two approaches originated mainly in white matter, vascular,
and CSF territories, indicating that group ICA may be less sensitive to individual and age-related differences of physiological signals of non-neuronal origin than traditional univariate GLM analysis.
Bottom, Event-related time courses for four types of trials.
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validation to determine the joint contribution of shared variance
(i.e., structure coefficients) in activity across all responsive com-
ponents to SSRT variability across all participants. Differences in
activity for the contrast SuccStop � UnsuccStop were relevant to
SSRT for 7 of 11 responsive components (r � 0.245, p � 0.010;
Fig. 5, Model 1). Moreover, the nature of this relationship re-
mained significant (SSRT approximate subject scores of activity
in Model 1: r � 0.18, p � 0.032) over and above the effects of age
and other covariates (handedness, gender, head movement, and
response times on correct Go trials), indicating that the identified
set of functional components are fairly robust to determine indi-
vidual variability in SSRT across the life span. The interaction
term between age and subject scores of activity was not significant
(r � 0.08, p � 0.220; Fig. 5, Model 1), suggesting that the collec-
tive regional activity of those components does not change its
importance to perform the SNG task across the life span. The

components explaining unique variance of SSRT included PoCG,
SMA, rIFG, pre-SMA/dACC, and MiFG. In particular, the differ-
ence in activity during UnsuccStop, but not during SuccStop, was
associated with SSRTs (see time courses for groups of fast and
slow SSRT; Fig. 6 top), indicating that individuals with higher
activity during UnsuccStop (relative to SuccStop) had faster
SSRTs. This suggests that the recruitment of these components
during UnsuccStop trials is an important determinant of SSRT.

Context-independent functional connectivity
To test whether context-independent functional connectivity be-
tween responsive components determines individual differences
in inhibitory response, we used multiple linear regression with
SSRT as a dependent variable (Model 2). Context-independent
functional connectivity between the responsive components
showing significant group and age effects was the independent

Figure 4. Chord diagrams representing group and age effects of spontaneous connectivity (left) and context-specific connectivity (SuccStop � UnsuccStop; right) for responsive components.
Component responsivity (difference in context-dependent component activity across contrasts) for the contrast SuccStop � UnsuccStop is shown in the inner band (higher and lower responsivity
are shown in hot and cold colors, respectively), with components having significant group (main) effects (top) and age effects (bottom) denoted with a black outline ( p � 0.01, FDR corrected). For
labels of components (inner band) and their network correspondence (outer band), see text. l, Left; r, right.
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variable (n � 47; Fig. 4, right, significant connections). Covari-
ates of no interest included handedness, gender, head movement,
and response times on correct Go trials. Model 2 was not signif-
icant (r � 0.09, p � 0.261), suggesting that, unlike regional activ-
ity, context-independent functional connectivity does not
account for individual variability in the SSRT.

Context-dependent functional connectivity
Finally, we tested whether context-specific functional connectiv-
ity between responsive components reliably predicted variability
in the SSRT across the life span (Model 3). We used SSRT as a
dependent variable and cPPI between the responsive compo-
nents with significant group and age effects as independent vari-
ables (n � 41; Fig. 4, right, significant connections). Covariates of
no interest included handedness, gender, head movement, and
response times on correct Go trials. Model 3 was significant (r �
0.246, p � 0.009; Fig. 5, Model 3), suggesting that context-
specific connectivity is a determinant of SSRT. Differences in
connectivity between SuccStop and UnsuccStop were observed in
the following pairs of components: lPoCG–Pre-CG; lPoCG–
SMA; pre-SMA/dACC–SMA; and lPoCG–pre-SMA/dACC. In
particular, all connections showed an increased difference in con-
nectivity between SuccStop and UnsuccStop with faster SSRTs
(note that these components showed stronger connectivity dur-
ing SuccStop versus UnsuccStop; Fig. 4). In other words, individ-
uals with weak connectivity modulation within the somatomotor

network between SuccStop and UnsuccStop required a longer
time to inhibit a prepotent motor action.

To further investigate the nature of the association between
SSRT and context-dependent connectivity, we conducted a post
hoc moderation analysis including age, subject scores of cPPI
from Model 3, and their interaction (age � cPPI subject scores)
as independent variables, and SSRT as the dependent variable.
Variables of no interest in the model included handedness, level
of education, gender, and mean head displacement. The results
are shown in Figure 5 (Model 3, Moderation). Subject scores of
cPPI were significantly associated with SSRT after accounting for
age and other covariates (r � 0.24, p � 0.005), suggesting that
context-specific connectivity, together with regional activity (see
Component responsivity) contribute to individual differences in
SSRTs across the life span (i.e., over and above the effects of
aging). Interestingly, the interaction term between age and cPPI
subject scores predicted unique variance in SSRT variability
(age � cPPI: r � 0.27, p � 0.003). In other words, increasing age
strengthened the relationship between SSRT and context-specific
connectivity.

In summary, while both regional activity and context-specific
connectivity were associated with individual and age-related dif-
ferences in SSRT, only context-specific connectivity interacted
with age as a determinant of performance. Context-specific con-
nectivity therefore provided additional information to that of

Figure 5. Significant models of brain measures predicting individual variability in response inhibition (SSRT). Specifically, the significant models include responsivity only (A in Model 1, larger
activity in CO and SM nodes during UnsuccStop vs SuccStop was associated with faster SSRT), context-specific connectivity (cPPI in Model 3, larger connectivity modulations between SuccStop and
UnsuccStop were associates with faster SSRT), and their joint contribution (Model 4). While context-specific connectivity predicted individual, age-related, and age-moderated variances in SSRT,
activity was a significant predictor of the first two only. Below each circular plot, a scatter plot of corresponding bivariate correlation for three equally sized age groups is shown. The relationship
between SSRT and connectivity is higher for older (formally confirmed by moderation analysis, see Age � cPPI in Model 3), suggesting that good performance in older adults relies more strongly
on a good connectivity profile between functional components. The model with functional connectivity (Model 2) is not shown as it was not significant. l, Left; r, right.
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regional activity in terms of explaining variability in SSRTs over
the life span. This finding also indicates that regional activity and
connectivity may predict independent effects on the SSRT, which
we formally tested in the following section.

Joint contribution of activity and context-dependent
functional connectivity
To investigate whether regional activity and context-specific
functional connectivity provide unique determinants of SSRT
variability, we constructed an additional model, which was sim-
ilar to Models 1, 2, and 3, except that the set of SSRT predictors
included both regional activity and context-specific functional
connectivity (Model 4). Model 4 was significant (r � 0.261, p �
0.005; Fig. 5, Model 4), suggesting that context-specific activity
and connectivity are determinants of SSRT. The number of inde-

pendent variables in Model 4 was higher than in Model 1 and
Model 3 (n � 52, 11 components for responsivity and 41 connec-
tions for connectivity, which were significantly different between
SuccStop and UnsuccStop; Fig. 4, top right). If activity and con-
nectivity predicted the same source of variance in the SSRT, this
would lead to reduced performance of Model 4 relative to the
simpler models, Model 1 or Model 3 (since the 10-fold cross-
validation method controls for overfitting; see Materials and
Methods). The results showed that Model 4 performed better
than both Model 1 and Model 3, with average r values across 1000
CV partitions of r � 0.255, r � 0.224, and r � 0.288, respectively,
for Model 1, Model 3 and Model 4. The difference in r value
distributions was statistically significant between Model 4 and
Model 1 (t � �8.30, p � 0.002) and Model 4 and Model 3

Figure 6. Top, Event-related time courses for six components during SuccStop (green lines) and UnsuccStop (red lines) across two SSRT groups of individuals (continuous line, fast SSRT; dotted
line, slow SSRT). Bottom left, Additional set of analyses demonstrating the activity exclusively in bilateral MOG, as observed during SuccStop � UnsuccStop (Figs. 3, 4). Left, Unilateral activity in
medial occipital areas increases in response to arrow orientation to the contralateral side, indicating that the involvement of MOG might be implicated in stimulus response. Right, No activation
differences in MOG due to perceptual processing in stimulus differences (e.g., red vs black arrow, UnsuccStop � Go or Go � UnsuccStop). Center, Bilateral activations during correctly performed
trials vs error/baseline trials, independent of stimulus lateralization (i.e., SuccStop Left � UnsuccStop Left). Right bottom, Additional set of analyses demonstrating the behavioral relevance of
regional activity during SuccStop � Go in terms of predicting individual variability in response inhibition, SSRT (identical to Model 1 in Fig. 5). The correlation between regional activity of the 19 ICs
responsive to SuccStop � Go contrast and SSRT was significant (r ��0.270, p � 0.005), of which only 4 ICs contributed significantly. Namely, higher activation in right MiFG and left MOG during
SuccStop vs Go trials was associated with faster SSRTs. In addition, lower activation in left PoCG and Pre-CG during SuccStop vs Go was associated with faster SSRTs. Moderation analysis revealed that
the association between regional activity and performance remained (r � 0.117, p � 0.001) beyond the effects of aging (r � 0.144, p � 0.001), which did not vary across the life span (i.e.,
insignificant moderation effect, p � 0.24). Furthermore, the test results using context-dependent connectivity among all 19 ICs to predict SSRTs in multiple linear regression (equivalent to Model
3 in Fig. 5) was insignificant, indicating that the contrast SuccStop vs Go trials might be a less sensitive brain-wide connectivity modulation with behavioral relevance to inhibition control.
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(t � �13.91, p � 0.001) compared with their mean difference
null distributions, indicating that the joint prediction of activity
and connectivity explains a significantly larger portion of SSRT
variance compared with their predictive values alone.

In support of the above, we tested for an association between
activity and connectivity (i.e., whether there is a relationship be-
tween the subject scores of activity in Model 1 and those of
context-specific connectivity in Model 3). A significant correla-
tion between the two types of subject scores would indicate that
activity and connectivity may explain the shared variance in
SSRT. However, there was no relationship between the two sets of
subjects scores (r � 0.01, p � 0.951), confirming that activity and
connectivity are independent predictors of SSRT. The activity in
rIFG and pre-SMA/dACC together with connectivity among
lPoCG-PreCG, lPoCG-SMA, and SMA–pre-SMA/dACC were
significant predictors of individual and age-related differences in
SSRT (Fig. 5, Model 4). Furthermore, the interaction of brain
scores with age was significantly associated with SSRT (r � 0.18,
p � 0.032). In other words, the relationships among SSRT,
context-dependent connectivity, and regional activity were str-
engthened in older adults.

Discussion
The success of cognitive and motor control requires the engage-
ment of a diffuse network comprising prefrontal, premotor, and
motor regions. The principal and novel results of this study are
that (1) individual differences in inhibition performance corre-
lated with both the degree of activation of these regions, and the
degree of connectivity between them; and (2) the effects of age on
inhibition performance were determined by the activity of the
inferior frontal gyrus and dorsomedial prefrontal cortex, and the
modulation of connectivity between these and sensorimotor re-
gions. While task-related differences in context-dependent and
context-independent connectivity correlated across the group,
the context-dependent connectivity was less influenced by age
overall. However, the age-related variance in context-dependent
connectivity was a progressively more important determinant of
performance differences in older adults. These results are based
on a population-based cross-sectional cohort, and cannot di-
rectly speak to individual subjects’ progression over time. The
following discussion of age effects is therefore restricted to the
effects of age and its correlates, as assessed across individuals,
rather than the dynamic process of individual aging per se.

Differences in activity of inhibition control regions
predict performance
Task-evoked responses in 11 regions differentiated successful
from unsuccessful Stop-Signal trials. Right IFG and pre-SMA/
dACC— commonly associated with response inhibition—were
activated in both conditions, but showed reliably elevated activa-
tion for unsuccessful versus successful inhibition (Congdon et al.,
2010; Erika-Florence et al., 2014) with behavioral relevance (Li et
al., 2008; Duann et al., 2009). These results persisted after ac-
counting for the effects of age and other covariates that might
introduce artificial associations between brain and behavioral
measures, and corroborate previous group comparisons of fast
and slow SSRTs (Congdon et al., 2010). We found no evidence
for age-dependent variation in the brain activity– behavior rela-
tionship, suggesting that while regional activity in cognitive con-
trol regions declines with age (Sebastian et al., 2013), it may not
change its importance for performance across the life span.

Premotor and sensorimotor regions also showed elevated ac-
tivations for unsuccessful versus successful stopping (Congdon et

al., 2010). Given that there was no difference in activity between
conditions involving motor response (e.g., UnsuccStop vs Go)
and between conditions involving no motor response (e.g.,
SuccStop vs No-Go; data not shown, but available on request),
these findings likely reflect the differences in activity between
trials with motor response versus trials with no motor response.
An additional set of regions with enhanced activity during
SuccStop versus UnsuccStop, including the right inferior parietal
lobule, bilateral middle occipital gyrus, and bilateral middle fron-
tal gyrus (Fig. 3), showed sensitivity to the orientation of the
arrow stimulus in our experiment (Fig. 6, bottom left). Further,
these were consistent across all correctly performed trials (irrel-
evant of the condition) versus all error type and baseline trials,
which may reflect attentional readiness or trial-to-trial variabil-
ity, rather than response inhibition (Jans et al., 2010).

Differences in context-dependent connectivity relate
to performance
The change in connectivity related to inhibition was greater for
SuccStop versus UnsuccStop, which is suggestive of relative net-
work segregation during UnsuccStop (weaker connectivity with
higher activity; Toni et al., 2002) and more integration during
SuccStop. We propose that flexible integration between func-
tional components is important for the performance of executive
functions, including but not limited to inhibition (Rowe et al.,
2007). Importantly, the differences in the strength of connectivity
between prefrontal and premotor/motor regions predicted per-
formance. Smaller differences of connectivity between SuccStop
and UnsuccStop led to a longer SSRT (i.e., individuals with
weaker connectivity modulation were less able to stop a response
after it had been initiated). Our brain-wide approach suggests
that the connectivity between widespread regions, not only re-
gions with extreme variability in response inhibition or marked
lesion effects (Duann et al., 2009; Congdon et al., 2010; Rae et al.,
2015), is an important factor in performance. Activity and con-
nectivity in these regions are indicative of subtle differences in
response inhibition, including life span variability in inhibitory
performance.

Older adults were less efficient at stopping their actions in
terms of SSRT, although the aging effects on Go reaction times
were proportionally larger and individual differences are marked
(Fig. 2). We propose that this effect of age is due to less dynamic
modulation of connectivity between conditions, which is in
agreement with emerging evidence of decreased segregation of
networks across the healthy adult life span (Chan et al., 2014;
Geerligs et al., 2015; Tsvetanov et al., 2016). Our data indicate less
brain segregation across the life span in both context-dependent
and context-independent connectivity. Furthermore, our find-
ings suggest that having the ability to modulate connectivity be-
tween different brain states/conditions facilitates performance,
extending the idea about variability in neural processing based on
signal variability of neural BOLD activity (Grady and Garrett,
2014) to connectivity.

We speculate that the connectivity modulation between both
conditions may arise during the SSRT period, reflecting efficiency
in inhibitory processing, where strong connectivity leads to suc-
cessful inhibition (i.e., SuccStop), while weaker connectivity
leads to irrevocable commitment to a highly activated and pre-
potent response (i.e., UnsuccStop). Alternatively, the difference
in connectivity strength associated with SSRT may arise later,
from another process that influences poor response inhibition
(Congdon et al., 2010); a smaller difference between SuccStop
and UnsuccStop (i.e., hyperconnectivity) may reflect an ongoing
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inhibitory information transmission between pre-SMA and
motor regions after Stop-Signal, which would otherwise be sup-
pressed through efficient disinhibition of the (inhibitory) projec-
tions to motor regions. In terms of aging, such a pattern of
overcoupling may reflect the engagement of a network to support
processes irrelevant to the task at hand. For example, when need-
ing to suppress salient distractors, older adults show deficits (Ts-
vetanov et al., 2013) that may reflect inefficient inhibition of early
visual cortices from intraparietal regions leading to attentional
capture (Madden et al., 2014).

Both regional activity and context-dependent connectivity
were linked to interindividual and age-related variability in per-
formance. A moderation analysis indicated the importance of the
interaction between age and connectivity on performance (over
and above the effects of individual and age-related differences).
Improved stopping efficiency in older adults relied more strongly
on the modulation of connectivity within the motor and cogni-
tive control networks. Indeed, the measures of connectivity may
be more relevant than regional activity for predicting the preser-
vation of performance across the life span (Tsvetanov et al., 2016;
Samu et al., 2017). Collectively, the separate consideration of
activity and connectivity provides only a limited repertoire of
brain dynamics and their resilience across the life span, to which
we turn next.

Complementary effects of activity and connectivity
on performance
We tested the joint contribution of inhibition-related activity and
connectivity. Both regional activity in prefrontal regions and
connectivity among motor, premotor, and prefrontal cortices
were associated with behavioral variability (Model 4). This is
consistent with the hypothesis that inhibition-related activity and
inhibition-related connectivity are independent determinants of
performance across the life span. This was corroborated by our
individual analysis of both brain measures (considered sepa-
rately, Model 1 and Model 3), that (1) there was no association
between the subject scores of activity and connectivity, and
(2) task-related differences in connectivity (Model 3), but not in
regional activity (Model 1), moderated the effects of aging on
cognitive performance. Therefore, the joint consideration of re-
gional activity and connectivity provides insights over and above
their individual consideration, including the modulators of be-
haviorally relevant neural systems across the life span.

In line with this, we propose that age-related change in cogni-
tive control is best characterized by the joint analysis of multifocal
activity and connectivity within distributed brain networks. This
view also predicts that there may be differential patterns at either
the regional or inter-regional level. Each one is helpful to under-
stand a specific process, differences across the life span, or disease
stages. Furthermore, approaches capable of characterizing the
joint contribution of regional activity and connectivity of fMRI
signals may provide a principled means to characterize dynamic
network communication, and how they may relate to existing
electrophysiological phenomena (Voytek and Knight 2015).

Further considerations
We demonstrated that ICA and univariate GLM analyses of re-
gional activity were highly consistent (Fig. 3; Whelan et al., 2012;
Zhang et al., 2015). However, the ICA approach has potential
advantages over a GLM approach. For example, the linear models
identified a large portion of voxels that are unlikely to indicate
neuronal responses (e.g., vascular and/or CSF) being significantly
modulated by experimental conditions. The ICA method is less

vulnerable to fluctuations in physiological signals (Fig. 3), which
may otherwise confound fMRI studies of aging (Tsvetanov et al.,
2015, 2016; Geerligs and Tsvetanov 2016; Geerligs et al., 2017).

We found no evidence for the association between context-
independent connectivity and performance, in contrast to previ-
ous studies (Kelly et al., 2008; Fornito et al., 2012; Tsvetanov et al.,
2016). This may reflect our focus on responsive components in
the SNG task. Spontaneous connectivity may thus remain an
important determinant of other cognitive functions and may
need to be considered jointly with context-dependent connectiv-
ity to fully characterize neurocognitive preservation across the
life span (Geerligs and Tsvetanov 2016).

Concluding remarks
We show that behaviorally relevant and age-dependent individ-
ual differences in response inhibition can be better predicted by
the joint consideration of activity and connectivity in distributed
brain networks. The state of activity and connectivity in these
networks is critical for dissociating multiple sources of individual
differences in response to inhibition. Importantly, connectivity
was a sole predictor of age-moderated variability in stopping abil-
ity, indicating that improved stopping efficiency in older adults
relied more strongly on the modulation of the connectivity of
motor and cognitive control networks. The joint consideration of
activity and connectivity within distributed networks provided a
richer repertoire of brain dynamics across the life span with im-
plications for understanding the normal process of aging and
potentially for neurodegenerative disorders.
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