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The striatum supports learning from immediate feedback by coding prediction errors (PEs), whereas the hippocampus (HC) plays a
parallel role in learning from delayed feedback. Both regions show evidence of decline in human aging, but behavioral research suggests
greater decline in HC versus striatal functions. The present study included male and female humans and used fMRI to examine younger
and older adults’ brain activation patterns during a learning task with choice feedback presented immediately or after a brief delay.
Participants then completed a surprise memory task that tested their recognition of trial-unique feedback stimuli, followed by assess-
ments of postlearning cue preference, outcome probability awareness, and willingness to pay. The study yielded three main findings.
First, behavioral measures indicated similar rates of learning in younger and older adults across conditions, but postlearning measures
indicated impairment in older adults’ ability to subsequently apply learning to discriminate between cues. Second, PE signals in the
striatum were greater for immediate versus delayed feedback in both age groups, but PE signals in the HC were greater for delayed versus
immediate feedback only in younger adults. Third, unlike younger adults, older adults failed to exhibit enhanced episodic memory for
outcome stimuli in the delayed-feedback condition. Together, these findings indicate that HC circuits supporting learning and memory
decline more than striatal circuits in healthy aging, which suggests that declines in HC learning signals may be an important predictor of
deficits in learning-dependent economic decisions among older adults.
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Introduction
Adaptive decision making requires learning to link actions with
outcomes and to update value representations. The striatum sup-
ports learning from immediate rewards (Schultz, 1998), with

subregions such as the ventral striatum playing a key role in re-
sponding to prediction errors (PEs) (Pessiglione et al., 2006).
Learning from immediate rewards critically depends on inputs
from midbrain dopamine neurons, which exhibit reduced re-
sponsiveness (Kobayashi and Schultz, 2008) and temporal preci-
sion in reward prediction (Fiorillo et al., 2008) when rewards are
delayed. When choice outcomes are delayed, learning must rely
on links between choices and outcomes based on relational mem-
ories mediated by medial temporal lobe (MTL) structures such as
the hippocampus (HC). In fact, there is evidence of a double
dissociation in which the striatum (and associated regions in the
basal ganglia) supports learning from immediate feedback,
whereas the HC (and other components of the MTL) supports
learning from delayed feedback. For example, in Parkinson’s pa-

Received March 23, 2018; revised July 27, 2018; accepted Aug. 13, 2018.
Author contributions: N.R.L. wrote the first draft of the paper; N.R.L., J.M.P., S.A.H., and R.C. edited the paper;

N.R.L., S.A.H., and R.C. designed research; N.R.L. performed research; N.R.L. and J.M.P. analyzed data; N.R.L. wrote
the paper.

This work was supported by the National Institutes of Health–National Institute on Aging (Grant R24 AG039350
and Fellowship Grant T32 AG00029 to N.R.L. and Grant R01 AG019731 to R.C.).

The authors declare no competing financial interests.
Correspondence should be addressed to Nichole R. Lighthall, Department of Psychology, University of Central

Florida, 4111 Pictor Lane, Orlando, FL 32816. E-mail: nichole.lighthall@ucf.edu.
DOI:10.1523/JNEUROSCI.0769-18.2018

Copyright © 2018 the authors 0270-6474/18/388453-10$15.00/0

Significance Statement

The hippocampus (HC) and striatum play distinct and critical roles in learning. Substantial research suggests that age-related
decline in learning supported by the HC outpaces decline in learning supported by the striatum; however, such inferences have
been drawn by comparing performance in tasks with fundamentally different structures. The present study overcomes this
obstacle by implementing a single fMRI-learning paradigm with a subtle variation in feedback timing to examine differential age
effects on memory supported by the HC and striatum. Our results provide converging behavioral and brain-imaging evidence
showing that HC circuits supporting learning and memory decline more than striatal circuits in healthy aging and that declines in
HC learning signals may predict early deficits in learning-dependent decisions among older adults.
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tients with striatal function deficits, learning from immediate
feedback is impaired but delayed feedback learning remains in-
tact, whereas the opposite pattern is observed in amnesic patients
with MTL lesions (Knowlton et al., 1996; Foerde et al., 2013). In
healthy young adults, PE response is greater in the striatum ver-
sus HC when the outcome is immediate, but greater in the HC
when the outcome is delayed (Foerde and Shohamy, 2011). The
current study investigated whether this double dissociation be-
tween striatal and HC systems for learning from immediate
versus delayed feedback is maintained in healthy aging. We spe-
cifically examined the possibility that these functional distinc-
tions between the HC and striatum decline asymmetrically due to
differential deterioration in memory systems.

Behavioral research indicates greater age-related decline in
MTL-dependent tasks relative to striatum-dependent tasks
(Hoyer and Verhaeghen, 2006). Further, structural neuroimag-
ing analyses find age-related volume loss in both regions; how-
ever, losses in the HC are more accelerated in late life (Raz et al.,
2005, 2010; Walhovd et al., 2011). Prior research suggests that
aging has a negative impact on immediate-feedback learning as
indicated by performance impairments (Mell et al., 2005; Ep-
pinger et al., 2013) and diminished striatal PE response (Chow-
dhury et al., 2013; Eppinger et al., 2013; Samanez-Larkin et al.,
2014). The relative impact of aging on delayed-feedback learning
is unknown, but may be greater than that observed for immediate-
feedback learning given apparent asymmetries in decline within dif-
ferent memory systems.

To enhance our understanding of changes to feedback-based
learning mechanisms in healthy aging, the present study com-
pared probabilistic learning from immediate and delayed feed-
back in healthy younger and older adults during fMRI. Using a
task adapted from Foerde and Shohamy (2011) (Fig. 1), partici-
pants learned to associate symbols with positive or negative out-
comes indicated by pictures of indoor or outdoor scenes. In the
immediate condition, outcome stimuli were presented immedi-
ately after the cue selection and, in the delayed condition, stimuli
were presented 7 s after the cue selection. Key outcome measures
were learning behavior and neural PE responses in the striatum
and HC under different feedback timing conditions. In keeping
with previous research (Foerde and Shohamy, 2011), we pre-
dicted that PE-related activity would be greater in the striatum
with immediate feedback, but greater in the HC with delayed
feedback.

The present study had three goals. Our main goal was to in-
vestigate the effects of aging on PE-related responses in different
memory systems. Given previous evidence for increased age-
related decline in the HC compared with the striatum, we pre-
dicted that PE-related activity in the HC in the delayed condition
would show greater age-related reductions than PE-related activ-
ity in the striatum in the immediate condition. Our second goal
was to investigate the effects of aging on episodic memory for the
outcome stimuli. Finally, our third goal was to examine effects of
age and feedback timing on the ability to subsequently discrimi-
nate between cues on indexes of preference, probability aware-
ness, and incentive compatible economic decision making.

Materials and Methods
Participants. The initial sample included 30 younger adults and 36 older
adults from the Durham, North Carolina area. All participants were
fluent in English, free of MRI contraindications, and had normal or
corrected vision. To reduce the confounding effects of performance dif-
ferences, we excluded four younger adults and six older adults who were
not able to reliably (above chance) select the easiest high-probability
positive cues by the end of a practice session (last five presentations). One
additional older adult was excluded due to experimenter error during the
scan session. Therefore, the final sample included 26 younger adults (12
males; Mage � 26.3; SD � 4.6; Medu � 16.5; SD � 2.4) and 29 older adults
(14 males; Mage � 68.7; SD � 3.7; Medu � 17.0; SD � 1.7). Older adults
completed a Mini-Mental State Exam (MMSE) (Folstein et al., 1975)
with a group average score of 29.1 (SD � 1.0; range � 26 –30; one par-
ticipant’s score missing due to experimenter error). Participants were
compensated with a flat payment for their time ($20/h) and a bonus
payment of winnings from the willingness-to-pay (WTP) task (up to
$10). All participants provided informed consent under a protocol ap-
proved by the Institutional Review Board of Duke Medical Center.

Learning task. The current study used an adapted version of the prob-
abilistic learning task implemented by Foerde and Shohamy (2011) (Fig.
1). Participants selected cues (Japanese hiragana) that were probabilisti-
cally associated with positive and negative outcomes during fMRI data
collection. Because none of our participants was familiar with Japanese,
the cue stimuli had no associated meaning at the start of the task. Cue
pairs were presented in the choice phase and each pair included one cue
from each valence condition. Outcome probabilities for “good cues”
were 80% positive and 20% negative and, for “bad cues,” 20% positive
and 80% negative (pseudorandomized across trials). Participants had up
to 3000 ms to select a cue during the choice phase, after which the selected
cue remained on the screen for either 1000 ms (immediate condition) or
7000 ms (delayed condition). Then, the outcome screen was presented
for 1500 ms. If participants did not make a response within the choice

Figure 1. Learning task. Participants selected cues that were probabilistically associated with positive and negative outcomes. Outcomes followed cue selections either immediately (1 s) or after
a brief delay (7 s). Outcomes were indoor and outdoor scenes. In a prescan session, participants were trained to associate different scene types with either positive or negative outcomes.
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phase, outcomes were replaced with a message that they should respond
faster next time. Trials were separated by a jittered fixation with an aver-
age duration of 3000 ms (2000 – 4000 ms, 250 ms intervals, randomly
assigned). Participants completed two functional runs of 40 learning
trials each. In each run, participants learned about one cue pair from the
immediate condition and one pair from the delayed condition (20 inter-
leaved trials for each condition). Cue stimuli were randomly assigned to
experimental conditions for each participant. New cue pairs for both
conditions were introduced after the first run to increase the amount of
time that participants spent actively learning cue– outcome associations.

Before the scan session, participants received instructions and a de-
scription of the learning task in a private testing room and practiced the
task. They were told that each cue favored certain outcomes (no specific
contingencies given) and they were instructed to pick the cue that they
believed had the highest chance of positive outcomes. Participants were
also explicitly told that the time between their choice and the outcome
presentation would vary (no specific delay times disclosed). In addition,
they were told that they could earn a cash bonus after the scan session and
that performance on the bonus task depended on what they learned
during the scanner task.

Optimal choice performance was determined based on outcome his-
tory. Specifically, at the start of each block, cues were associated with a 0.5
probability of positive feedback. After each choice outcome, experienced
probabilities of positive feedback were updated for the selected cue (e.g.,
cue yields positive outcomes for 3/4 selections, probability � 0.75). Anal-
ysis of choice behavior was based on trials with unequal outcome prob-
abilities, such that selection of the cue with the higher positive-outcome
probability within a cue pair was coded as optimal.

Outcome memory task. Foerde and Shohamy (2011) found that epi-
sodic memory for outcome stimuli was enhanced in the delayed condi-
tion relative to the immediate condition. The current study sought to
replicate and examine potential age differences in this effect. Using the
same procedures as Foerde and Shohamy (2011), the current study in-
cluded a postlearning test of incidental memory for indoor and outdoor
scene pictures presented during the outcome phase. During the prescan
instruction session, participants were told that one scene type repre-
sented positive outcomes and the other, negative outcomes (e.g., in-
door � good; outdoor � bad). Then, participants completed a short
practice with different indoor and outdoor scenes and categorized them
as good and bad with 100% accuracy before advancing to the scan ses-
sion. The outcome valence conditions assigned to indoor and outdoor
scenes were counterbalanced across participants. Immediately after com-
pleting the learning task in the scanner, participants were escorted to a
testing room to complete additional tasks. First, they completed a self-
paced surprise memory test for the outcome scenes. Participants pro-
vided memory ratings for each scene that they encountered during the
learning task, which were intermixed with an equivalent proportion of
new indoor and outdoor scenes. Memory ratings were provided on a 1– 4
scale (1 � remember with contextual details, 2 � strongly familiar, 3 �
weakly familiar, 4 � new).

To facilitate cross-study comparisons with Foerde and Shohamy
(2011), performance on the outcome-memory task was examined using
high confidence corrected recognition (“remember” and “strongly fa-
miliar” responses). Further, high-confidence recognition responses are
associated with HC activity, whereas low-confidence recognition re-
sponses are associated with cortical MTL regions (Daselaar et al., 2006;
Diana et al., 2007) and could also reflect implicit memory processes (Dew
and Cabeza, 2011). Outcome memory scores reflected the difference
between the proportion of high confidence responses for “old” and
“new” pictures (i.e., hits and false alarms).

Cue contingency awareness tasks. Next, participants completed several
tasks that measured postlearning awareness of cue contingencies. These
tasks were included to examine the effects of age and feedback-timing on
the ability to subsequently discriminate between cues using different
indexes of transfer. These tasks began �5–10 min after the conclusion of
the learning phase in the scanner (�20 –25 min from first learning trial).
In these tasks, each cue from the learning phase was presented individu-
ally and participants provided: estimations of time delays between
choices and feedback (in seconds), subjective preference ratings (1 �

lowest, 7 � highest), estimations of positive outcome likelihood (0 –
100%), and WTP for a chance at a cash bonus. Data for the delay-to-
feedback estimation task was not collected for the first three young adults
in the study. In addition, one older adult was excluded from analysis of
this task after being identified as an outlier (delay-time estimations �3
SDs above the group mean for immediate and delayed cues). The WTP
task followed a Becker–DeGroot–Marschak auction format (Becker et
al., 1964) to collect incentive-compatible cue value estimations. For each
cue, participants were given $2.00 and were asked to bid an amount from
$0.00 to $2.00 for a chance to win an additional cash bonus of $8.00 in a
lottery game. In the game, one randomly selected cue would be “played”
in a single trial. If the cue led to a positive outcome, the participant would
win $8.00, but if it led to a negative outcome, the participant would win
nothing. Participants were told that the likelihood of cues giving positive
outcomes in the lottery game was equivalent to their likelihood of leading
to positive outcomes during the learning task. They were also told that
the price to play the lottery would be randomly selected from a uniform
distribution from $0.00 to $2.00 and that their bids for individual cues
were independent (e.g., they could bid $2.00 for multiple cues). If par-
ticipants’ WTP for the selected cue met the lottery price, they paid for the
lottery (keeping the remainder of their $2.00 regardless), observed one
“flip” of the selected cue, and either won $8.00 or nothing. If participants’
WTP for the selected cue was less than the lottery price, they were given
their $2.00 endowment and did not get to play for a bonus. The relative
amounts of endowments and bonuses were determined based on behav-
ioral piloting indicating that these values were sufficient to overcome well
known loss aversion bias (Kahneman et al., 1991) that would cause par-
ticipants to avoid gambling on cues with perceived positive values.

Behavioral data analysis. Behavioral analysis was conducted using
SPSS version 24 (IBM SPSS Statistics; RRID:SCR_002865). Optimal
choice performance was examined using a 2 � 2 � 4 ANOVA model with
age group (younger, older) as a between-subject factor and within-
subject factors of feedback-timing condition (immediate, delayed) and
trial block (1–5, 6 –10, 11–15, 16 –20). Outcome memory and estima-
tions of time delays between choices and feedback were analyzed using a
2 � 2 ANOVA with age group and feedback-timing condition as predic-
tors. To evaluate postlearning awareness of cue contingency measures of
preference, outcome probability estimation, and WTP, we calculated cue
discrimination values for each condition. Cue discrimination values cor-
responded to the difference between average ratings for good and bad
cues (Mgood � Mbad) on immediate- and delayed-feedback trials. Postle-
arning cue discrimination values were examined using a 2 (age) � 2
(feedback timing) ANOVAs. Effect sizes were measured using partial �
squared (�p

2) values and errors using SEM.
Learning model. Learning task data were fit with a hierarchical Bayes-

ian version of a standard reinforcement learning model in which subjects
learn the action value of each cue ( Q) through experiencing rewards and
reward omissions in response to their choices. After learning is complete,
the action value should approximate the expected value of each option.
Action values are updated according to the standard delta rule: Qnew �
Qold � ��, where � is the learning rate and � is the reward PE associated
with the choice: � � R � Qold, where R is the observed outcome (0 or 1
for incorrect and correct responses). To reflect the fact that the values of
cues on each choice were anticorrelated, the unchosen option on each
trial was decremented by the same amount. We also assumed a standard
softmax form for the choice function: given options A and B with action
values QA and QB, the probability of choosing A over B is given by the
following: p(A � B) � e � QA/(e � QA � e � QB) where � is a parameter
controlling the sensitivity of choice to the difference in value between the
two options. To enhance our ability to make cross-study comparisons,
learning rates were determined across feedback-timing conditions as
done by Foerde and Shohamy (2011).

The model followed a hierarchical approach in that learning rates for
each participant were assumed to be drawn from one of two (�) popu-
lation distributions, corresponding to younger and older participants,
whereas � parameters for each subject were drawn from population-
specific gamma distributions. Then, Bayesian inference methods were
used to determine posterior distributions for both individuals’ learning
rates and the population distributions as a whole. By using Bayesian
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posterior distributions instead of point estimates, this model captured
uncertainty about the value of � for each subject and inferences made
about the population could be used to improve model fits for each indi-
vidual subject. Model-based estimates (medians) for participant learning
rates (�) were used in the behavioral analysis and PEs (�, also medians)
were used in the fMRI analysis. Models were fit using Hamiltonian
Monte Carlo methods via the Stan probabilistic programming language
(Carpenter et al., 2016). Models were fit using two chains of 2000 itera-
tions each, with the initial half of each chain discarded as burn-in. Con-
vergence of models was checked via inspection of trace plots to verify
negligible autocorrelation among samples.

Model fits were assessed via log predicted probability, log p(ynew�yobserved)
via leave one out (LOO) cross-validation (Vehtari et al., 2017). This
approach results in a LOO estimate for each data point, which is a mea-
sure of how likely we expect each observation to be under a model trained
using all other data. Model parameter estimates are reported in Table 1.
Group differences in learning rates and softmax values were analyzed
using ANOVAs with age group as a between-subject factor. Learning
rates and softmax values from alternative models that separately de-
termined these parameters by feedback-timing condition were ana-
lyzed using 2 � 2 ANOVAs with condition as a within-subject factor
and age as a between-subject factor. Code used for model fitting,
along with model definition files, are available at https://github.com/
jmxpearson/bayesrl.

Brain-imaging data collection. Imaging data were acquired from a 3 T
GE Healthcare MR750 scanner with an eight-channel head coil. Anatom-
ical data were collected first using a T1-weighted spoiled gradient recalled
echo sequence: 128 oblique slices parallel to the anterior–posterior com-
missure plane; field of view (FOV): 25.6 cm; voxel dimensions: 1 � 1 �
1.2 mm. FMRI data were acquired using a T2*-weighted SENSE inward-
spiral pulse sequence (Glover and Law, 2001) sensitive to the blood ox-
ygenation level-dependent (BOLD) signal: TR: 2000 ms; TE: 30 ms; FOV:
24 cm; 34 oblique slices; voxel dimensions: 3.75 � 3.75 � 3.8 mm.
Functional data were collected across two runs, each including 223 vol-
umes, with the first three volumes of each run discarded to allow for
stabilization of the T2* signal.

fMRI data analysis. Brain-imaging data analysis was performed with
software from the Functional MRI of the Brain (FMRIB) Software Li-
brary (FSL; RRID:SCR_002823). General linear modeling of fMRI data
was conducted using FMRIB FSL Feat version 6.00 (Smith et al., 2004).
Data were preprocessed using the following procedures: motion correc-
tion using MCFLIRT, slice-timing correction (for interleaved acquisi-
tion), brain extraction using BET, spatial smoothing (Gaussian FWHM 5
mm), and high-pass temporal filtering (at 100 s). FLIRT was used to
register functional images to individual structural images (6 degrees of
freedom) and the FSL Montreal Neurological Institute (MNI) template
image using an affine transformation (12 degrees of freedom). Z statistic
images data were thresholded with a voxelwise threshold of Z � 2.3 and
cluster-corrected threshold of p � 0.05 (Worsley, 2001) and result im-
ages presented in MNI coordinates. First-level analyses used FILM pre-
whitening and included head motion parameters as nuisance regressors.
All event variables were convolved with a double-gamma hemodynamic

response function. Second-level analyses averaged participants’ data
across runs using a fixed-effects model. Third-level analyses used a
mixed-effects model (FLAME1) to average data across and within
groups, allowing for determination of group means and differences.

Our primary analysis examined feedback-timing effects on BOLD re-
sponse to model-derived PE estimates during outcome presentation. The
following task events were modeled: choice phase, outcome phase, and
outcome phase with PE as a parametric modulator orthogonalized to the
main outcome phase regressor. Importantly, the critical manipulation of
feedback timing requires standard (nonjittered) delays between choice
and outcome phases, leading to nonoptimal modeling of BOLD response
to feedback, particularly in the immediate condition. To address this
issue and facilitate cross-study comparisons, we followed the basic ap-
proach of Foerde and Shohamy (2011) using a two-step process: (1) a
regression analysis was first conducted with PEs as parametric modula-
tors of outcome response across feedback-timing conditions and (2) we
then extracted BOLD response to PEs in a priori regions of interest
(ROIs) and determined average PE response within the immediate- and
delayed-feedback trials. We used anatomical ROIs for the striatum and
HC drawn from the Harvard–Oxford Probabilistic Atlas’ within FSL.
Our ROI analysis targeted two regions previously shown to exhibit
feedback-timing-dependent PE responses: the ventral striatum and the
anterior HC (Foerde and Shohamy, 2011). Specifically, the striatum ROI
included the nucleus accumbens (NAcc) and the HC ROI included the
HC anterior to y � �23 (as in Foerde and Shohamy, 2011; both bilat-
eral). Foerde and Shohamy (2011) used an ROI threshold of 25%. We
increased ROI thresholds to 50% probability to increase certainty that
masks were located in our target anatomical regions for both age groups,
considering potential age-related variability in brain structure. Trial-
level PE-related activation within these ROIs was determined using the
single-trial analysis procedure described by Mumford et al. (2012).

To test the primary hypothesis that normal aging is associated with
asymmetrical decline in memory systems, we examined age differences in
PE response to immediate and delayed feedback in the striatum and HC.
Specifically, we examined ROI response to PEs in a mixed 2 � 2 � 2
ANOVA with age as a between-subject factor and feedback-timing and
memory region as within-subject factors.

Results
Age difference in effects of feedback timing on learning and
memory performance
As shown in Figure 2, optimal choice selection increased by trial
block, with results indicating strong linear effects (F(1,53) � 63.84,
p 	 0.001, �p

2 � 0.55), but also quadratic (F(1,53) � 5.87, p � 0.02,
�p

2 � 0.10) and cubic effects (F(1,53) � 5.18, p � 0.03, �p
2 � 0.09).

In addition, we observed a group difference (F(1,53) � 4.20, p �
0.045, �p

2 � 0.07), such that older adults had lower optimal
choice selection (M � 0.78, SEM � 0.03) across trials and con-
ditions relative to younger adults (M � 0.86, SEM � 0.03). No
other significant main effects or interactions were observed (all
p � 0.05). Therefore, older adults in our study exhibited intact
learning but lower optimal choice selection across feedback-
timing conditions.

We then examined incidental memory for outcome stimuli
(scenes) from immediate- and delayed-feedback trials. We fo-
cused on high-confidence recognition responses, which have
been previously linked to HC function (Daselaar et al., 2006;
Diana et al., 2007). Consistent with previous research (Foerde
and Shohamy, 2011), the proportion of corrected high-
confidence recognition responses was greater for outcome stim-
uli in the delayed than in the immediate condition (F(1,53) � 9.00,
p � 0.004, �p

2 � 0.15). Older adults exhibited poorer memory
performance overall (F(1,53) � 15.10, p 	 0.001, �p

2 � 0.22) and
no difference between delayed and immediate conditions when
their data were analyzed separately (F(1,29) � 1.11, p � 0.30, �p

2 �
0.04). As a result, there was interaction of age and feedback tim-

Table 1. Learning model parameters

Mean (CI)

Learning rate (�)
Younger 0.14 (0.03)
Older 0.12 (0.03)
Across age groups 0.13 (0.02)

Softmax inverse temperature (�)
Younger 7.98 (1.67)
Older 6.83 (1.58)
Across age groups 7.40 (1.15)

Model fit (mean log predictive probability)
Younger �0.35 (0.02)
Older �0.43 (0.02)
Both combined �0.39 (0.02)

Data are shown as means and confidence intervals (CIs) for distribution medians.
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ing (F(1,53) � 4.16, p � 0.046, �p
2 � 0.07; Fig. 3). This effect was

explained by differential hit rates for immediate versus delayed out-
comes in younger adults (Mimmed � 0.38, SEM � 0.02; Mdelay �
0.47, SEM � 0.02) and equivalent hit rates across conditions in older
adults (Mimmed � 0.36, SEM � 0.02; Mdelay � 0.38, SEM � 0.02).
These data show that the proportion of high-confidence recogni-
tion responses was similar across age groups and conditions, with
the exception that younger adults had notably better recognition
of delayed-outcome images. In addition, overall age differences
were also driven by a higher proportion of high-confidence false
alarms in older adults (M � 0.26, SEM � 0.02) versus younger
adults (M � 0.15, SEM � 0.02; F(1,53) � 15.10, p 	 0.0001, �p

2 �
0.22). Therefore, our results indicated that delaying feedback im-
proved subsequent memory for outcome stimuli in younger
adults but not older adults.

Post hoc correlation analyses across
conditions and age groups revealed posi-
tive relationships between corrected rec-
ognition and measures of cue contingency
awareness (preference: r(53) � 0.41, p �
0.002; positive outcome probability esti-
mation: r(53) � 0.37, p � 0.005; WTP:
r(53) � 0.30, p � 0.03). These data suggest
that individuals with better episodic mem-
ory for outcome stimuli had an enhanced
abilitytotransferstimulus–outcomelearning
to new contexts, perhaps reflecting sub-
ject-level engagement of the HC (Myers et
al., 2003; Preston et al., 2004). An alter-
nate explanation, however, is that individ-
uals with better stimulus–outcome learning
could allocate more attention to outcome
stimuli during the learning phase, allow-
ing for better encoding and subsequent
memory (i.e., given an excess of cognitive
resources). If true, performance on the
outcome memory task should correspond
to performance on the learning task. Our

results for younger adults do not support this alternate account
because enhanced memory for delayed outcome stimuli was ob-
served in the absence of condition effects for learning perfor-
mance (Fig. 2). Indeed, among younger adults, learning
performance in the delayed condition did not differ from the
immediate condition across blocks (F(1,25) � 2.02, p � 0.17, �p

2 �
0.08) nor in the first block (F(1,25) 	 1, p � 0.38, �p

2 � 0.03).

Postlearning awareness of cue contingencies
The current study included measures of postlearning cue contin-
gency awareness. These measures allowed for examination of age
and feedback timing on awareness of relationships between spe-
cific cues and their contingencies. After excluding for outliers and
incomplete datasets, results for delay-to-feedback estimations re-
vealed significantly higher estimations for cues in the delayed
(M � 3.11 s, SEM � 0.20) versus immediate condition (M �
2.74 s, SEM � 0.18; F(1,49) � 6.78, p � 0.01, �p

2 � 0.12). Aware-
ness of delay time did not differ by age (F(1,49) 	 1, p � 0.75,
�p

2 � 0.00) nor did age interact with condition to affect delay-
time estimations (F(1,49) 	 1, p � 0.60, �p

2 � 0.01). These results
indicated that there was an age-invariant awareness of the
feedback-timing contingencies.

In addition, as displayed in Figure 4, we found several consis-
tent results across postlearning measures of cue preference, out-
come estimation, and the WTP task. First, we found cue
discrimination values (Mgood � Mbad) were significantly higher
than zero as measured by preference (F(1,53) � 83.05, p 	 0.001,
�p

2 � 0.61), probability estimations for positive outcomes (F(1,53) �
118.09, p 	 0.001, �p

2 � 0.69), and WTP values (F(1,53) � 107.68,
p 	 0.001, �p

2 � 0.67). These results also revealed age effects
indicating that, relative to younger adults, older adults had lower
postlearning discrimination performance for good and bad cues
on measures of preference (F(1,53) � 5.30, p � 0.03, �p

2 � 0.09),
outcome probability estimation (F(1,53) � 7.11, p � 0.01, �p

2 �
0.12), and WTP (F(1,53) � 4.88, p � 0.03, �p

2 � 0.08). Across
measures, these results suggest poorer postlearning awareness of
outcome contingencies in aging. Third, we found little evidence
that feedback timing affected awareness of cue– outcome rela-
tionships. The only significant effect of feedback timing was
found for preference, such that preference-based discrimination

Figure 2. Proportion of optimal cue selection by age group and feedback-timing condition across trials. Selection of cues with
more positive outcome histories was coded as optimal. Results indicated increased selection of optimal cues across trials, with no
differences by condition and only marginally higher overall choice selection in younger adults (YA) relative to older adults (OA).
Error bars indicate SEM.

Figure 3. Memory for stimuli (scenes) at outcome phase by feedback-delay condition and
age group. Across conditions, older adults had poorer incidental memory and younger adults
alone exhibited enhanced memory in the delayed condition. Means represent proportion of
high confidence hit responses (by condition) versus false alarms. Error bars indicate SEM.
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for good versus bad cues was magnified in the delayed condition
(F(1,53) � 4.94, p � 0.03, �p

2 � 0.09). Condition effects were not
significant for outcome probability estimation (F(1,53) 	 1, p �
0.67, �p

2 � 0.00) or WTP (F(1,53) 	 1, p � 0.97, �p
2 � 0.00).

Interactions between age and feedback-timing condition were
not significant for preference (F(1,53) 	 1, p � 0.67, �p

2 � 0.00),
outcome probability estimation (F(1,53) 	 1, p � 0.67, �p

2 � 0.00)
or WTP (F(1,53) 	 1, p � 0.67, �p

2 � 0.00).
Equivalence tests (Lakens, 2017) were used to confirm ob-

served null effects of condition on outcome probability estima-
tion and WTP. A power analysis indicated that our sample of 55
participants had 80% power at an � of 0.05 to reject effect sizes
larger than d � 0.395. Equivalence tests revealed that condition
differences were significantly within equivalent bounds of dz �
�0.395 and dz � 0.395 for outcome probability estimation
(t(54) � �2.45, p � 0.009) and WTP (t(54) � 2.83, p � 0.003).

To address the possibility that differences in experienced
probabilities for good and bad cues may have affected perfor-
mance on measures of cue discrimination, we conducted a post
hoc analysis with experienced probabilities. Here, we extracted
measures of experienced probabilities (i.e., percentage positive
outcomes) by feedback-timing condition and cue valence. We
then calculated the difference in experienced probabilities be-
tween good and bad cues (analogous to the calculation of cue
discrimination) for trials in the first block and across all blocks.
Five participants did not have outcome data for all cells in the first
block and were excluded from that analysis. Results revealed no
significant correlations for either measure of experienced proba-
bility with any measure of postlearning cue discrimination in the
immediate or delayed condition (all p � 0.13). Therefore, cue
discrimination performance did not appear to differ by experi-
enced probabilities.

Finally, a follow-up correlation analysis found strong within-
subject relationships between measures of postlearning cue dis-
crimination (Table 2). Late learning performance for each cue
pair was marginally related to each of the postlearning measures.
Postlearning cue discrimination abilities appeared to be best in-

dexed by estimations of positive outcome probability, which
were most strongly correlated with the other measures of cue
contingency awareness, as well as optimal choice selection in the
last trial block.

Model fitting
Consistent with the aforementioned analysis of trialwise change
in optimal choice selection, we observed no significant age differ-
ence in model-derived learning rates (F(1,53) � 2.07, p � 0.16,
�p

2 � 0.04; Table 1). Softmax values were also similar across
younger and older adults (F(1,53) � 2.07, p � 0.16, �p

2 � 0.04;
Table 1), indicating that the degree to which choices were value
driven (or random) was similar in younger and older adults. Age
differences were observed in distributions of model goodness of
fit across trials (Mann–Whitney U � 1931873, p 	 0.00001, two-
tailed), with higher fit values in younger versus older adults
(Table 1). Critically, subsequent fMRI analyses did not reveal
overall reduced PE response in older versus younger adults, indi-
cating that group differences in model fits did not significantly
diminish our ability to detect PE-related brain activation in older
adults.

Lower fit values in older adults were not driven by differences
in learning rates or softmax estimates across feedback-timing
condition. Furthermore, we ran an alternative model that esti-
mated learning rates separately for the immediate and delayed
condition. This alternative model did not yield significant differ-
ences in learning rates by age (F(1,53) � 0.96, p � 0.33, �p

2 � 0.02),
condition (F(1,53) � 1.38, p � 0.25, �p

2 � 0.03), nor their inter-
action (F(1,53) � 0.68, p � 0.41, �p

2 � 0.01). To investigate the
possibility that younger and older adults’ choices differed in soft-
max values by condition, we ran another version of our alternate
model wherein softmax parameters were determined by condi-
tion. Softmax values under this model did not differ by age (F(1,53)

� 1.84, p � 0.18, �p
2 � 0.03), condition, (F(1,53) � 0.01, p � 0.93,

�p
2 � 0.00), nor their interaction (F(1,53) � 0.39, p � 0.54, �p

2 �
0.01).

fMRI whole-brain analysis: PE signals in younger and older
adults across feedback-timing conditions
The initial whole-brain analysis examined PE signal combined
across feedback-timing conditions. Results indicated robust PE-
related activation of the striatum and HC in both younger and
older adults with no significant age differences observed any-
where in the basal ganglia or MTL (Fig. 5, Table 3). Therefore,
when examining neural learning signals across feedback-delay
conditions, we found no age differences in the striatum or HC.

Figure 4. Cue discrimination for postlearning measures of cue contingency awareness. At the end of the experiment, participants responded to questions relating to their awareness of
contingencies associated with individual cues from the learning task. For each cue, participants provided cue-specific preference ratings (1 � lowest, 7 � highest; A), positive-outcome likelihood
estimations (0 –100%; B), and completed a WTP task with real financial stakes (bids from $0.00 to $2.00; C). A main effect of condition was observed for preferences and age effects were observed
for all three measures. Error bars indicate SEM.

Table 2. Correlations (r) between measures of postlearning cue discrimination and
late-learning performance

WTP Probability estimation Preference

Last block optimal choice 0.26 a 0.26 a 0.24 a

Preference 0.75 b 0.83 b

Probability estimation 0.84 b

ªp 	 0.1.
bp 	 0.001.
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Age differences were observed elsewhere in the brain such that
younger adults had greater PE-related activation of the right lat-
eral occipital cortex, whereas older adults had greater activation
in the right frontal pole and paracingulate gyrus (Table 3).

fMRI ROI analysis: effects of feedback timing and age
The critical test of our hypothesis required examining PE-related
brain activation in the striatal and HC ROIs among younger and
older adults when probabilistic feedback was either immediate (1
s) or delayed (7 s). This ROI analysis yielded no overall age dif-
ferences (F(1,53) 	 1, p � 0.76, �p

2 � 0.00), but did reveal a
significant three-way interaction (F(1,53) � 6.22, p � 0.02, �p

2 �

0.11; Fig. 6), indicating that PE response depends on memory
region, age, and feedback-delay condition. Results for younger
adults yielded a replication of previous findings (Foerde and Sho-
hamy, 2011). Specifically, we found that in young adults imme-
diate feedback led to increased PE response in the striatum
compared with the HC, whereas delayed feedback led to the op-
posite pattern (region � feedback timing: F(1,25) � 21.04, p 	
0.001, �p

2 � 0.46). Among older adults, regional PE response did
not differ by feedback timing (region � feedback timing: F 	 1).

Further inspection of PE-related signal in the NAcc indicated
that both age groups had enhanced activation for immediate rel-
ative to delayed feedback (F(1,53) � 6.52, p � 0.01, �p

2 � 0.11),
with no main effect of age (F(1,53) � 1.25, p � 0.27, �p

2 � 0.02) nor
an interaction of age and feedback timing (F 	 1). Therefore,
older adults appeared to retain feedback-timing sensitivity in
NAcc-based learning signals. In contrast, feedback-timing sensi-
tivity in the HC was only observed in younger adults, whereas
older adults’ HC responded similarly to immediate and delayed
PEs (age � feedback-timing: F(1,53) � 4.42, p � 0.04, �p

2 � 0.08;
main effects nonsignificant). These findings suggest that aging is
associated with differential change in HC versus striatal mecha-
nisms of trial-and-error learning.

Discussion
This study provides converging behavioral and brain imaging
evidence that aging is associated with asymmetric decline in
memory systems that support feedback-based learning. A large
body of research indicates that learning from immediate feedback
is supported by response to PEs in striatal dopaminergic neurons
(Schultz, 2013). Delays in feedback appear to increase reliance on
learning mechanisms in the declarative memory system, includ-

Figure 5. Whole-brain analysis of response to model-determined PEs across feedback-delay conditions in younger and older adults. Results indicated robust activation in a priori ROIs, specifically
the NAcc ( y � 67) and HC ( y � �20) bilaterally. No age differences were observed in the striatum or MTL regions.

Table 3. PE-related activation across feedback delay conditions (whole-brain
analysis)

PE response x y z Z-max Voxels

Younger adults
R lateral occipital cortex 26 �78 28 5.3 36975
R caudate 6 14 �8 5.0
L hippocampus �28 �20 �22 5.0
L inferior frontal gyrus �38 30 4 3.8 433

Older adults
L inferior temporal gyrus �50 �52 �12 5.0 16368
L ventromedial prefrontal cortex �10 12 �14 4.6
L caudate �10 16 �10 4.6

Younger � older
R lateral occipital cortex 56 �68 6 3.6 400

Older � younger
R frontal pole 34 46 8 4.3 456
Paracingulate gyrus �2 32 38 4.3 393

Locations are presented as MNI coordinates.
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ing the HC (Foerde et al., 2013). Indeed,
the present study and previous research
(Foerde and Shohamy, 2011) found that,
when choice feedback is briefly delayed,
response to PEs are more robustly repre-
sented in the HC compared with the stria-
tum among healthy young adults. The
present study adds to this literature by
suggesting that these region–function re-
lationships break down in normal aging
and that the trajectory of age-related
change is accelerated in the HC relative to
the striatum.

The study yielded three main findings.
First, we found that older adults’ PE re-
sponses in the striatum showed greater
feedback-timingsensitivitycomparedwithPE
responses in the HC. These results suggest
a relative preservation of neural learning
signals in the striatum versus HC in nor-
mal aging. Our behavioral analysis also
suggests reduced engagement of the de-
clarative memory system during rein-
forcement learning among older adults.
Second, unlike younger adults, older
adults failed to exhibit enhanced episodic
memory for outcome stimuli in the
delayed-feedback condition. Finally, al-
though older adults had similar rates
of learning to younger adults across
feedback-timing conditions, they exhib-
ited an impaired ability to subsequently
transfer their learning to measures of cue
preference, outcome probability awareness, and WTP. The three
findings are discussed in separate sections below.

Relative preservation of striatal learning signals in
healthy aging
The current study showed that striatal PEs are relatively well
preserved relative to HC PEs in healthy older adults. Indeed,
older adults’ striatal PEs responses to immediate feedback were
indistinguishable from those of younger adults. This finding ap-
pears to conflict with some previous reports of age-related de-
clines in the striatal PEs to immediate feedback (Chowdhury et
al., 2013; Eppinger et al., 2013; Samanez-Larkin et al., 2014).
However, a closer examination of these previous studies suggests
that decline in striatal PE responses is a characteristic of a sub-
population of older adults who also exhibit impaired behavioral
learning rates relative to younger adults.

In particular, the study by Chowdhury et al. (2013) provided
compelling evidence for the maintenance of striatal PEs in high-
functioning older adults. They examined effects of L-DOPA on
reinforcement learning performance and reward PEs in high-
and low-performing subgroups of older adults using a task with
trial-by-trial variation in reward probabilities based on a Gauss-
ian random walk. One subgroup exhibited impaired task perfor-
mance on placebo but performance equal to young adults on
L-DOPA. Correspondingly, reward PE signal in low-performing
older adults was found to be incomplete due to decline in the
representation of expected value, but PE signals in this group
were restored to their canonical form with L-DOPA. A second,
high-performing group of older adults showed no deficits in
learning performance or PE signal on placebo, but the applica-

tion of L-DOPA caused deficits in both. Like this latter group,
older participants in the present study did not significantly differ
from younger adults in their learning performance or striatal
representation of the PE signal.

Together with the previous findings, our results suggest that
the integrity of striatal PE signals is maintained among healthy
older adults who also exhibit intact feedback-based learning per-
formance. This conclusion fits with prior reports that age effects
on learning may include different trajectories of change (Den-
burg et al., 2007) and understanding age-related cognitive decline
requires attention to individual differences. Our findings also
suggest that the integrity of neural learning signals in the HC
decline more rapidly than learning signals in the striatum, even in
healthy older adults with learning performance equal to young
adults. Future research should investigate whether deficits in HC
learning signals among healthy older adults predicts later impair-
ments in learning from delayed feedback, as seen in patients with
MTL lesions (Foerde et al., 2013).

Age-related dedifferentiation in the HC
Substantial behavioral research suggests that age-related decline
in declarative memory outpaces decline in nondeclarative mem-
ory (Craik, 1994; Nilsson, 2003; Hoyer and Verhaeghen, 2006)
and such findings imply differential age effects for the neural
correlates of these types of memory. A limitation of most prior
work is that age differences in learning and memory have been
observed using tasks with fundamentally different structures.
This presents challenges for interpreting direct age group com-
parisons of regional engagement associated with these tasks. The
present study overcomes this obstacle by implementing a single
learning paradigm with only a subtle variation in feedback timing

Figure 6. PE-related activation by memory region, feedback-timing condition, and age group. As previously reported (Foerde
and Shohamy, 2011), younger adults exhibited relatively greater response to PEs in the NAcc with immediate feedback and in the
HC with delayed feedback. In older adults, response to PEs with immediate feedback were similar to younger adults in the NAcc and
HC, but with delayed feedback there was no elevation in HC responses. Younger adults are represented by solid bars and older
adults by striped bars. Error bars indicate SEM.
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to demonstrate differential age effects on learning supported by
the MTL and striatum. Under very similar conditions, we found
that, compared with younger adults, older adults’ neural learning
signals were intact for immediate-feedback learning mediated by
the striatum, but were impaired for delayed-feedback learning
mediated by the HC. Therefore, our results extend the evidence of
asymmetry in age-related change to different memory systems
using a single probabilistic learning paradigm.

As illustrated by Figure 6, we found that aging eliminated the
double dissociation between the roles of the HC and the striatum
in immediate- versus delayed-feedback learning. This finding
contributes to the literature on age-related dedifferentiation or
an age-related weakening of functional distinctions displayed by
younger adults. Dedifferentiation has been observed in the local-
ization of processes (less localized activations in older adults;
Cabeza, 2002), in the selectivity of cortical activation patterns
(reduced specificity for different type of stimuli categories; Park
et al., 2004), and in the dissociation between functional systems.
In the memory domain, for instance, older adults show less dis-
tinctive activation patterns for explicit versus implicit learning
(Dennis and Cabeza, 2011; Rieckmann et al., 2010), autobio-
graphical versus semantic memory retrieval (St-Laurent et al.,
2011), boundary- versus landmark-based spatial learning
(Schuck et al., 2015), and item versus associative memory encod-
ing (Saverino et al., 2016). As an example of dedifferentiation in
memory, Dennis and Cabeza (2011) compared younger and
older adults’ responses to implicit learning (serial response time
task) and explicit learning (semantic categorization task) in the
striatum and MTL. They found that younger adults exhibited
preferential recruitment of the striatum for the implicit task and
preferential recruitment of the MTL for the explicit task, whereas
older adults exhibited no task-by-region effect.

Our findings are consistent with respect to age-related dedif-
ferentiation in the HC; however, we did not observe dedifferen-
tiation in the ventral striatum. One likely explanation for this
discrepancy is that, within brain regions, dedifferentiation effects
are task dependent. Direct comparisons of striatum-dependent
tasks (e.g., stimulus– outcome vs motor sequence learning) could
clarify which tasks are most sensitive to early signs of dedifferen-
tiation in aging.

Postlearning discrimination deficits in high-functioning
older adults
Despite the fact that older adults in the current study exhibited
similar learning performance to younger adults, they nonetheless
showed impaired cue discrimination performance across three
different measures of contingency awareness: preference, out-
come probability, and WTP. Reports of age-related declines in
learning generalization are common; however, older adults in
such studies typically exhibit learning deficits as well (Weiler et
al., 2008; Simon and Gluck, 2013; Lighthall et al., 2013). Data
from the present study indicate that, even among high-
functioning older adults with intact learning, age-related decline
may be detected in the generalization of learning to new but
closely associated contexts after only a short period of time. Such
findings hold implications for research on “brain training” in
aging, for which generalization and transfer effects have re-
mained elusive (Green and Bavelier, 2008; Simons et al., 2016).
Therefore, an important avenue for future research will be to
identify more effective methods of enhancing and measuring
learning generalization in aging populations.

Conclusions
Our results show that, whereas older adults with high cognitive
function exhibit striatal learning signals that are indistinguish-
able from younger cohorts, the integrity of their HC learning
signals shows notable age-related decline. Across behavioral and
neuroimaging measures, we find that aging is associated with
reduced engagement of the HC during feedback-based learning
and evidence shows that changes to HC learning signals may be
an early predictor of decline in learning-dependent economic
decision making. Future research should identify the origins of
decline in HC function among high-functioning older adults,
which may include loss of structural integrity in the HC and
undetected Alzheimer’s disease pathology.
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St-Laurent M, Abdi H, Burianová H, Grady CL (2011) Influence of aging on
the neural correlates of autobiographical, episodic, and semantic memory
retrieval. J Cogn Neurosci 23:4150 – 4163. CrossRef Medline

Vehtari A, Gelman A, Gabry J (2017) Practical bayesian model evaluation
using leave-one-out cross-validation and WAIC. Statistics and Comput-
ing 27:1413–1432. CrossRef

Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I,
Salat DH, Greve DN, Fischl B, Dale AM, Fjell AM (2011) Consistent
neuroanatomical age-related volume differences across multiple samples.
Neurobiol Aging 32:916 –932. CrossRef Medline

Weiler JA, Bellebaum C, Daum I (2008) Aging affects acquisition and rever-
sal of reward-based associative learning. Learn Mem 15:190 –197.
CrossRef Medline

Worsley KJ (2001) Statistical analysis of activation images. In: Functional
MRI: an introduction to methods (Jezzard P, Matthews PM, Smith SM,
eds), pp 251–270. Oxford: OUP.

8462 • J. Neurosci., September 26, 2018 • 38(39):8453– 8462 Lighthall et al. • Striatal- and Hippocampal-Learning in Aging

http://dx.doi.org/10.1523/JNEUROSCI.1600-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18667616
http://dx.doi.org/10.1177/1948550617697177
http://www.ncbi.nlm.nih.gov/pubmed/28736600
http://dx.doi.org/10.1037/a0029823
http://www.ncbi.nlm.nih.gov/pubmed/22946523
http://dx.doi.org/10.1016/j.neuropsychologia.2004.07.010
http://www.ncbi.nlm.nih.gov/pubmed/15716145
http://dx.doi.org/10.1016/j.neuroimage.2011.08.076
http://www.ncbi.nlm.nih.gov/pubmed/21924359
http://dx.doi.org/10.1162/089892903321208123
http://www.ncbi.nlm.nih.gov/pubmed/12676056
http://www.ncbi.nlm.nih.gov/pubmed/12603244
http://dx.doi.org/10.1073/pnas.0405148101
http://www.ncbi.nlm.nih.gov/pubmed/15322270
http://dx.doi.org/10.1038/nature05051
http://www.ncbi.nlm.nih.gov/pubmed/16929307
http://dx.doi.org/10.1002/hipo.20009
http://www.ncbi.nlm.nih.gov/pubmed/15098720
http://dx.doi.org/10.1093/cercor/bhi044
http://www.ncbi.nlm.nih.gov/pubmed/15703252
http://dx.doi.org/10.1016/j.neuroimage.2010.03.020
http://www.ncbi.nlm.nih.gov/pubmed/20298790
http://dx.doi.org/10.1016/j.neuroimage.2010.01.015
http://www.ncbi.nlm.nih.gov/pubmed/20079855
http://dx.doi.org/10.3758/s13415-014-0297-4
http://www.ncbi.nlm.nih.gov/pubmed/24853269
http://dx.doi.org/10.1162/jocn_a_00970
http://www.ncbi.nlm.nih.gov/pubmed/27082043
http://dx.doi.org/10.1016/j.neuroimage.2015.05.031
http://www.ncbi.nlm.nih.gov/pubmed/26003855
http://dx.doi.org/10.1152/jn.1998.80.1.1
http://www.ncbi.nlm.nih.gov/pubmed/9658025
http://dx.doi.org/10.1016/j.conb.2012.11.012
http://www.ncbi.nlm.nih.gov/pubmed/23267662
http://dx.doi.org/10.1037/a0033844
http://www.ncbi.nlm.nih.gov/pubmed/24364400
http://dx.doi.org/10.1177/1529100616661983
http://www.ncbi.nlm.nih.gov/pubmed/27697851
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
http://dx.doi.org/10.1162/jocn_a_00079
http://www.ncbi.nlm.nih.gov/pubmed/21671743
http://dx.doi.org/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.013
http://www.ncbi.nlm.nih.gov/pubmed/19570593
http://dx.doi.org/10.1101/lm.890408
http://www.ncbi.nlm.nih.gov/pubmed/18353994

	Feedback-Based Learning in Aging: Contributions and Trajectories of Change in Striatal and Hippocampal Systems
	Introduction
	Materials and Methods
	Results
	Discussion
	References


