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Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and
supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature
birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron
generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral gan-
glionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on
postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found
that both total and cycling Nkx2.1 *, DIx2 *, and Sox2 * cells were more abundant in the MGEs of preterm rabbits at D3 compared with
term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1 * progenitors were also more numerous in the LGEs of
preterm pups at D3 compared with term rabbits at D0. DIx2 * cells in CGEs were comparable between preterm and term pups. Simulation
of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment
reduced the density of total and proliferating Nkx2.1 " and DIx2 * cells in the MGEs and enhanced Ascll transcription factor. Estrogen
treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transi-
tion. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in
preterm newborns by cell-cycle inhibition and elevation of Ascll. We speculate that estrogen replacement might partially restore neuro-
genesis in human premature infants.
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Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the develop-
ment of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence
(MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the
MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascll expression. As preterm birth causes
plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen
replacement might ameliorate disruption in production of interneurons in human premature infants. j
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weight (<1500 g) every year. These infants display significant dimi-
nution in cortical gray matter volume and continue to exhibit im-
paired cortical growth even in childhood and adolescence (de
Kieviet et al., 2012). They manifest with moderate to severe neu-
rodevelopmental disability at 1 year of age (Dyet et al., 20065

Introduction
Approximately 15 million infants worldwide are born prematurely
and approximately 1.9 million infants are born with very low birth
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Thompson et al., 2007) and a number of them suffer neurobe-
havioral disorders during childhood and adolescence, including
inattention, hyperactivity, anxiety disorders, reduced social skills,
epilepsy, autism, and others (Botting et al., 1997; Anderson et al.,
2003, 2004; Delobel-Ayoub et al., 2009; de Kieviet et al., 2012).
The neurobehavioral disorders in childhood and adolescence are
attributed to perturbations in the structure and function of cor-
tical interneurons (Marin, 2012). As interneuron neurogenesis
continues to the end of human pregnancy, preterm birth might
influence production of cortical interneurons (Malik etal., 2013).
Therefore, we asked whether preterm birth would influence gen-
eration of interneurons and what the underlying mechanism(s)
were in determining this influence.

Interneurons, inhibitory neurons in the brain, play important
and powerful roles in modulating the electrical activity of the
excitatory pyramidal cells (Kelsom and Lu, 2013; Kepecs and
Fishell, 2014). The interneurons are usually GABAergic and iden-
tified by the protein markers they express. The following subtypes
of interneurons have been identified: parvalbumin (PV), soma-
tostatin, calretinin, vasointestinal peptide, and neuropeptide Y.
In rodents, somatostatin ~ and PV * interneurons originate from
the medial ganglionic eminence (MGE), whereas calretinin * and
vasointestinal peptide * interneurons derive from the caudal gan-
glionic eminence (CGE; Wonders and Anderson, 2006). Also in
rodents, ~70% of cortical interneurons are derived from the
MGE, 30% from the CGE, and 5% from the preoptic area (Won-
dersand Anderson, 2006). In humans as well, most of the cortical
interneurons are generated in the ventral ganglionic eminence
and the production of cortical interneurons persists in the MGE
and CGE during the third trimester of pregnancy (Arshad et al.,
2016). Within MGEs, Nkx2.1 is the master regulator of interneu-
ron production and activates a cascade of genes, including Lhx6,
Sox6, and Satb2 (Wonders and Anderson, 2006). Other key tran-
scription factors for interneuron neurogenesis are DIx1/2, Ascll
(Mash1), and GSX1/2. These genes are controlled by coordinated
actions of sonic hedgehog (Shh) signaling and, thus, Shh critically
regulates specification and differentiation of interneurons (Kel-
som and Lu, 2013).

Preterm birth interrupts intrauterine life, terminates the hy-
poxic in utero environment, and disrupts the supply of placental
and maternal hormones, as well as growth factors. Estrogen and
progesterone are the major maternal hormones, and a drop in
estrogen level in mice with ovariectomy reduces the density of
PV * interneurons, which are restored after treatment with 173
estradiol (E2), a form of estrogen (Wu et al., 2014). In addition,
estrogen offers neuroprotection by antiapoptotic and anti-infla-
mmatory activity, and modulates neuronal plasticity by regulating
dendritic spine and synapse formation (Amantea et al., 2005; Brann
et al., 2007; Brinton, 2009). Thus, estrogen might modulate the de-
velopment of interneurons. Despite this evidence, the effect of pre-
maturity and estrogen treatment on interneuron production has not
been studied. Therefore, we hypothesized that premature
birth would disrupt interneuron neurogenesis and that induc-
tion of hypoxia or estrogen treatment might restore produc-
tion of interneurons.

To test these hypotheses, we used a preterm rabbit model in
which we evaluated neurogenesis by quantifying total and cycling
interneuron progenitors in the MGEs of preterm-born and term-
born rabbits at equivalent postconceptional ages. We found that
Nkx2.1 ", DIx2 ', and Sox2 * progenitors were more abundant in
the MGEs of preterm rabbits compared with term controls, and
that estrogen treatment restored the population of progenitors,
elevated Ascll transcription factor, and reduced c-Myc and phos-
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phoretinoblastoma (p-Rb; serine 807/811) protein. The study
proposes that estrogen replacement might ameliorate disruption
in interneuron neurogenesis in premature newborns.

Materials and Methods

Animals. This study was performed after approval from the Institutional
Animal Care and Use Committee of New York Medical College, Valhalla,
New York. We used a preterm rabbit model that has been validated in our
prior studies (Malik et al., 2013). The merits of using a rabbit model is
that the rabbits are similar to humans in several ways: (1) the maximum
growth of the brain occurs perinatally, (2) the brain is gyrencephalic,
(3) the ganglionic eminences are relatively large, (4) the blood supply for
the brain is from vertebral and internal carotid arteries, and (5) the
maturation of lungs is complete before term, making them capable of
survival with premature birth (Georgiadis et al., 2008; Mufioz-Morenoet al.,
2013). More importantly, interneuron neurogenesis continues in pups
born on embryonic day (E) 29 until postnatal day (D) 14, providing us
with a unique opportunity to test the effect of prematurity on neurogenesis
and study the underlying mechanisms. Timed-pregnant New Zealand rab-
bits were purchased from Charles River Laboratories. We performed
Caesarean section to deliver the premature pups at E28.6 (rounded to
E29 for simplicity) of gestational age (full term, 32 d). Newborn pups
were reared in an infant incubator at a temperature of 35°C. We used
rabbit milk replacer (Zoologic, PetAg) to gavage-feed the pups in a vol-
ume of ~2 ml every 12 h (100 ml/kg/d) for the first 2 d, and feeds were
advanced to 125, 150, and 200 ml/kg at D3, D5, and D7 respectively.

Estrogen and DMOG treatment. The rabbit kits (E29) were treated
sequentially with either intramuscular E2 or vehicle for 3 d and then
killed. The treatment was initiated at birth and E2 was administered in a
dose of 200 or 100 pg/kg, based on previous studies (Picazo et al., 2003;
Twining et al., 2013; Corvino et al., 2015). DMSO was used as vehicle. To
simulate hypoxia by stabilizing HIF-1, we treated E29 rabbit pups with
dimethyloxalylglycine (DMOG; Cayman Chemical) starting immedi-
ately at birth. DMOG was administered in a dose of 100 mg/kg daily
intramuscularly for 3 d, as was used previously to induce hypoxia in
rabbit pups (Malik et al., 2013). The pups were killed at 72 h by using
ketamine (35 mg/kg) and xylazine (5 mg/kg) anesthesia followed by
decapitation. The comparison group received vehicle (15 ul of DMSO).
Sex determination in the pups was done by performing quantitative
real-time PCR for the SRY gene on the mRNA isolated from brain tissues.

Immunohistochemistry. Immunohistochemical staining was performed as
described previously (Ballabh et al., 2007). The primary antibodies used in
experiments included the following: rabbit polyclonal Nkx2.1 (catalog
#133638, Abcam), guinea pig polyclonal DIx2 (provided by Dr. Kazuaki
Yoshikawa, Osaka University, Japan), mouse monoclonal Ki67 (catalog
#M7240, Dako), goat polyclonal Sox-2 (catalog #SC-6895, Santa Cruz
Biotechnology). Secondary antibodies used were as follows: Alexa Fluor
488-donkey anti-mouse IgG (catalog #715-545-150), Alexa Fluor 488-
AffiniPure donkey anti-rabbit IgG (catalog #711-165-152), Alexa Fluor
594-AffiniPure donkey anti-goat IgG (catalog #705-585-147) from Jack-
son ImmunoResearch Laboratories. Briefly, we hydrated the fixed sec-
tions in 0.1 M PBS, blocked the sections with normal donkey serum in
PBS with 0.01% Triton-X, and then incubated with the primary antibod-
ies diluted in PBS at 4°C overnight. After three washes in PBS, the sec-
tions were incubated with secondary antibody diluted in 1% normal goat
serum in PBS at room temperature for 60 min. Finally, after washing in
PBS, the processed sections were mounted with SlowFade Light Antifade
reagent (Invitrogen) and were visualized under a Confocal microscope
(Nikon Instruments). Stereology was performed using a fluorescent micro-
scope (Axioskop 2 plus, Carl Zeiss) with a motorized specimen stage for
automated sampling (Applied Scientific Instrumentation), CCD color video
camera (Microfire, Optronics) and stereology software (Stereologer, Stere-
ology Resource Center).

Stereological assessment of interneurons in the MGE and LGE. We quan-
tified a number of stereological parameters using a computerized soft-
ware system (Stereologer, Stereology Resource Center), as described
previously (Dummula et al., 2011). Briefly, 25-um-thick coronal sec-
tions were cut using a cryostat with a section sampling interval of 90 um
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Thinning and flattening of MGEs and progressive diminution in the density of progenitors. 4, Representative immunofluorescence of cryosections from the ventral telencephalon of E29

rabbit pups at DO and D3 (as indicated) labeled with Nkx2.1 and Ki67 antibodies. The boxed area in cresyl violet image represents the brain region where the immunostained section was imaged
under a confocal microscope. Bottom, High-magnification view of the boxed area in the top panel. Note abundance of Nkx2.1 ™ progenitors in the lateral wall and their relative paucity in the medial
wall. There were fewer total Nkx2.1 ¥ cells and proliferating Nkx2.1 ™ cells in the MGE at D3 compared with D0. Scale bar, as indicated. B, Data are mean + SEM (n = 5 each group). Stereological
quantification showed that the number of both total Nkx2.1 * cells and cycling Nkx2.1 * cells in the MGE declined as a function of postnatal age. C, Representative Western blot analyses for Nkx2.1
protein in brain homogenates from healthy preterm pups (E29) at DO, D3, and D7. Data are mean = SEM (n = 5 each group). Nkx2.1 protein level declined with advancing in postnatal age.

to provide =5 sections at the level of midseptal nucleus. The sections
were triple-labeled with Nkx2.1 or DIx2 antibody with Ki67 and DAPI
(nuclear stain) and were quantified as follows. The reference spaces
(MGE and LGE) were outlined on the section under a 5X objective. The
volume of the outlined area (reference space) was quantified using
a point counting probe (frame, 25 X 25 um; guard zone, 2 um; inter-
frame interval, 300 um). Total and cycling (double-labeled with Ki67)
Nkx2.1* and DIx2 " cells were counted using the optical dissector
method (frame, 25 X 25 wm; guard zone, 2 um; interframe interval, 280
pm). A coefficient of error of <0.10 was considered acceptable.
Western blot analyses. We homogenized the frozen brain slice in a
sample buffer (3% SDS, 10% glycerol, and 62.5 mm Tris-HCI, pH 7.4)
using a mechanical homogenizer and then sonicated the lysate before
centrifugation. Protein concentrations were measured using a BCA pro-
tein assay kit (Pierce Kit #23227, Thermo Fisher Scientific) and dilutions
of BSA were used to create a standard curve. After boiling the samples in
Laemmli buffer (catalog #161-0737, Bio-Rad), protein samples were sep-
arated by SDS-PAGE. Equal amounts of protein (20 ug) were loaded
onto 4—15 or 4-20% gradient precast gels (Bio-Rad), based on the mo-
lecular weight of the target protein. Separated proteins were transferred
onto polyvinylidene difluoride membranes by electrotransfer. Membranes
were then incubated overnight in primary antibodies. We detected target
proteins using a chemiluminescence ECL system (GE Healthcare) by using

secondary antibodies conjugated with horseradish peroxidase (Jackson Im-
munoResearch Laboratories). We stripped the membrane using strip-
ping buffer (2.5% SDS, 0.7% 2-mercaptoethanol, 62.5 mm Tris-HCL, pH
6.8) and then incubated with B-actin antibody (catalog #A5316, Sigma-
Aldrich) followed by secondary antibody and detection with chemilu-
minescence ECL system. As described previously (Ballabh et al., 2007;
Vinukonda et al., 2016), the blots from each experiment were densito-
metrically analyzed using ImageJ, and optical density values for each
protein of interest were normalized to B-actin. Antibodies used for West-
ern blot analyses were rabbit polyclonal Sox6 (catalog #HPA001923,
Sigma-Aldrich), mouse monoclonal Gad65 (Catalog# 26113, Abcam,
Cambridge, MA, USA), mouse monoclonal Gad 67 (catalog #Mab5406,
Millipore), mouse monoclonal Mash 1 (catalog #556604, BD Biosci-
ences), mouse monoclonal DIx1 (catalog #75-078, NeuroMab), mouse
monoclonal Glil (catalog #49314, Abcam), rabbit p-Rb (serine 807/811;
catalog #8516, Cell Signaling Technology), rabbit p-Rb (serine 780; cat-
alog #9307, Cell Signaling Technology); rabbit cyclin-dependent kinase 6
(CDKG6) polyclonal (SC7180, Santa Cruz Biotechnology), mouse mono-
clonal cyclin D2 (CCND2; Abcam), and mouse monoclonal -actin
(Sigma-Aldrich).

Quantitative real-time PCR. Gene expression was quantified by real-
time PCR, as described previously (Ballabh et al., 2007; Vinukonda et al.,
2016). Briefly, total RNA was isolated using a RNAeasy Mini kit (catalog
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Total Nkx2.1 7 cells and proliferating Nkx2.1 ™ cells were more abundant in preterm compared with term rabbits. 4, Cryosections from term and preterm rabbits were labeled with

Nkx2.1-specific and Ki67-specific antibodies. Bottom, High-magpnification views of the boxed area in the top panel. The boxed area in the cresyl violet image (left lower corner) represents the brain
region where the immunolabeled sections were imaged under a confocal microscope. Note greater abundance of total Nkx2.1 * cells and proliferating Nkx2.1 * cells in the MGEs of preterm rabbits
(D3) compared with term controls (D0). Scale bar, as indicated. B, Data are mean * SEM (n = 5 for each group). Stereological quantification showed that total Nk2.1 cells and proliferating
Nk2.1 cells were more abundant in the MGEs of preterm (D3) compared with term (DO) rabbits. *p << 0.05 and **p << 0.01, preterm (D3) versus term (DO0); ##P << 0.01, ###p << 0.001 for D3

preterm versus D7 preterm; and tp << 0.001 for term DO versus term D7.

#74104, Qiagen) from a coronal brain slice taken at the level of the
midseptal nucleus. cDNA was synthesized using Superscript II RT en-
zyme (catalog #05081955001, Roche) followed by real-time quantita-
tion using an ABI Prism 7900HT detection system. TagMan probes
were bought from Life Technologies. Their assay IDs were as fol-
lows: GAPDH (0c03823402_g1), Ascll (AJD1UIG), Lhx6 (AIT975S),
CCND2 (AIDIVWY), Gadl (Hs01065893-m1), Gad2 (Hs00609534_m1),
DIX5 (0c03395679_m1), and rabbit SRY (NM_001171148.1).

Statistics and analysis. Data are presented as means = SEM. To compare
the total number of interneuron progenitors and the number of proliferating
interneuron progenitors (Nkx2.1 and DIx2) in ganglionic eminences be-
tween two groups (term and preterm) at day 3 (D3 preterm vs DO term) and
day 7 (D7 preterm vs D4 term), we used two-way ANOVA. Maturity (term
vs preterm) and postnatal age (D3 or D7 vs term equivalent) were two inde-
pendent variables. Similarly, using two-way ANOVA, we compared the
number of progenitors, quantitative real-time PCR, and Western blot anal-
yses data between E2-treated and vehicle-treated pups at D3 and D7. All post
hoc comparisons between means were done by Tukey’s multiple-compa-
rison test at 0.05 significance.

Results

Flattening and thinning of MGEs in E29 rabbits and progressive
reduction in progenitors with age

In rodents, ganglionic eminences become thin and flat along the
lateral ventricle wall at E15-E16 (Delgado and Lim, 2015). Like-

wise in rabbits, E29 pups did not display ganglionic eminences
and Nkx2.1* progenitors were mostly present along the lateral
wall of the ventral domain with relatively few beside the medial
wall. Accordingly, the proliferating Nkx2.1 " cells were abundant
on the lateral wall of ventral subventricular zone (SVZ), but al-
most absent on the medial wall. Based on this morphology, the
ventral SVZ along the lateral ventricular wall was considered as a
remnant of the MGE, and the brain region above the MGE was
considered as LGE (Fig. 1).

We quantified Nkx2.1 " cells in the MGE of E29 rabbits at DO,
D3, and D7 using unbiased stereology (Fig. 1). We found lower
numbers of both total and cycling Nkx2.1* cells as a function of
postnatal age (P < 0.01, both). Western blot analyses confirmed
that the expression of Nkx2.1 decreased with advancing postnatal
age (p < 0.01). Together, these results show that Nkx2.1 " in-
terneuronal precursors are abundantly present in the MGEs of
E29 pups and diminish in number as the postnatal age increases.

Premature birth expands the population of interneuronal
precursors in the MGE and LGE

We used our preterm rabbit model to assess the effect of prema-
turity on interneuron neurogenesis. To this end, we performed
stereological quantification of the total number of progenitors
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The number of total DIx2 ™ cells and the number of proliferating DIx2 ™ cells were both higher in preterm compared with term rabbits. A, Representative immunofluorescence of

cryosections from the MGEs of term and preterm rabbits labeled with DIx2-specific and Ki67-specific antibodies. The boxed area in the cresyl violet image (top left corner) represents the brain region
where the immunolabeled sections were imaged under a confocal microscope. Bottom, High-power view of the boxed area in the top panel. There were more total DIx2 * cells and proliferating
DIx2 ™ cells in the MGEs of preterm rabbits (D3) compared with term controls (D). Scale bar, as indicated. B, Data are mean = SEM (n = 5 each group). The number of total DIx2 ™ cells and the
number of proliferating DIx2 * cells were both higher in the MGEs of preterm (D3) compared with term (D) rabbits. *p < 0.05 and **p << 0.01 for preterm versus term pups; ###p << 0.001 for D3

preterm versus D7 preterm pups; and 1t p << 0.05 for term DO versus term D4 pups.

and the number of proliferating progenitors in preterm (E29
pups at D3 and D7) versus term (E32 pups at DO and D4) rabbit
pups at an equivalent postconceptional age. The analyses of brain
sections labeled with Nkx2.1-specific and Ki67-specific antibod-
ies showed that the absolute number of both total and cycling
Nkx2.1 ¥ cells were higher in preterm pups at D3 compared with
respective term controls at DO (p = 0.016, 0.01, respectively; Fig.
2). The comparison between preterm pups at D7 and term pups
at D4 showed a similar trend. However, the comparison was not
significant. We next analyzed the density of progenitors as a function
of postnatal age. We observed fewer total and cycling Nkx2.1 ¥ cells
at D7 compared with D3 in preterm rabbits (p = 0.007, 0.001).
Likewise, there were fewer cycling Nkx2.1 " progenitors, but
not total Nkx2.1 " cells, in term pups at D4 compared with D0
(p < 0.037).

We next evaluated total number of DIx2 ™ cells and the num-
ber of cycling DIx2™ cells between term and preterm pups.
Similar to Nkx2.1 ™ cells, both total DIx2 * cells and proliferating
DIx2 " cells were more abundant in the MGEs of preterm pups at
D3 compared with DO term pups (p = 0.01, 0.04, respectively;
Fig. 3). However, the number of DIx2 * progenitors was compa-
rable between D7 preterm and D4 term pups. Evaluation of

DIx2 " cells as a function of postnatal age revealed that both total
DIx2 * cellsand cycling DIx2 * cells were reduced at D7 relative to
D3 in preterm pups in the MGE (both p’s < 0.001). Similarly, the
total DIx2 ™ cells and cycling DIx2 * cells were diminished at D4
compared with DO term pups (both p’s < 0.001).

We next compared the population of Nkx2.1 " and DIx2 ™"
precursors in LGEs of term and preterm rabbits. We found more
total Nkx2.1 ™ cells, but not the cycling Nkx2.1 ™ cells, in the preterm
pups at D3 compared with term controls at DO (p = 0.003, data not
shown). The number of Nkx2.1 ™ cells was comparable between D7
preterm and D4 term pups. We next compared Nkx2.1 % cells as
a function of postnatal age and found that there were fewer at D7
relative to D3 in preterm pups (p < 0.05, data not shown). Such
reduction in the Nkx2.1 population was not noted in term pups.
For DIx2 * cells, there was no difference in their number between
term and preterm pups at any of the two epochs.

Together, results show that premature birth results in an ex-
panded pool of total and proliferating progenitors in the MGE
and LGE. This might be because of greater production or delayed
maturation of precursors, which might be attributed to early and
untimely termination of the intrauterine environment.
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fluorescence of cryosections from the MGEs of term and preterm rabbits labeled with Sox2 and Ki67 antibodies. Bottom, High-
magnification views of the boxed area in the top panel. Note higher density of Sox2 ™ cells in the MGEs of preterm pups relative to
term controls. Scale bar, asindicated. B, Data are mean == SEM (n = 5 each group). Stereological quantification showed that both
total Sox2 ™ cells and cycling Sox2 ™ cells were more abundant in the MGEs of preterm (D3) compared with term (DO) rabbits.

*p < 0.01, preterm (D3) versus term (DO0).

Sox2 ™" cells are more abundant in preterm rabbits relative to term
Sox2 ™ cells produce neuronal progenitors and, indeed, condi-
tional deletion of Sox2 impairs expression of Nkx2.1 in the MGE
(Ferri et al., 2013). Since both cycling and total interneuronal
progenitors (Nkx2.1 © and DIx2 * cells) were elevated in the MGE
of preterm pups at D3 relative to term controls, we postulated
that Sox2 ™ cells might be more abundant in the MGEs of pre-
term rabbits relative to term controls. To this end, we labeled
coronal brain sections from preterm rabbit brain with Sox2-
specific and Ki67-specific antibodies and quantified them in the
MGE:s using unbiased stereology.

We demonstrated that the number of the total Sox2 ™ cells
and the number of cycling Sox2 ™ cells were both higher in
preterm rabbits at D3 compared with term controls at DO (p =
0.02, 0.024 respectively; Fig. 4). This suggests that premature

Term DO
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birth increases the proliferation and to-
tal pool of Sox2 * neuronal progenitors,
in addition to Nkx2.1" and DIx2 ™ in-
terneuronal progenitors.

Premature birth does not affect
interneuronal precursors in the CGE
Approximately 30% of cortical interneu-
rons originate from the CGE (Wonders
and Anderson, 2006). Thus, we compared
the population of DIx2 * precursors in the
CGE between preterm pups and term con-
trols. To identify the CGE, we double-
labeled coronal sections from preterm and
term pups with DIx2-specific, Coup-TFII
(COUP transcription factor 2)-specific, and
Ki67-specific antibodies. Coup-TFII is pri-
marily expressed in CGEs (Kanatani et al.,
2008). We found that proliferating DIx2 ©
and CoupTFII * cells were most prominent
in the CGE at the level of posterolateral nu-
cleus of thalamus. Hence, the comparisons
for precursors in the CGE were done at this
level between the groups.

We found D3 preterm pups, compared
with DO term pups, had 25% more total
DIx2* cells. Similarly, D7 preterm pups,
compared with D4 term controls, had 20%
more DIx2 " cells (Fig. 5). However, these
comparisons were not significant. This sug-
gests that preterm birth does not signifi-
cantly affect the population of total and
cycling interneuronal precursors in the CGE.

Cell-cycle drivers and transcription factors
regulating neurogenesis in term versus
preterm rabbits

Neurogenesis is linked to the proliferation
and differentiation of neuronal progeni-
tors and thus to the progenitors re-
entering and exiting the cell cycle
(Ohnuma, 2003). Therefore, using West-
ern blot analyses. we quantified Ki67,
p-Rb protein, CCND2, and CDKé6. Cyclin
D1 could not be assayed because of a lack of
commercial antibody reactive to rabbit cy-
clin D1. Ki67, CCND2, CDKG6, p-RbD (serine
807/811), and p-Rb protein (serine 780) lev-
els were comparable between preterm pups
and term controls at both D3 and D7 (Fig. 6A).

Production and maintenance of Nkx2.1 * progenitors are me-
diated by Shh signaling and the specification of interneuronal
subtypes are regulated by transcription factors, including DIx1/2,
Ascll, Lhx6/8, Gsh2, and Sox6 (Kelsom and Lu, 2013). Therefore,
we quantified DIx1, Ascll, Sox6, and Glil in preterm rabbits (D3
and D7) compared with term controls. DIx1 and DIx2 have over-
lapping expressions in the ventricular zone and SVZ of the ventral
telencephalon and have just subtle differences (Le et al., 2007).
DIx5 is coexpressed with DIx1 and DIx2 in the ventral SVZ and in
the adjacent SVZ, which contains differentiating interneurons
(Liu et al., 1997). We performed quantitative real-time PCR on
tissues dissected from MGEs and CGEs and found that mRNA
expression of Shh, Sox6, LHX6, DIx5, and Ascll were comparable
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DIx2 ™ cells in the CGEs were comparable between term and preterm pups. A, Representative immunofluorescence of cryosections from the CGEs of term and preterm rabbits labeled

with DIx2-specific and Ki67-specific antibodies. Bottom, High-magnification views of the boxed area in the top panel. Note similar abundance of DIx2 * cells between two sets of term and preterm
pups (as indicated). Scale bar, as shown. B, Data are mean == SEM (n = 5 each group). Both total and proliferating DIx2 * cells were comparable between term and preterm rabbits.

between preterm pups (D3) and term controls (DO0) in both MGEs
and CGEs (Fig. 6B). Western blot analyses on homogenates from
coronal slices (midseptal nucleus level) showed that Ascl1 transcrip-
tion factor was elevated in term pups at D4 compared with preterm
pups at D7 (p = 0.046), but not in term pups at DO versus preterm
pups at D3. However, DIx1, Sox6, and Glil proteins in preterm pups
at D3 and D7 were comparable to the respective term controls (DO
and D4; Fig. 6C). Together, our results show that prematurity is
associated with increased proliferation of interneuron progenitors
and reduction in Ascl1 transcription factor; however, cell-cycle driv-
ersand other transcription factors regulating interneuron neurogen-
esis are not affected.

Estrogen treatment, but not DMOG treatment, reduces the
population of total and cycling interneuronal precursors in the
MGE

Since preterm birth terminates the in utero environment, causing
the premature withdrawal of estrogen exposure to the preterm
newborn, we hypothesized that estrogen treatment might restore
the number of total and proliferating interneuronal precursors.
To this end, we treated preterm rabbits with either estrogen (200
ug/kg) or vehicle for 3 d. The animals were killed at the end of D3,
and total Nkx2.1, DIx2 *, and Sox2 ™ cells, as well as cycling Nkx2.1,
DIx2 ", and Sox2 ™ cells, were stereologically quantified and com-
pared between the two groups. The pups were balanced with

respect to sex in the two groups, which was determined by per-
forming quantitative real-time PCR for the SRY gene. We found
that the number of total Nkx2.1 " cells and the number of prolifer-
ating Nkx2.1 " cells in MGEs were both significantly reduced in
estrogen-treated pups relative to vehicle-treated controls (p = 0.015
and 0.03; Fig. 7A,B). We next compared DIx2 * cells between the
two groups. Consistent with Nkx2.1* cells, the total number of
DIx2 * cells and the number of cycling DIx2 ¥ cells in the MGEs
were both significantly diminished in estrogen-treated pups
relative to controls (p = 0.005, 0.003; Fig. 7C,D). However,
the total number of Sox2 " cells and the number of cycling
Sox2 " cells in E2-treated rabbits were both similar to those in
vehicle-treated rabbits. Since the effect of estrogen is dose-
dependent (Strom et al., 2011), we next evaluated the effect of
low-dose estrogen on interneuronal progenitors. To this end,
we treated preterm rabbits with estrogen (100 pg/kg E2 for
3 d) and quantified total and cycling Nkx2.1 * and DIx2 ™ cells
in estrogen-treated and vehicle-treated pups. Similar to high-
dose estrogen treatment, low-dose estrogen treatment re-
duced both total Nkx2.1 " cells and cycling Nkx2.1 " cells in
the MGEs (p = 0.014, 0.001). Estrogen-treated pups, com-
pared with vehicle-treated controls, had fewer total DIx2*
cells (p < 0.01), but not fewer cycling DIx2 * cells (p = 0.06).
Together, these results show that estrogen treatment in both
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Figure 6.  Ascl1 transcription factor was reduced in preterm relative to term rabbits, but molecules driving the cell cycle were comparable between term and preterm pups. A, Representative
Western blot analyses for Ki67, p-Rb (serine 780), p-Rb (serine 807/811), CCND2, and CDK6 in brain homogenates from preterm (D3, D7) and term pups (DO, D4). Each lane represents lysate from a
whole coronal slice taken at the level of midseptal nucleus of one brain. The second to last lane has a molecular weight marker. Data are mean == SEM (n = 5 each group). For each lane, values
normalized to 3-actin levels. Ki67, CCND2, p-Rb (serine 807/811), p-Rb (serine 780), and CDK6 protein levels were comparable between preterm and term rabbits. B, Data are mean = SEM (n =
5 each group). mRNA expression of Shh, Lhx6, Sox6, DIx5, and Ascl1 were similar between preterm (D3) and term (D0) pups in both MGEs and CGEs. €, Western blot analysis for DIx1, Gli1, Ascl1, and
Sox6 was performed in brain homogenates from preterm (D3, D7) and term pups (D0, D4). Data are mean == SEM (n = 5 each group). Values normalized to 3-actin levels. Ascl1 protein levels were
elevated in term pups at D4 compared with preterm pups at D7. DIx1, Gli1, and Sox6 levels were comparable between term and preterm pups. *p << 0.05 for preterm (D7) versus term (D4) pups.

high and low doses reduces the population of interneuronal
progenitors.

Since estrogen can exert both proapoptotic or antiapoptotic
effects on neural cells in a context-dependent manner (Nilsen et
al., 2000; Zhang et al., 2017), we asked whether estrogen treat-
ment would affect programmed cell death of interneuron pro-
genitors. To this end, we labeled the coronal brain sections with
DIx2 antibody and then performed TUNEL. Stereological quan-
tification showed that total number of TUNEL * cells and DIx2 *
cells colabeled with TUNEL were comparable between estrogen-
treated and vehicle-treated pups in the MGEs at D3 (Fig. 8A, B).

Oxygen is the key regulator of neurogenesis; and the intrauter-
ine partial pressure of oxygen (pO,) level of the fetus is low com-
pared with that of premature infants in extrauterine room air
after birth. Therefore, to simulate the hypoxic environment, we
treated E29 rabbits with intramuscular DMOG for 3 d and
compared the population of Nkx2.1" and DIx2 " cells between
DMOG-treated pups and vehicle-treated controls. We found that
DMOG treatment did not significantly reduce the density of
Nkx2.1 ¥ and DIx2 * cells in the MGEs of treated preterm rabbits

compared with vehicle-treated controls (Fig. 8C). To determine
whether DMOG treatment is inducing a hypoxic environment,
we quantified VEGF protein by Western blot analyses (Fig. 8D).
We found that DMOG treatment increased VEGF levels in rab-
bits treated with DMOG compared with vehicle-treated controls.
This was consistent with our previous work (Malik et al., 2013),
in which we found that DMOG treatment increases HIF1, VEGF,
and erythropoietin (EPO) protein and gene expression in E29
premature pups 3 d old. Together, these results show that DMOG
treatment did not significantly affect the population of interneuron
progenitors despite effectively inducing a hypoxic environment.

Together, estrogen treatment reduced the number of both
total and cycling interneuron progenitors, but induction of
chemical hypoxia with DMOG treatment did not affect the pop-
ulation of progenitors.

Estrogen treatment reduces Ki67 and p-Rb levels, and elevates
Ascll transcription factor

Neurogenesis is critically regulated by cell cycle; and phosphory-
lation of Rb protein by Cdk4/6-CyclinD (mid-G1-restriction)
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Figure 7.  Estrogen treatment reduced total and cycling interneuronal progenitors. A, Representative immunofluorescence of cryosections from the MGEs of preterm rabbits labeled with

Nkx2.1-specific and Ki67-specific antibodies. Bottom, High-magnification views of the boxed area in the top panel. Note reduced abundance of Nkx2.1 " and Nkx2.1 *Ki67 * cells in estrogen-
treated pups compared with vehicle-treated controls. Scale bar, as shown. B, Data are mean + SEM (n = 5 each group). The number of total and proliferating Nkx2.1 ™" cells declined in
estrogen-treated (both high-dose and low-dose groups) pups compared with vehicle-treated controls. €, Cryosections from the MGEs of preterm rabbits were labeled with DIx2-specific and
Ki67-specific antibodies. Bottom, High-magnification views of the boxed area in the top panel. Note diminished density of DIx2 * and DIx2 *Ki67 * cells in estrogen-treated pups compared with
vehicle-treated controls. Scale bar, as shown. D, Data are mean =+ SEM (n = 5 each group). Total DIx2 * cells were reduced in estrogen-treated (both high-dose and low-dose groups) pups
compared with vehicle-treated controls. DIx2 "Ki67 * cells were reduced in high-dose estrogen pups relative to controls, but not in the low-dose estrogen pups. *p << 0.05, **p << 0.01 for

estrogen-treated versus vehicle-treated pups.

induces S-phase entry (Ross, 2011). Moreover, a number of tran-
scription factors produced in ventral telencephalon affects prolifer-
ation and maturation of interneuronal progenitors (Wonders and
Anderson, 2006), which can be influenced by estrogen. Therefore,
we postulated that estrogen treatment might affect both the driv-
ers of the cell cycle and the transcription factors orchestrating
interneuron neurogenesis.

To this end, we assayed Ki67, Rb phosphorylation, CCND2,
c-Myc, and CDKG6 in E2 versus vehicle-treated preterm pups.
Western blot analyses revealed that Ki67 and c-Myc expression
were reduced in E2-treated rabbits relative to vehicle-treated con-
trols at D3 (p = 0.049, 0.04), but not at D7. p-Rb (serine 807/811)
and CCND2 levels were significantly reduced in E2-treated pre-
term pups compared with vehicle-treated controls at D7 (p =
0.005, 0.04, respectively), but not at D3 (Fig. 9). Cdké6 and p-Rb
(serine 780) level was comparable between E2-treated and
vehicle-treated pups at both epochs (CDK6 data not shown).
Quantitative real-time PCR showed that CDK6 and CCND2 were

comparable between term and preterm pups at both epochs (data
not shown). The discrepancy between CCND2 protein expres-
sion and mRNA expression can be attributed to other levels of
regulation between transcript and protein product.

We next compared transcription factors and enzymes regulat-
ing interneuron neurogenesis between E2-treated and vehicle-
treated pups at both D3 and D7. Real-time PCR using Taqgman
probes revealed that mRNA expression of Ascll and Gadl was
elevated in E2-treated pups relative to vehicle-treated controls at
D7 (p = 0.012, 0.008, respectively), but not at D3 (Fig. 10A).
Gad2 and Lhx6 mRNA accumulation was similar between E2-
treated and vehicle-treated pups. Consistent with these findings,
Western blot analyses demonstrated that Ascll protein levels was
higher in E2-treated pups relative to vehicle-treated controls at
D7 (p = 0.001), but not at D3 (Fig. 10B). Glil, Sox6, and DIx1
transcription factors were comparable between E2-treated and
vehicle-treated pups at both epochs (data on Sox6 not shown). To
understand how E2 may activate Ascll expression, we searched for
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transcription factor binding motifs in the upstream region of the
rabbit Ascll gene and found an estrogen response element (ERE)
located ~9.2 kb from the transcription start site. This ERE is highly
conserved and located ~8 kb upstream of the human Ascl gene
(Fig. 10C). Moreover, by mining previously published genome-
wide transcription factor binding data (Schmidt et al., 2010), we
found that this ERE was very likely functional as it was bound by
an estrogen receptor « in the human MCF (Michigan Cancer
Foundation) breast cancer cell line, in which estrogen was active.

Together, estrogen treatment enhanced Ascll and reduced p-Rb
(serine 780), CCND2, and c-Myc levels, which might be contribut-
ing to suppression in the density of interneuron progenitors.

Discussion

Inattention, hyperactivity, autism, emotional disturbance, poor
social skills, epilepsy, and lower intellectual abilities are found in
~50% of preterm-born children (Potijk et al., 2016). Recent
studies have shown that the cellular and molecular basis of these
developmental and neuropsychiatric disorders are specific de-

fects in the development and function of interneurons (Marin,
2012). Hence, we evaluated production of interneurons in pre-
term versus term rabbits at an equivalent postconceptional age
and determined whether estrogen replacement in premature rab-
bits reverses the prematurity-induced disruption in neurogen-
esis. We demonstrated that premature birth resulted in increased
proliferation and expansion of interneuron progenitors in the
MGE. In addition, estrogen treatment reduced proliferation and
diminished the population of progenitors. This effect of estrogen
can be attributed to an elevation in Ascll transcription factor and
inhibition of the G1/S cell-cycle phase, as reflected by reduced
Ki67, CCND2, and p-Rb (serine 780) levels in estrogen-treated
premature rabbits relative to controls. The study highlights the
disturbance of neurogenesis in preterm rabbits possibly related to
withdrawal of estrogen and restoration in production of in-
terneurons with estrogen replacement.

The novel and most important finding in the present study was
the demonstration of increased proliferation and population of in-
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Estrogen treatment reduced Ki67, CCND2, and p-Rb (serine 780) expression. 4, Representative Western blot analyses
for Ki67, p-Rb (serine 780), p-Rb (serine 807/811), CCND2, and CDK6 in brain homogenates from preterm pups treated with
estrogenand vehicle. Data are mean == SEM (n = 5 each group). Each lane represents lysate from a whole coronal slice taken at the
level of midseptal nucleus of one brain. Each lane values were normalized to B-actin levels. B, Data are mean == SEM (n = 5each
group). Ki67 and c-Myc expression were reduced at D3, and p-Rb (serine 807/811) and CCND2 levels were diminished at D7 in
estrogen-treated pups relative to controls. p-Rb (serine 780) expression was comparable between estrogen and vehicle-treated
pups. *p << 0.05 for estrogen-treated versus vehicle-treated pups.

Our other key finding in this study was that estrogen treat-
ment reduced total and proliferating interneuron progenitors
(Nkx2.1 " or DIx2 * cells) in the MGE. Consistent with our stud-
ies, several reports have shown that estrogen alters proliferation
and maturation of neuronal progenitors in both culture studies
and in vivo experiments. In culture experiments, estrogen treat-
ment in appropriate doses significantly increases proliferation of
neural stem cells (NSCs) and enhances their differentiation into
neurons (Li et al., 2017). In another study, E2 increased the pro-
liferation of NSCs and the ratio of neurons to glia cells (Brannvall
etal., 2002). In female rats, estrogen treatment affects hippocam-
pal dentate gyrus granule cell proliferation in a dose-dependent
and timing-dependent manner (Tanapat et al., 2005). Hence, it
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expression of AsclT and Gad1 was elevated in estrogen-treated pups relative to controls. However, Gad2 and Lhx6 mRNA accumulation were comparable between estrogen-treated and vehicle-
treated pups. B, Western blot analyses for Ascl1, DIx1, and GliT were performed in brain homogenates of estrogen-treated and vehicle-treated pups at D3 and D7. Data are mean == SEM (n = 5 each
group). Values normalized to 3-actin levels. Ascl1 was elevated in estrogen-treated preterm pups at D7 compared with vehicle controls. DIx1, Gli1, and Sox6 were comparable between estrogen-
treated and vehicle-treated preterm pups. *p << 0.05 for estrogen-treated versus vehicle-treated pups. €, A distal ERE i in the upstream region of Asc/7 gene. Note estrogen receptor ChIP-seq peak
inhuman cells (top), the sequence alignment of the ERE, and its comparison to known estrogen receptor binding motif (bottom). The conserved ERE is ~8 and ~9.2 kb upstream to the transcription

start sites of the human and rabbit Asc/7 genes, respectively.

seems that the effect of estrogen on proliferation versus differen-
tiation of NSCs during embryonic aging is dose and context
dependent. In models of brain injury, estrogen exhibits neuropro-
tection and promotes maturation of interneurons. For example, in a
rat model of trimethyltin-induced hippocampal degeneration, es-
trogen treatment increased the GAD67 and PV expression (Cor-
vino et al., 2015). Likewise, estrogen minimizes brain injury in
models of traumatic and ischemic brain injury (Tskitishvili et al.,
2014; Day et al., 2017). Together, these studies reinforce the no-
tion that estrogen treatment has a wide range of effects, including
proliferation, differentiation, and neuroprotection, and that the
impact is dose and context dependent.

Ascll is the principal regulator of the transcriptional program
in the ventral telencephalon, by which it controls temporal pro-
gression in the proliferation and maturation of interneuronal
progenitors (Vasconcelos and Castro, 2014). Genetic ablation of
Ascll reduces neurogenesis and causes neurodevelopmental de-
fects, whereas its overexpression promotes cell-cycle exit and in-
duces neuronal differentiation (Casarosa et al., 1999; Castro et al.,
2011; Kelsom and Lu, 2013). In the present study, we found that

estrogen treatment upregulated expression of Ascll and Gad67,
as well as phosphorylation of the retinoblastoma protein. Hence,
estrogen-induced elevation in Ascll might have increased Gadl
expression and inhibited G1-to-S phase transition of the cell cy-
cle, thereby promoting maturation of interneuronal progenitors
(Liuetal.,2017). Our genomic data analyses revealed that a distal
ERE in the Ascll gene is highly conserved between rabbits and
humans, and the ERE is bound by estrogen receptor in human
cells, suggesting that the ERE can be a potential enhancer by
which estrogen regulates AsclI transcription. To our knowledge,
this is the first study proposing a novel mechanism that estrogen-
induced differentiation of interneuron precursors is mediated by
an elevation in Ascll.

Neurogenesis involves both neuronal proliferation and differ-
entiation. Proliferation is orchestrated by cell-cycle entry and
differentiation by cell-cycle exit. In the present study, estrogen
treatment reduced expression of CCND2 and diminished phos-
phorylation of Rb. CCND2 knock-out experiments have revealed
that CCND2 promotes SVZ proliferation (Glickstein et al., 2007).
Rb phosphorylation inactivates Rb and releases EF2, which drives
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G1 phase into S phase (Giacinti and Giordano, 2006). Indeed,
reduced p-RB level inhibits the cell cycle (G1-to-S phase progres-
sion), resulting in reduced cell proliferation. Therefore, estrogen-
induced downregulation of CCND2 and reduced phosphorylation
of Rb protein would promote cell-cycle exit, reduce proliferation,
and enhance maturation of interneuronal progenitors. Although
estrogen treatment decreased Ki67 and c-Myc levels at day 3, a
significant reduction in p-RB was noted at D7 with a downward
trend at D3 in our studies. Together, estrogen-induced reduction
in proliferation of interneuron progenitors is related to its sub-
stantial impact on the cell cycle.

Preterm birth reduces the level of plasma estrogen 100-fold
(Trotter and Pohlandt, 2000). Indeed, the use of replacement
estrogen and progesterone treatment has undergone a clinical
trial in premature infants and has shown marginal benefit in
improving bone mineral accretion rate and reducing the inci-
dence of chronic lung disease (Trotter et al., 1999; Hunt et al.,
2004). Estrogen treatment in pregnant rabbits increases surfac-
tant production and improves lung maturation in fetuses (Khosla
et al., 1981). In addition, estrogen treatment abrogates white
matter injury in animal models of hypoxia-ischemia and hyper-
oxia, protects immature neurons and astroglia, and promotes
synapse formation (Hilton et al., 2006; Gerstner et al., 2007, 2009;
Nunez et al., 2007; McCarthy, 2008). These links underscore the
importance of estrogen treatment in promoting both neural and
physical growth and development of premature infants. Impor-
tantly, no significant adverse effect of estrogen replacement has
been reported in the clinical trial on preterm infants (Hunt et al.,
2004). We also did not notice any apparent adverse effect of
estrogen treatment in preterm rabbits. However, adverse effects
of estrogen treatment reported in adult humans include nausea,
vomiting, loss of appetite, increased thirst, muscle weakness, con-
fusion, tiredness, abdominal tenderness, and vaginal bleeding.
Estrogen might also suppress the hypothalamic—pituitary axis.

In conclusion, prematurity disrupts neurogenesis and estrogen
treatment reverses this disturbance in interneuron production. Es-
trogen treatment seems to mediate the effect of prematurity by
inhibiting the cell cycle and elevating expression of Ascll tran-
scription factor. Given that estrogen level drops prematurely in
preterm infants, estrogen restores interneuron production, and
given that estrogen confers neuroprotection in a number of ani-
mal models, we speculate that estrogen replacement might
restore neurogenesis and improve the neonatal outcome of ex-
tremely premature infants.
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