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Memory performance is highly variable among individuals. Most studies examining human memory, however, have largely focused on
the neural correlates of successful memory formation within individuals, rather than the differences among them. As such, what gives rise
to this variability is poorly understood. Here, we examined intracranial EEG (iEEG) recordings captured from 43 participants (23 male)
implanted with subdural electrodes for seizure monitoring as they performed a paired-associates verbal memory task. We identified
three separate but related signatures of neural activity that tracked differences in successful memory formation across individuals.
High-performing individuals consistently exhibited less broadband power, flatter power spectral density slopes, and greater complexity
in their iEEG signals. Furthermore, within individuals across three separate time scales ranging from seconds to days, successful recall
was positively associated with these same metrics. Our data therefore suggest that memory ability across individuals can be indexed by
increased neural signal complexity.
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Introduction
Some people consistently have better memory than others. This
variability in memory performance among individuals, and even
within individuals from moment to moment, is quite familiar in
our daily lives. In the study of memory, however, this variability
has largely been viewed as a problem that needs to be addressed
through proper experimental design. As a result, the neural
mechanisms that give rise to such variability have been relatively

unexplored. Understanding the source of such variability among
individuals can provide valuable insights into how the brain is
able to successfully form and retrieve memories.

Studies of memory have typically attempted to eliminate the
variability in neural activity and memory performance among
individuals by regressing it out. In many paradigms evaluating
memory-related changes in oscillatory activity, for example, data
within each individual are normalized so as to only examine rel-
ative changes in activity when events are either successfully re-
membered or forgotten, yielding what has been termed the
subsequent memory effect (SME). Positive and negative SMEs
have been reported in different frequency bands (Hanslmayr et
al., 2012; Hanslmayr and Staudigl, 2014), yet interpreting these
effects has been difficult given conflicting reports of positive low-
frequency SMEs in some studies (Sederberg et al., 2003; Osipova
et al., 2006; Hanslmayr et al., 2011) and negative low-frequency
SMEs in others (Sederberg et al., 2006; Guderian et al., 2009; Fell
et al., 2011). Hence, normalized SMEs studied in isolated fre-
quency bands may not provide a complete description of the
neural correlates of memory. Moreover, these approaches have
not addressed the larger question of how variability in neural
activity may be related to variability in memory performance.
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Significance Statement

We show that participants whose intracranial EEG exhibits less low-frequency power, flatter power spectrums, and greater sample
entropy overall are better able to memorize associations, and that the same metrics track fluctuations in memory performance across
time within individuals. These metrics together signify greater neural signal complexity, which may index the brain’s ability to flexibly
engage with information and generate separable memory representations. Critically, the current set of results provides a unique window
into the neural markers of individual differences in memory performance, which have hitherto been underexplored.
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An alternative and complementary approach that has emerged in
response to the conflicting SME data is to describe the changes in
low-frequency and high-frequency activity as arising from the same
phenomenon, one that produces an overall change in the structure
of the entire power spectral density (PSD; Voytek et al., 2015). Spec-
tral power decreases linearly with frequency on a log–log scale over a
broad range of frequencies (Miller et al., 2009; Milstein et al., 2009;
Dehghani et al., 2010; He et al., 2010; He, 2014). Importantly, neu-
ronal activation results in a flatter PSD slope (He, 2011), reflecting
decreases in lower-frequency power and increases in higher-
frequency power (Podvalny et al., 2015). These findings have led to
the suggestion that flattening of the PSD slope, and the associated
changes in spectral power, may therefore be a signature of increased
asynchronous neuronal activity (Ray and Maunsell, 2011; Burke et
al., 2015; Voytek and Knight, 2015).

Viewed from an information-coding perspective, the PSD
slope and oscillatory power of a neural signal, by indicating the
extent of synchrony in the underlying neural activity, may be a
proxy for neural-signal complexity and underlying information
content (Hanslmayr et al., 2012). Direct measures of complexity
of neural signals, such as sample entropy, have supported this
suggestion by demonstrating that more complex brain dynamics
underlie enhanced cognitive performance (McIntosh et al.,
2008), likely signifying a greater capacity to encode and process
information. Indeed, several groups have advanced the notion
that complexity in neural activity is functionally relevant and
affords greater flexibility for cognitive processing (Stein et al.,
2005; MacDonald et al., 2006; Faisal et al., 2008; Deco et al., 2009,
2013; Garrett et al., 2011, 2013; Grady and Garrett, 2014;
Sleimen-Malkoun et al., 2015). Therefore, these metrics may to-
gether reflect a general capacity for processing information that
may be particularly relevant for memory formation.

In this scenario, then, a possible explanation for the variability
in memory performance among individuals is that different
brains may exhibit differences in complexity, allowing a greater
number of unique cognitive states relevant for encoding memo-
ries. We investigate this possibility here by examining changes in
spectral power, PSD slope, and the sample entropy of neural
signals captured from intracranial electrodes as participants per-
form a paired-associates verbal episodic-memory task. We were
specifically interested in whether these metrics exhibit differences
among individuals and changes within individuals across time
that correlate with memory performance. We found that such
measures of complexity and general information processing are in-
deed behaviorally relevant when forming and retrieving memories.

Materials and Methods
Participants. Forty-three participants [23 male; age range, 13–59 years
old; 32.1 � 11.7 (mean � SD) years old] with drug-resistant epilepsy
underwent a surgical procedure in which platinum recording contacts
were implanted subdurally on the cortical surface as well as deep within
the brain parenchyma. For each participant, the clinical team determined
the placement of the contacts so as to best localize epileptogenic regions
(Fig. 1C). Preoperative clinical fMRI testing results were available for 37
participants, and 36 of these participants exhibited fMRI activity consistent
with left language dominance. The Institutional Review Board approved the
research protocol, and informed consent was obtained from the participants
or their guardians. Data from a subset of participants were initially collected
and analyzed for previous publications (Yaffe et al., 2014, 2017; Greenberg et
al., 2015; Haque et al., 2015). Computational analyses were performed using
custom-written Matlab (MathWorks) scripts.

Paired-associates task. Each participant performed a paired-associates
verbal memory task (Fig. 1A). In the task, participants were sequentially
shown a list of word pairs (encoding period) and then later cued with one

word from each pair selected at random (retrieval period), and were
instructed to say the associated word into a microphone. Each partici-
pant performed one of two versions of the task that had slight differences
in the experimental details. As the tasks did not differ in the fundamental
objectives and performance was indistinguishable between groups, we
combined the data from both sets of tasks for subsequent analyses.

A single experimental session for each participant consisted of 15 or 25
lists, where each list contained either four or six pairs of common nouns
shown on the center of a laptop screen, depending on whether the par-
ticipant completed the first or second version of the task respectively.
Although different participants performed the task with different list
lengths, the number of pairs in a list was kept constant for each partici-
pant. Words were chosen at random and without replacement from a
pool of high-frequency nouns and were presented sequentially and ap-
peared in capital letters at the center of the screen. Study word pairs were
separated from their corresponding recall cue by a minimum lag of two
study or test items. During the study period (encoding), each word pair
was preceded by an orientation stimulus (either a ‘�’ or a row of capital
X’s) that appeared on the screen for 250 –300 ms followed by a blank
interstimulus interval (ISI) between 500 and 750 ms. Word pairs were
then presented stacked in the center of the screen for 2500 ms followed by
a blank ISI of 1500 ms with a jitter of 75 ms in the first version of the task,
or for 4000 ms followed by a blank ISI of 1000 ms in the second version.
Following the presentation of the list of word pairs in the second version
of the task, participants completed an arithmetic distractor task of the
form A � B � C � ? for 20 s.

In both task versions, one word was randomly chosen during the test
period (retrieval) from each of the presented pairs and presented in
random order, and the participant was asked to recall the other word
from the pair by voicing a response. Each cue word was preceded by an
orientation stimulus (a row of question marks) that appeared on the
screen for 250 –300 ms followed by a blank ISI of 500 –750 ms. Cue words
were then presented on the screen for 3000 ms followed by a blank ISI of
4500 ms in the first version of the task, or for 4000 ms followed by a blank
ISI of 1000 ms in the second version. Participants could voice their re-
sponse any time during the recall period after cue presentation. We man-
ually designated each recorded response as correct, intrusion, or pass. A
response was designated as pass when no vocal response was made or
when the participant said “pass.” We defined all intrusion and pass trials
as incorrect trials. A single experimental session contained 60, 100, or 150
word pairs or trials, depending on the task version. We included only
participants who engaged in �2 separate sessions of the paired-associates
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Figure 1. Paired-associates task and subject distribution. A, Paired-associates memory task
schematic. B, Average performance distribution across subjects. Distribution is bimodal ranging
between 0.05 and 0.84 with a median accuracy of 0.36 (N � 43). C, Electrode coverage by
spatial region of interest. Colormap reflects number of electrodes within 12.5 mm. D, Correla-
tion between FSIQ and accuracy across subjects (rs � 0.51, p � 0.0017, N � 35). Line is
standard least-squares regression line.
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task such that each participant completed between two and five sessions
taking 31.1 � 1.7 (mean � SEM) min each with a median of 24.8 h
between sessions.

Intracranial EEG recordings. Intracranial EEG (iEEG) signals were refer-
enced to a common electrode and were resampled at 1000 Hz. We applied a
fourth-order 2 Hz stopband Butterworth notch filter at 60 Hz to eliminate
electrical-line noise. The testing laptop sent synchronization pulses via an
optical isolator into a pair of open lines on the clinical recording system to
synchronize the iEEG recordings with behavioral events.

We collected electrophysiological data from 3756 subdural and depth
recording contacts (PMT; Ad-Tech Medical Instrument). Subdural con-
tacts were arranged in both grid and strip configurations with an inter-
contact spacing of 5 or 10 mm. Contact localization was accomplished by
coregistering the postoperative CTs with the postoperative MRIs using
both FSL [FMRIB (Oxford Centre for Functional MRI of the Brain)
Software Library] Brain Extraction Tool (BET) and FLIRT (FMRIB’s
Linear Image Registration Tool) software packages and mapped to both
MNI and Talairach space using an indirect stereotactic technique and
OsiriX Imaging Software DICOM (Digital Imaging and Communica-
tions in Medicine) viewer package. The resulting contact locations were
subsequently projected to the cortical surface of a population-average
brain. Preoperative MRIs were used when postoperative MRI images
were not available.

We took several steps to reduce the influence of pathologic activity on
our results. First, we excluded from further analysis 414 electrodes iden-
tified clinically as having prominent interictal or ictal activity based on
the evaluation of a board-certified epileptologist. To minimize the extent
of transient epileptic activity (interictal discharges) in the remaining elec-
trodes, we then performed an iterative cleaning procedure on the com-
mon averaged electrode signals to eliminate both electrodes and trials
with a kurtosis of �2.8 SDs or a variance of �2.2 SDs from the persistent
sample’s mean. This procedure eliminated an additional 698 electrodes
from further examination as well as 1047 of 12,650 individual trials. The
remaining 2644 electrode contacts recorded over 11,576 trials were used
to generate our dataset.

We analyzed iEEG data using bipolar referencing to reduce volume
conduction and confounding interactions between adjacent electrodes
(Nunez and Srinivasan, 2006). We defined the bipolar montage in our
dataset based on the geometry of iEEG electrode arrangements. For every
grid, strip, and depth probe, we isolated all pairs of contacts positioned
immediately adjacent to one another; bipolar signals were then found by
finding the difference in the signals between each pair of immediately
adjacent contacts. The resulting bipolar signals were treated as new vir-
tual electrodes (referred to as electrodes throughout the text) originating
from the midpoint between each contact pair. All subsequent analyses
were performed using these derived bipolar signals. Our dataset con-
sisted of 2347 bipolar referenced electrodes derived from the set of
original monopolar electrodes that remained following our cleaning pro-
cedure as described above.

Data analyses and spectral power. We computed the spectral power for
each bipolar electrode at every time point during the experimental ses-
sion by convolving the raw iEEG signal with complex valued Morlet
wavelets (wavelet number, 6) to obtain the magnitude of the signal at
each of 30 logarithmically spaced frequencies ranging from 3 to 180 Hz.
We squared and log-transformed the magnitude of the continuous-time
wavelet transform to generate a continuous measure of instantaneous
power. During every trial, we convolved each wavelet with two separate
time windows: a baseline period extending from 600 to 100 ms before
word-pair presentation and an encoding period from 300 ms after word-
pair presentation until 300 ms before the offset of the word pair from the
display screen (Fig. 1A). In addition, we computed power for ten 2000 ms
windows from the beginning of the clinical recording segment before
task-specific activity began for each session and averaged those to get an
extra-task window. We included an additional 1000 ms buffer on either
side of each time window to minimize any edge effects. This buffer was
not subsequently analyzed.

To examine the relation between overall raw power and performance
across participants, we used the above measures of raw spectral power.
To examine how changes in power on individual trials affected perfor-

mance, we z-scored each session’s power values independently to remove
the effects of across-participant and session-level variations.

Calculating spectral slope. To understand how spectral power changes
as a function of frequency, we calculated spectral slope. For each partic-
ipant, we computed an average PSD across all trials and electrodes and
computed slope in log–log space across the broadband range of 10 to 100
Hz (Podvalny et al., 2015). To identify the general 1/f � slope of the
spectrum and avoid contamination of narrowband oscillations, we used a
robust fitting algorithm with bisquare weighting (Matlab robustfit.m func-
tion). Additionally, we computed slope over a range of frequency values and
spectral widths as described in Results. We defined spectral width using units
of octaves such that the spectral width of a given slope was equal to the log2 of
the ratio of the highest frequency to the lowest frequency.

Calculating sample entropy. We used a metric of sample entropy to
measure the complexity of the iEEG signal. Sample entropy, by construc-
tion, is a measure of predictability. Specifically, the sample entropy
(SampEn) of a time series is the negative natural logarithm of the condi-
tional probability that any two subsequences of length m within the series and
are similar within a tolerance r remain similar at length m � 1 (Richman and
Moorman, 2000). Two patterns that are close together in m-dimensional
space and that remain close together in m � 1-dimensional space indicate
fewer irregularities or less complexity in the signal. Similarity is measured
using the Chebyshev distance between the two subsequences. A smaller value
of SampEn denotes greater repetitiveness and less complexity in a given
signal.

For an embedding dimension m and a tolerance r, the formal equa-
tions for the calculation of sample entropy for a given time series of total
length N are as follows (Eqs. 1–3; Vakorin and McIntosh, 2012; Sokunbi
et al., 2013):

SampEn � � ln
Um�1

Um (1)

where, Um � �N � m��1 �
i�1

N�m
Bi

N � m � 1
(2)

and, Bi � �
j	i

N�m

H�r � ��xm
i� � xm
j���� (3)

where �� refers to the maximum norm, xm(i) is a vector {xi, xi�1, . . . ,
xi�m�1} within our time series, and H is the Heaviside step function. Bi

is the number of m-dimensional vectors that are within a tolerance of r
from a given template xm(i), excluding self-matches. Bi is normalized by
the number of possible matches, N � m � 1, and averaged over the N �
m possible template vectors to get Um, the probability of any two
m-dimensional vectors in a series being within a Chebyshev distance r.

An embedding dimension m of 2 and a tolerance r of 0.2 * std(x(t))
were used in all analyses. Of note, the number of three-element matching
template sequences is necessarily less than or equal to the number of

two-element matching template sequences, implying that the ratio
Um�1

Um

in Equation 1 is bounded between 0 and 1. Therefore, the range of Sam-
pEn is [0, �). For computational considerations, we down-sampled all
iEEG signals to 250 Hz for this analysis, making our sampling period in
between points in x 4 ms. To avoid infinite values, we excluded the few
trials with no matching three-element templates.

Commonality analysis. To understand whether the metrics of power,
spectral slope, and sample entropy uniquely account for variance in
memory performance across participants or are redundant, we per-
formed a commonality analysis (Nimon et al., 2008; Ray-Mukherjee et
al., 2014), which partitions variance (R 2) into parts unique to each pre-
dictor variable and parts shared among all possible combinations of the
predictors. To remain consistent with our rank-based analyses used
throughout the text and to remain sensitive to nonlinear relationships,
commonality analysis was performed on the ranks of our neural and
performance measures. The unique contribution of a predictor is calcu-
lated as the proportion of variance attributed to it when it is entered last
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in a regression analysis. For example, consider a hypothetical case where
dependent-variable y is explained by two predictors i and j. Here, the
total variance in y explained jointly by both predictors is Ry.ij

2 , while the
variance in y explained by i is Ry.i

2 , and the variance explained by j is Ry.j
2 .

The unique contribution of a given variable is obtained by subtracting
the contribution of the other variable from the joint contribution Ry.ij

2 .
Therefore, the variances uniquely explained by i and j respectively are as
follows (Eqs. 4 and 5):

U
i� � Ry.ij
2 � Ry.j

2 (4)

and

U
j� � Ry.ij
2 � Ry.i

2 (5)

The common variance in y explained by i and j is equal to the total
variance explained jointly less the unique contributions of i and j, ex-
pressed as follows (Eq. 6):

C
i,j� � Ry.ij
2 � U
i� � U
j�

simplifying to:

C
i,j� � Ry.i
2 � Ry.j

2 � Ry.ij
2 (6)

Commonality analysis decomposes explained variance into 2k � 1 inde-
pendent effects for k predictor variables. Therefore, the number of effects
increases exponentially with the number of predictors. We used the R
package yhat (Nimon et al., 2013) to perform commonality analysis.

Anatomic visualization. To visualize how the relation between spectral
power and task performance is spatially distributed, we created 1441
regions of interest (ROIs) evenly spaced across a 1 
 1 cm grid covering
the pial surface of a population-average brain. In each participant, we
identified all electrodes located within 12.5 mm of each ROI. We desig-
nated the raw power for each ROI in each participant as the average raw
power across all electrodes assigned to that ROI. For each ROI that in-
cluded electrodes from �6 participants, we determined the Spearman’s
correlation between raw power and task performance across the partici-
pants with electrodes contributing to that ROI. We therefore generated a
value for the correlation between raw power and task performance for
each ROI. Any ROI that contained electrodes from �6 participants was
excluded from statistical analyses.

We generated cortical topographic plots of the anatomic distribution
of these correlations by assigning each vertex in the 3D-rendered image
of the standard brain a weighted average of the mean value of each ROI
that includes that vertex. Weighted values for each vertex were assigned
by convolving a 3D Gaussian kernel (radius, 12.5 mm; � � 4.17 mm)
with center weight 1 with the values of surrounding ROIs. We projected
these vertex values onto the standard brain. Intensity varied as a function
of the statistic metric in question, either Fisher-transformed correlation
or t score, in each ROI and with the SD of the Gaussian kernel, which was
used purely as a visualization technique.

Statistical analysis. All statistical tests were assessed for significance
using two-tailed distributions. As most of our distributions, including
accuracy and raw power, were not normally distributed, we used Spear-
man’s rank correlation when evaluating the monotonic relationship be-
tween two variables. Spearman’s correlation uses only the order of data
points and is thus not biased by outliers as with Pearson’s correlation. We
made an exception, however, when examining the relation between ses-
sions within individual participants. Because we analyzed session counts
as low as three, Spearman’s correlation is prone to produce extreme
values of �1, which cannot be analyzed with cohort-level statistics, ne-
cessitating the use of Pearson’s correlation in this instance.

To compare correlations across participants, we used a Fisher z trans-
formation on the correlation coefficients calculated for each participant.
The transformation stabilizes the variance of these correlations, reduces
bias toward lower correlations, and results in a normalized distribution
of coefficients. For each correlation, we therefore calculated the Fisher

z transform as follows: z �
1

2
ln �1 � r

1 � r�, where r is the correlation

coefficient. We used the mathematically equivalent formula, z �
arctanh(r) in our calculations.

To determine whether any anatomic region exhibited a significant
correlation across participants, we used a nonparametric spatial cluster-
ing procedure (Maris and Oostenveld, 2007). This procedure identifies
contiguous ROIs where the distribution of correlation coefficients across
participants significantly deviates from chance correlation while control-
ling for the familywise error rate. Briefly, for each ROI, we calculated the
true Fisher-transformed correlation coefficient between memory perfor-
mance and raw spectral power across participants. We then generated
1000 permuted values for each ROI. In each permutation, we randomly
assigned each participant a level of task performance drawn from the
original distribution of task performance across participants without
replacement. In this manner, each permutation involves a random pair-
ing between task performance and raw spectral power. We then deter-
mined a z score for each true value and each permuted value in each ROI
by comparing that value to the distribution of permuted values. For the
true data and for each permutation, we identified contiguous spatial
clusters of ROIs, exhibiting z scores with a magnitude �1.96 (corre-
sponding to a two-tailed p value of �0.05). For each cluster, we com-
puted the cluster statistic as the sum of all z scores in that cluster. In this
manner, large-magnitude cluster statistics can arise from large deviations
in the distributions of correlation coefficients across participants extend-
ing over a small spatial region, or moderate deviations that extend over
larger regions. We then calculated the exact two-tailed p value for each
cluster observed in the true dataset by comparing its cluster statistic to the
distribution of largest cluster statistics drawn from each permutation.
Clusters were determined to be significant and corrected for multiple
comparisons if their p value calculated in this manner was �0.05.

To assess whether the relation between sample entropy and perfor-
mance at different time scales was significantly different from zero when
summarizing across participants, we used a similar permutation proce-
dure. In this case, for every ROI, we used a two-tailed t test to compare the
distribution of values to zero. This generates a t statistic for the true data.
Then, during every permutation, we randomly inverted the sign of the
metric and produced a permuted distribution of t statistics. We com-
pared the true t statistic to the permuted distribution to generate a p value
and z score for every ROI. As above, we used a clustering procedure to
identify contiguous ROIs with p � 0.05, assigned each contiguous cluster
a cluster statistic based on the sum of the corresponding t statistics, and
then calculated the exact two-tailed p value for each cluster observed in
the true dataset by comparing its cluster statistic to the distribution of the
largest cluster statistics drawn from each permutation.

Manual inspection for artifacts. To evaluate the influence of patholog-
ical activity on our results, a board-certified clinical epileptologist evalu-
ated a subset of our recordings for the presence of interictal epileptiform
discharges (IEDs), allowing us to examine the effects of this pathological
activity on theta power in a given electrode or during a given trial, as well
as on the average theta power for a given participant. For each partici-
pant, we selected and analyzed the five electrodes and 10 trials exhibiting
both the highest-magnitude and the lowest-magnitude theta power. Us-
ing custom viewing software, and blinded to the method of selecting
trials or electrodes, the epileptologist was asked to evaluate whether a
given trial did or did not contain epileptiform activity, and subsequently
to identify the number of IEDs of any amplitude present in a specified
bipolar electrode channel in a given 2 min sample. To determine whether
IEDs were more likely during high theta power events or trials, we com-
pared the two groups within each participant. There was no significant
difference in the number of IEDs observed in a 2 min period between low
theta power (1.12 � 1.39 IEDs) and high theta power (0.88 � 1.72 IEDs)
electrodes across 10 participants (t(9) � 0.707, p � 0.50, paired t test).
There was also no significant difference between the percentage of events
exhibiting IEDs anywhere between low theta power (45.0 � 31.0%) and
high theta power (61.0 � 31.8) trials (t(9) � �0.97, p � 0.36). Last, to
determine whether IEDs were biased with respect to average power for
each participant, we correlated total number of IEDs in our examined
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electrodes with average theta power and found
there was not a significant correlation (rs �
0.40, p � 0.26, N � 10).

Results
Forty-three participants with drug-resistant
epilepsy who underwent surgery for place-
ment of intracranial electrodes for seizure
monitoring participated in a verbal paired-
associates task (Fig. 1A). Participants stud-
ied 294.2 � 20.0 (mean � SEM) word pairs,
split across multiple experimental sessions,
and successfully recalled 40.1 � 3.2%
(mean�SEM) words with a mean response
time of 1837 � 65 ms. Response accuracy
across participants exhibited a bimodal dis-
tribution (Fig. 1B). On 14.9 � 1.7% of trials,
participants responded with an incorrect
word (intrusions) with a mean response
time of 2687 � 83 ms. For the remaining
44.9 � 2.6% of trials, participants either
made no response to the cue word or said
“pass” with a mean response time of 3494 �
176 ms. We designated all trials in which a
participant successfully said the correct
word as correct, and all other trials as incor-
rect. A participants accuracy was calculated
as (# correct trials)/(# trials attempted).
Recordings were included from all elec-
trode contacts (number of participants
with contacts in each cortical location
shown in Fig. 1C).

We measured full-scale IQ (FSIQ) in 35 participants before
electrode implantation as part of the routine clinical preoperative
evaluation. Participants had an average preoperative FSIQ of
98.5 � 2.9 (mean � SEM). Across all sessions for each partici-
pant, we found that preoperative FSIQ significantly correlated
with accuracy during the task (rs � 0.51, p � 0.0017, N � 35; Fig.
1D), suggesting that task performance is related to normal psy-
chometric measurements.

Raw power is negatively correlated with performance
Raw iEEG power can reflect the extent of overall neural activity in
each participant’s brain and has occasionally been shown to relate
to a participant’s abilities (Hanslmayr et al., 2007). We were
therefore interested in examining whether the raw overall power
in each participant as captured by iEEG was related to their task
performance. As typical spectral analysis involves examining
changes in z-scored power relative to an individual’s baseline
activity, this relation between raw power and task performance
would be unexplored in most planned analyses.

In each participant, we extracted the raw spectral power con-
tained in the signal during a baseline time window before word-
pair presentation and during the encoding period. To generate an
overall level of broadband power for each participant, we aver-
aged the extracted spectral power over all frequencies between 3
and 180 Hz (broadband power), over all trials, and over all elec-
trodes for each time window in each participant. We found that
the average raw broadband power during the encoding period
demonstrated a significant negative correlation with accuracy dur-
ing the task (rs � �0.39, p � 0.01109, N � 43; Fig. 2A). This was
unchanged if we z-scored each frequency band across subjects to
equalize contributions across bands. As with task performance,

broadband power was also negatively correlated with FSIQ across
participants (rs � �0.408, p � 0.0348, N � 35).

We found that this relation between raw overall broadband
power and task performance was robust and independent of the
specific task periods. For example, raw broadband power during
the baseline period before word presentation was also inversely
correlated with task accuracy (rs � �0.38, p � 0.0125, N � 43).
Moreover, we also found a significant relation between raw
broadband power and task accuracy when we examined power
separately during only correct or only incorrect trials (rs � �0.38,
p � 0.0132, and rs � �0.38, p � 0.0114, respectively), suggesting
that this effect reflects each participant’s overall baseline neural
activity rather than simply the proportion of trials that featured suc-
cessful encoding in each participant. Finally, to determine whether
this relation reflects each participant’s underlying physiology or is
dependent on a task-evoked state, we also examined this relation
during an epoch recorded before the beginning of the task when the
participant was awake, at rest, and under no instruction. We found
the negative correlation between overall broadband power and task
performance was also preserved during this extra-task period, sug-
gesting that this effect is not task-dependent but is related to baseline
cognitive behavior (rs � �0.36, p � 0.0198). This finding departs
from most memory studies in that we claim that our result does not
depend on the fact that the subject is undertaking a memory task at
the time, allowing us to generalize our electrophysiological correlates
to normal daily activities.

We next examined whether the inverse correlation between
raw power and task performance was specific to individual fre-
quency bands by separately computing correlations between
narrow-band frequencies and task performance (Fig. 2B). We
found power at every frequency band between 3 and 180 Hz was

A B

C D

Figure 2. Baseline power and performance. A, Average log10 broadband power across all trials and electrodes (range, 5.11–
7.40 A.U.) is negatively correlated with performance (rs ��0.39, p � 0.011, N � 43). Line is standard least-squares regression
line. B, Power–accuracy correlation by frequency band. The negative correlation between power and accuracy exists across all
bands and is significantly negatively correlated at all frequency bands between 3.5 and 9 Hz ( p � 0.05, Bonferroni correct for 30

frequency bands). The error bars indicate SEM for Spearman’s correlation� 0.6325

�n � 1�. Theta power spectral region of interest is

inside of dashed box. C, Broadband (Fisher transformed) correlation across spatial ROIs. Bottom shows significant regions ( p �
0.05) compared with a permuted distribution through a clustering procedure. D, Same as C for theta-band power.
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negatively correlated with performance. All frequencies between
3.5 and 9 Hz had a significant negative correlation between over-
all raw power and accuracy when corrected for multiple compar-
isons across frequencies (Fig. 2B; p � 0.05, Bonferroni-corrected
for 30 frequency bands). This suggests that this effect is spectrally
broad but driven by low-frequency activity. We therefore re-
stricted subsequent power analyses to power averaged across the
theta band, which had a correlation of rs � �0.50, p � 0.0008
(3–7 Hz; Fig. 2B, dashed box). As performance was shown to be
strongly correlated with IQ, it is not immediately clear whether
the relationship between power and accuracy is simply a mani-
festation of a relationship between power and general ability or
whether power explains additional variance in task performance
not explained by IQ. While theta power is negatively correlated
with IQ (rs � �0.44, p � 0.0074, N � 35), it is also correlated
with performance after regressing out the variance in accuracy
explained by IQ (rs � �0.42, p � 0.014, N � 35), indicating it is
independently predictive of task-specific performance.

We were also interested in whether the relation between raw
power and task accuracy varied across brain regions (ROIs; see
Materials and Methods). For every ROI, we determined the cor-
relation between both average raw broadband and theta power in
all electrodes within that ROI and task performance across par-
ticipants. The inverse correlation that we found between corti-
cally distributed raw power and task performance localized to
regions of the temporal and parietal lobes in both hemispheres
(Fig. 2C,D, top). Using a nonparametric clustering algorithm, we
found that spatially contiguous regions exhibited a significant
correlation across participants within the left temporal lobe for
both broadband and theta band power (p � 0.05, permutation
procedure; see Materials and Methods; Fig. 2C,D, bottom). These
data suggest that individuals with less broadband and low-
frequency power in the temporal lobe have greater ability to en-
code associative memories.

Assessing cortical activation through PSD slope
The PSD of iEEG signals falls off with frequency following a
power law distribution. The slope of the PSD in log–log space has
been shown to flatten in response to task activation (Podvalny et
al., 2015), and the extent to which the slope flattens has been
related to cognitive effort (Churchill et al., 2016). As such, we
examined the overall raw PSD in each participant to determine
whether the observed changes in broadband power with task per-
formance may be related to changes in the slope of the PSD.

We first divided the participants into three terciles based on
task performance (low, medium, or high accuracy) to visualize
the average raw PSD in each cohort (Fig. 3A). Below 30 Hz, the
average PSDs of the three populations easily separate, with
the lowest-performing participants exhibiting the largest low-
frequency raw power. As suggested by our analysis examining the
correlation between raw power and task performance, dividing
participants into these terciles yielded a significant effect of per-
formance tercile on low-frequency power (ANOVA using aver-
age raw power �30 Hz; F(2,40) � 4.40, p � 0.019). At higher
frequencies (�30 Hz), however, the distinction between partici-
pant groups was negligible (F(2,40) � 0.913, p � 0.409).

We next calculated the slope of the average PSD in log–log
space between 10 and 100 Hz for each participant (Fig. 3B, inset).
We chose this frequency range to avoid the low-frequency knee
and the effects of action potential contamination at higher fre-
quencies (Podvalny et al., 2015). Across participants, PSD slopes
[range, �3.36 to �2.07; �2.67 � 0.05 (mean � SEM); Fig. 3B]
are in the range of those reported by others using similar metrics

(Podvalny et al., 2015). Across participants, we found that PSD
slope was positively correlated with task performance, such that
participants with flatter slopes performed better (rs � 0.48, p �
0.0014, N � 43; Fig. 3C). Slope was not significantly correlated with
IQ (rs � 0.17, p � 0.32), and was still correlated with performance
after regressing out the effects of IQ (rs � 0.49, p � 0.0032, N � 35).
We examined the anatomic regions that demonstrated a significant
relation between PSD slope and task performance (p � 0.05, per-
mutation procedure) and localized them to the left and right frontal
lobes (Fig. 3D).

As with raw broadband and theta power, this relation between
PSD slope and task performance was robust and independent of
when during the task the calculation of PSD was made. We found
participants with greater recall accuracy had flatter slopes when
examining recordings from the baseline period (rs � 0.45, p �
0.0026), during correct trials only (rs �.47, p � 0.0018), or during
incorrect trials only (rs � 0.47, p � 0.0015). We found that like
broadband power, the significant relationship between slope and
accuracy was preserved when examining extra-task epochs, dur-
ing which participants were awake and at rest (rs � 0.44, p �
0.0034), indicating that as with raw power, this relation is not
task-evoked.

Although several studies have identified measures of broad-
band power or spectral slope as a proxy for spike rate (Manning et
al., 2009), cortical activation (Podvalny et al., 2015), or the bal-
ance between cortical excitation and inhibition (Gao et al., 2017),
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Figure 3. Spectral slope and performance. A, Average PSD across tertials of subjects sorted
by performance. Shading shows SEM. B, Distribution of average spectral slopes across subjects
(2.67 � 0.05; mean � SEM). Inset shows example subject, red is range of frequencies slope is
calculated over (10 –100 Hz), and dashed line shows robust fit line. C, Spectral slope is positively
correlated with accuracy across subjects (rs � 0.48, p � 0.0014, N � 43). Line is standard
least-squares regression line. D, Correlation of spectral slope and accuracy across spatial ROIs.
Bottom shows significant regions ( p � 0.05) compared with a permuted distribution through
a clustering procedure. E, Average spectral slope as a function of center frequency and spectral
width. F, Average correlation as a function of center frequency and spectral width as in E.
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there remains no consensus regarding the frequency range over
which one should calculate the PSD slope to identify the nonos-
cillatory components of spectral power. In our initial analysis, we
used a range of 10 to 100 Hz. However, other groups have used
different frequency ranges and it is possible our findings are sen-
sitive to this parameter.

To ensure that the observed relation between PSD slope and
task performance was not specific to the range of frequencies we
used to calculate PSD slope, we iterated through a library of dif-
ferent frequency windows, each comprising a center frequency
and a spectral width, to compute PSD slopes. We examined PSD
slope using every possible frequency window between 3 and
180 Hz. We found that the slope was largely unaffected by spec-
tral width, and that although the slope increased as a function of
center frequency, average slope beyond a center frequency of 20
Hz stabilized to an overall mean across participants of �2.7 (Fig.
3E). Above 18 Hz, the PSD slopes ranged between �2 and �3,
while at lower center frequencies we observed PSD slopes as flat as
�1. We examined how varying our measure of PSD slope af-
fected the relation between PSD slope and task performance. We
correlated each PSD slope calculated with different center fre-
quencies and spectral widths with task performance and con-
firmed that PSD slopes were positively correlated with task
accuracy for most center frequencies regardless of spectral width
(Fig. 3F). This suggests that when examining the role of spectral
slope, most ranges centered between 20 and 50 Hz should give
congruent results.

Assessing information content through sample entropy
The relation between spectral slope and accuracy may be partially
explained by the complexity of the underlying iEEG signal, which
may in turn suggest a higher capacity for processing information.
However, while spectral slope is related to signal complexity
(Keshner, 1982), it is not a direct measure. We therefore calculated
sample entropy to quantify signal complexity of the iEEG trace, a
measure that has previously been successfully used for discerning
differences among EEG signals (Fig. 4A; see Materials and Methods;
Mizuno et al., 2010; Catarino et al., 2011; Vaz et al., 2017). Sample
entropy measures the predictability of a signal, is robust to low-level
noise and artifacts, and has been found to be more robust for shorter
data lengths than other measures of entropy, such as approximate
entropy (Yentes et al., 2013; Sokunbi, 2014). Indeed, the complexity
of two example iEEG signals is visible in the raw recording and re-
flected in the measured sample entropy (Fig. 4B).

Based on the observed changes in raw power and spectral
slope, and the theoretical suggestion that increased information
content involves signal desynchronization (Hanslmayr et al.,
2012), we hypothesized that participants with greater complexity
in their iEEG signal, and therefore higher sample entropy, would
exhibit better task performance. We calculated the average sam-
ple entropy during the encoding period across all trials and all
electrodes and found that participants with greater sample en-
tropy performed significantly better on the task (Fig. 4C; rs �
0.51, p � 0.00065, N � 43), suggesting that the observed relation
between task performance and PSD slope is related to the com-
plexity of the underlying neural signal. Similar to slope, sample
entropy was not correlated with IQ (rs � 0.26, p � 0.14) and was
correlated with accuracy after regressing out the effects of IQ (rs �
0.52, p � 0.0015, N � 35). The relation between sample entropy and
accuracy was distributed across the cortex but was particularly local-
ized to the left temporal lobe (Fig. 4D).

As with power and spectral slope, we found that this relation
was preserved when looking at correct trials (rs � 0.48, p �

0.0012), incorrect trials (rs � 0.52, p � 0.00049), the baseline
period (rs � 0.53, p � 0.00028), or an extra-task epoch (rs � 0.34,
p � 0.025). Moreover, participants with flatter PSD slopes and
less theta power had greater sample entropy (rs � 0.63, p � 1.2 

10�5, and rs � �0.41, p � 0.0067, respectively) demonstrating
that spectral slope and low-frequency power are strong indicators
of signal complexity.

Signal complexity across time scales
Ourdatademonstratethatrelatedmeasuresofsignalcomplexity—low-
frequency power, spectral slope, and sample entropy—show strong
relations with overall performance during an associative-memory
task across participants. However, most studies of human memory
have focused on SMEs in which differences between correct and
incorrect trials are assessed within individuals. We were therefore
interested in whether the observed changes in neural signal com-
plexity across participants would also be observed across different
time scales within participants. We specifically investigated changes
in sample entropy during individual sessions and trials to index
changes in brain-state complexity at the time scales of hours and
seconds, respectively.

We first examined the relation between sample entropy and
performance during individual sessions for each electrode in each
participant who completed �3 sessions. In individual participants,
we found that sample entropy correlated with performance on a
session-by-session basis (Fig. 5A). Across all participants, we found
that this relation was consistent, although the distribution of corre-
lation coefficients was not significantly different from zero (two-
tailed t test of Fisher-transformed correlation coefficients, t(21) �
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Figure 4. Sample entropy and performance. A, Sample entropy schematic for theoretical
signals. Color of dots superimposed on signals indicate discretized voltage bin. Signal y2 is more
complex than y1, making subsequent points relatively more difficult to predict. B, Example
epochs from two participants with low and high entropy. The upper signal is from participant
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entropy of 1.51. C, Sample entropy is positively correlated with performance across participants
(rs � 0.51, p � 0.0007). Line is standard least-squares regression line. D, Sample entropy
correlation across spatial ROIs. Bottom shows significant regions ( p � 0.05) compared with a
permuted distribution through a clustering procedure.
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2.00, p � 0.058; Fig. 5B). However, while this relationship was not
significant on a global level, we did find that individual ROIs
throughout the left temporal and parietal lobes were significant (Fig.
5C). In addition, we found that theta power and slope also showed
strong relationships with session accuracy that were similar to those
found across participants (t(21) � �2.37, p � 0.028, and t(21) � 1.83,
p � 0.081, respectively).

Next, as is routine in most memory studies, we examined
differences between correct and incorrect trials to understand the
relation between sample entropy and memory encoding at the
time scale of seconds. We first z-scored sample entropy within
each session to eliminate any session-level variance. Hence, both
the session-level and item-level effects are calculated such that
they are completely independent from one another and the pre-
viously explored participant-level effects. We found that partici-
pants exhibited significantly higher sample entropy for correct
compared with incorrect trials (Fig. 5D,E; t(42) � 2.08, p �
0.0044). The item-level changes in sample entropy localized to
the left inferior temporal lobe (Fig. 5E). The differences between
correct and incorrect theta power and slope were also both sig-
nificantly biased in the same direction as their across-subject and
across-session effects (t(42) � �2.57, p � 0.014 and t(42) � 2.06,
p � 0.046, respectively). To complement our analysis across par-
ticipants, we also examined whether individual SMEs were cor-
related with raw power measurements. While slope and sample
entropy showed no relationship (p � 0.90), raw theta power was
significantly and negatively correlated with the difference be-
tween correct and incorrect theta power. Participants with
greater raw theta power had more negative SMEs, while those
with less raw theta power had more positive SMEs (rs � �0.33,
p � 0.031). This suggests that, while by far the overriding trend in
our cohort is that less theta power is better for encoding across all
time scales, for a subset of participants with overall low-theta
power, this is not the case.

In evaluating across subject SMEs, it is unclear over what time
scale the changes in sample entropy are occurring. These changes

may be related to word-pair adaptation, or they may reflect a
more slowly fluctuating dynamic. To explore this, we made three
additional comparisons. We compared the sample entropy dur-
ing the baseline period between correct and incorrect trials, we
compared the sample entropy during correct trials between the
encoding and baseline periods, and we compared the sample en-
tropy during incorrect trials between the encoding and baseline
periods. Interestingly, while we found minimal difference in sam-
ple entropy during the baseline periods between correct and in-
correct trials (t(42) � �1.71, p � 0.095), we also found that
sample entropy significantly increased from baseline during cor-
rect trials, and significantly decreased from baseline on incorrect
trials (t(42) � 2.41, p � 0.020 and t(42) � �2.36, p � 0.023). These
data suggest that relatively fast changes in the sample entropy,
and therefore complexity, of the signal contribute to subsequent
remembering and subsequent forgetting along with changes over
much longer time scales.

Are theta power, spectral slope, and sample
entropy redundant?
Sample entropy was shown earlier to be positively correlated with
spectral slope and negatively correlated with theta-band power.
Spectral slope and theta-band power are inversely correlated with
each other as well (rs � �0.35, p � 0.02). It is unclear, given the
high level of collinearity between these variables, whether they are
describing unique underlying processes or are really redundant
factors. To determine the proportions of variance in memory
performance across participants that are uniquely attributed to
these metrics as well as those that are common among all possible
combinations of these metrics, we performed a commonality
analysis (see Materials and Methods). The commonality analysis
(Table 1) showed that spectral power in the theta band uniquely
accounted for 22.28% of the total variance explained by the pre-
dictors, with slope and entropy uniquely explaining 6.98 and
8.64%, and jointly explaining 20.04% of the total variance ex-
plained. The total variance accounted for by power, PSD slope,
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and sample entropy through both unique and shared contribu-
tions are 24.58, 22.58, and 25.52% respectively with 10.75% of the
variance being common to all three. This analysis illustrates that,
while all three metrics capture properties of neural activity rele-
vant for memory performance, theta power may capture rela-
tively distinct features from those captured by spectral slope and
sample entropy.

To see how these metrics relate across time, we looked at their
correlations across trials for individual participants. Across trials,
z-scored by session, theta power and sample entropy showed a
strong negative correlation (median � � �0.77). This aligns with
our interpretation that, from an information-coding perspective,
predictable oscillations contain less information than less pre-
dictable stochastic dynamics. As expected, entropy and slope
were positively correlated on a trial level (median � � 0.59) and
slope and theta power were inversely correlated (median � �
�0.60). Notably, these relationships were all highly significant on
a population level (�t42� � 17, p � 10�20).

Discussion
Our analyses demonstrate that low-frequency power and com-
plexity of cortical activity track variability in memory perfor-
mance at the level of individuals, days, and events. Specifically,
improved memory performance at any given scale is related to
decreased low-frequency power and increased signal complexity
as measured by the PSD slope and sample entropy. Notably, while
these metrics show collinearity on both an individual and popu-
lation level, commonality analysis revealed substantial unique
contributions of each metric in explaining memory performance.
These findings suggest that the complexity of brain activity may
reflect an individual’s ability to occupy variable cognitive states
and the extent to which information can be coded in their brain
signals, which is evident in associative-memory performance.

The suggestion that cognitive flexibility may improve task
performance appears intuitive. Indeed, the ability to explore the
brain’s dynamic repertoire during rest is thought to be a marker
of healthy brain function and may underlie introspection and
rehearsal (Ghosh et al., 2008). Therefore, it seems likely that a
high-performing brain is one that engages with the world by
assuming a variety of functional configurations. Whether such
variability and flexibility may be relevant for associative-memory
performance has, until now, not been directly established. We
establish this link here by demonstrating that memory perfor-
mance is significantly correlated with signal complexity both
across and within individuals. Cognitive flexibility lends neural
systems the ability to explore their state space (Deco and Jirsa,
2012), which may lead to separable memory representations less
susceptible to interference. Consistent with the idea that in-
creased complexity may lead to increased separability of events,

prestimulus weighted permutation entropy of scalp EEG can bias
participants’ perception of identical auditory stimuli by changing
the fidelity with which the stimulus was encoded (Waschke et al.,
2017). Furthermore, multiscale entropy of brain signals (scalp
EEG) correlate with participants’ ratings of famous-face familiar-
ity and increase with learning over multiple exposures to previ-
ously unfamiliar faces (Heisz et al., 2012). Hence, the observed
correlations between entropy and associative-memory perfor-
mance here suggests that neural signal complexity reflects the
capacity to successfully encode associative memories by flexibly
engaging with the presented material.

The paired-associates memory task used here requires partic-
ipants to form associations between unrelated words that consti-
tute individual episodes or experiences that are subsequently
recalled. Encoding these associations draws upon the meanings
of the words to form a conceptual and semantic link between
them (Kahana et al., 2008; Madan et al., 2010; Jang et al., 2017).
Therefore, forming these associations should engage cortical re-
gions, such as the anterior temporal lobe, that are involved in
semantic processing (Binder et al., 2009; Ralph et al., 2017). In
our data, we observe strong correlations between memory per-
formance and low-frequency power and entropy in these same
left temporal lobe regions. The relationship between cognitive
flexibility, as assessed by these metrics in the temporal lobe, and
verbal associative memory performance across individuals may
therefore emerge because of the involvement of the temporal lobe
in helping encode verbal associations.

Our approach here differs from that of earlier studies of hu-
man memory encoding and retrieval by specifically asking
whether there are systematic differences in neural activity across
participants that may predict individual memory performance.
Most previous studies of human episodic memory have focused
on relative changes in neural oscillatory activity between cor-
rectly and incorrectly encoded events (Sederberg et al., 2003,
2007; Burke et al., 2014; Long et al., 2014; Greenberg et al., 2015).
While these studies have significantly advanced our understand-
ing of the neural correlates of human memory, an unresolved
question has been why different studies have demonstrated con-
flicting results, particularly with respect to low-frequency oscil-
latory power (Hanslmayr and Staudigl, 2014). In our data, we
tracked memory performance using low-frequency power that
was not normalized relative to any baseline and found that it was
inversely correlated with overall memory performance. More-
over, within each individual, fluctuations in neural activity were
predictive of how well they performed at any given moment.
Interestingly, we found that these fluctuations were dependent
on overall power measurements for each participant. Our data
therefore may provide some insight into the conflicting data ob-
served in previous studies. These conflicts have been previously
attributed to differences in task design and electrode coverage.
However, because of the variability in baseline power between
individuals, these conflicts may also be affected by where each
cohort of participants sits in this range of baseline power and how
that may affect the changes in power observed over shorter time
scales.

As examining the structure of the full PSD across all frequen-
cies can often yield a more complete picture of neural activity
(Podvalny et al., 2015), our analyses of PSD slope changes com-
plement the observed changes in low-frequency power. The slope
of the PSD has been hypothesized to reflect the balance between
excitation and inhibition, and computational modeling of neural
activity has demonstrated that reducing the excitation/inhibition
ratio results in a steeper PSD slope (Gao et al., 2017). Both in vitro

Table 1. Commonality analysis output describing unique and common
contributions of the three predictor variables (theta-band power, spectral slope,
and sample entropy) to the regression effect explaining memory performance
across participants

Power Slope Entropy Percentage of total

Unique to power 0.0851 22.28
Unique to slope 0.0267 6.98
Unique to entropy 0.0330 8.64
Common to power and slope 0.0151 0.0151 3.96
Common to power and entropy 0.0381 0.0381 9.97
Common to slope and entropy 0.0766 0.0766 20.04
Common to power, slope, and entropy 0.1075 0.1075 0.1075 28.12

Total R 2 � 0.3821. Unique � Common � 100% of R 2.
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and in vivo cortical networks show maximal dynamic range un-
der balanced excitation–inhibition conditions (Shew et al., 2009,
2011). An increased dynamical range of neuronal responses may
improve adaptability and efficiency of neural systems in service of
memory. Another possibility is that a shallower PSD slope may
emerge due to the infusion of noise into the neural signal via
asynchronous firing activity (Usher et al., 1995; Pozzorini et al.,
2013; Podvalny et al., 2015; Voytek and Knight, 2015; Voytek et
al., 2015). Whether such noise is beneficial is unclear, as the effect
of noise on information coding depends on whether noise is
correlated between neurons (Averbeck et al., 2006). Nevertheless,
our finding that flatter PSD slopes and increased sample entropy
relate to better memory performance suggests that in our data,
more complex brain signals reflect more informationally rich
signals as posited by others (Mitchell et al., 2009; Schneidman et
al., 2011; Hanslmayr et al., 2012, 2016).

Ultimately, the slope of the PSD and the low-frequency power
contributing to that slope should be related to the underlying
complexity of the neural signal, which can be directly assessed
using measures of entropy as we do here. Although greater signal
complexity does not always reflect greater information content,
entropy of the EEG signal may increase with healthy aging (McIn-
tosh et al., 2008; Waschke et al., 2017), and higher entropy is also
associated with greater task efficiency and network efficiency
(Mišić et al., 2010, 2011). Entropy of resting-state brain signals
can distinguish children at high risk for autism spectrum disorder
from normal-developing children (Bosl et al., 2011), and healthy
from epileptogenic neural tissues (Protzner et al., 2010). Here, we
directly show that the complexity of the neural signal captured
using iEEG tracks associative-memory performance across indi-
viduals, providing further support to the proposition that brain-
signal variability is functionally relevant. Moreover, we show that
within individuals, variability in neural-signal complexity across
time scales also tracks memory performance for the individual
participant. The variability we experience in our daily lives with
memory performance is likely therefore influenced by these
changing levels of neural-signal complexity.

Of note, participants in our study were also neurosurgical
patients with drug-resistant epilepsy. In most cases, their seizure
activity localized to the temporal lobes, raising the possibility that
the observed effects in this brain region may also be related to the
underlying pathology of the disorder itself. Greater disruptions of
normal temporal lobe function could result in less signal com-
plexity in this brain region, which could then lead to worse mem-
ory performance on this paired-associates task. We took several
precautions to mitigate the effects of epileptic activity on our
study, including removing electrodes identified as ictal or inter-
ictal, and removing electrodes and individual trials that showed
higher variance or kurtosis relative to the rest of the population.
In addition, we visually checked for both high-amplitude and
low-amplitude IEDs in electrodes and trials chosen from a subset
of participants. While we found that IEDs were approximately
equally present in both high-power and low-power trials and
electrodes, it is also clear that our data were not devoid of these
artifacts. Hence, it is possible that pathological activity may con-
tribute to some of the observed relationships between complexity
metrics and memory performance. In this scenario, however, the
interpretation of our data does not change, since decreased
neural-signal complexity, regardless of whether it can be attrib-
uted to normal or pathologic variability, would still be related to
decreased memory ability.

Previous studies have indeed shown that IEDs during encod-
ing and retrieval can impair memory performance (Horak et al.,

2017), and IED rates decrease from baseline during correct, but
not incorrect, encoding trials (Matsumoto et al., 2013). Critically,
however, increases in IEDs during rest or distractor periods in
these studies do not appear to reduce memory performance, and
the overall IED rates do not relate to recall performance across
participants (Horak et al., 2017). This is in contrast to the effects
of overall power on memory performance that we report here,
which are observed during both rest and task periods. Moreover,
controlling for the same level of overall pathology within individ-
uals, we find the same metrics were related to memory perfor-
mance across multiple timescales. It is difficult to explain how
pathologic activity alone would consistently predict memory per-
formance at every different timescale, or even why most effects in
our data also extend to generally nonpathologic frontal lobe clus-
ters in our dataset.

In addition to the brief disruptions in temporal lobe function
caused by IEDs, transient neurologic dysfunction can be ob-
served after a seizure lasting minutes to hours. In the case of left
temporal lobe epilepsy, postictal impairment can be seen in ver-
bal and visual recognition memory. However, postictal effects are
unlikely to play a significant role in our findings, since we avoided
administering cognitive testing for several hours following a sei-
zure episode. In addition, if patients were still symptomatic fol-
lowing a seizure, testing was usually deferred by the study team or
by the participant until they had regained their baseline function.
The longer-term effects of such pathologic activity may, however,
contribute to changes in IQ, which could in turn mediate the
across-participant relationship between signal complexity and
memory. However, we found that only theta power is signifi-
cantly correlated with IQ. Furthermore, theta power, PSD slope,
and sample entropy are all significantly correlated with perfor-
mance even after the effects of IQ are regressed out, suggesting
that signal complexity is indeed specifically relevant for memory
formation. Therefore, although the participants’ underlying dis-
order may affect normal neural information processing and overall
cognitive ability, our data suggest that the individual differences in
neural-signal complexity that relate to differences in memory per-
formance are unlikely to be driven by pathology alone.

It is also possible that the changes in neural complexity that we
interpret to denote cognitive flexibility in fact simply capture
changing levels of attention. For example, patients may feel
drowsier in some experimental sessions than in others and these
differences in levels of engagement may be captured by our com-
plexity metrics. However, we note that changes in sample entropy
from baseline to encoding states also occur over shorter timescales
within an individual experimental session. These fine-grained tem-
poral changes consistently capture differences between successful
and unsuccessful associative-memory encoding trials even though
the baseline entropy levels are not different between the two condi-
tions. Moreover, at the other extreme of time scales, participant-level
complexity metrics correlate with memory performance as well as
IQ. Therefore, it is unlikely that drowsiness explains all the observed
relationships found here between neural complexity and memory
performance at multiple scales. Attention may indeed play a direct
role in determining the extent to which neural state space is explored
during a task. However, the possibility that changing levels of atten-
tion may explain our results is still consistent with the interpretation
that theta power, spectral slope, and sample entropy ultimately re-
flect cognitive flexibility and a capacity to encode information.

Aside from the immediate effects of interictal and ictal epilep-
tiform activity, it is also possible that some of these relationships
are affected by the influence of antiepileptic drugs (AEDs). All
participants were chronically taking AEDs, which were weaned at
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a variable rate following surgery at the discretion of the treating
clinicians. Because participants were on varying AEDs at varying
doses with varying pharmacokinetics, we did not explicitly con-
trol for AEDs as a factor in our study. In general, since testing
began several days postoperatively, AEDs were at a significantly
lower level than at baseline for a given participant. AEDs are
known to reduce attention and vigilance, but other studies have
suggested that the cognitive impacts of AEDs may be overrated
when compared with the pathological and psychosocial effects of
epilepsy itself (Meador, 2002; Park and Kwon, 2008). Studies
exploring electrophysiological changes related to AED use have
found highly heterogenous results across participants and medi-
cations, with some evidence for short-term reductions in gamma
power (Arzy et al., 2010) and long-term slowing of EEG rhythms
(Salinsky et al., 1994), measures that have minimal overlap with
our metrics. Hence, while AEDs may certainly be a relevant fac-
tor, they are unlikely to be the primary driving force of the re-
ported effects that persist across timescales and individuals.

Together, our data therefore provide insight into why mem-
ory performance may be variable both between and within indi-
viduals. Our data suggest that how well one can encode and
retrieve memories is related to the flexibility in their cognitive
processing. Such flexibility is captured directly by measuring the
sample entropy of the neural signal, and corroborated by our
measures of low-frequency power and the PSD slope. People with
better memory have neural signals that exhibit greater complex-
ity, and therefore are capable of exhibiting more flexible behav-
ior, which is beneficial for memory formation.
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