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How organisms learn the value of single stimuli through experience is well described. In many decisions, however, value estimates are
computed “on the fly” by combining multiple stimulus attributes. The neural basis of this computation is poorly understood. Here we
explore a common scenario in which decision-makers must combine information about quality and quantity to determine the best
option. Using fMRI, we examined the neural representation of quality, quantity, and their integration into an integrated subjective value
signal in humans of both genders. We found that activity within inferior frontal gyrus (IFG) correlated with offer quality, while activity in
the intraparietal sulcus (IPS) specifically correlated with offer quantity. Several brain regions, including the anterior cingulate cortex
(ACC), were sensitive to an interaction of quality and quantity. However, the ACC was uniquely activated by quality, quantity, and their
interaction, suggesting that this region provides a substrate for flexible computation of value from both quality and quantity. Further-
more, ACC signals across subjects correlated with the strength of quality and quantity signals in IFG and IPS, respectively. ACC tracking
of subjective value also correlated with choice predictability. Finally, activity in the ACC was elevated for choice trials, suggesting that ACC
provides a nexus for the computation of subjective value in multiattribute decision-making.
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Introduction
Convergent evidence from human fMRI (O’Doherty et al., 2001;
Montague and Berns, 2002; Kable and Glimcher, 2007; Knutson

et al., 2007; FitzGerald et al., 2009; Levy et al., 2011) and nonhu-
man primate recordings (Schultz et al., 1997; Padoa-Schioppa
and Assad, 2006; Hayden et al., 2011; Kennerley et al., 2011;
Padoa-Schioppa and Schoenbaum, 2015) suggest that neural
representations of subjective value are present in a wide variety of
brain areas, potentially represented in an automatic fashion in-
variant to the task at hand (Lebreton et al., 2009; Grueschow et al.,
2015). These value estimates are thought to provide input to
value-comparison mechanisms to enable an appropriate decision
between options (Padoa-Schioppa and Assad, 2006, 2008; Padoa-
Schioppa, 2011; Xie and Padoa-Schioppa, 2016), a process vari-
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Significance Statement

Would you prefer three apples or two oranges? Many choices we make each day require us to weigh up the quality and quantity of
different outcomes. Using fMRI, we show that option quality is selectively represented in the inferior frontal gyrus, while option
quantity correlates with areas of the intraparietal sulcus that have previously been associated with numerical processing. We show
that information about the two is integrated into a value signal in the anterior cingulate cortex, and the fidelity of this integration
predicts choice predictability. Our results demonstrate how on-the-fly value estimates are computed from multiple attributes in
human value-based decision-making.
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ously characterized as evidence accumu-
lation (Krajbich et al., 2010; De Martino et
al., 2013; Polanía et al., 2014) or mutu-
ally inhibitory competition (Wang, 2008;
Hunt et al., 2012; Chau et al., 2014). Rep-
resentations of stimulus value also play a
crucial role in reinforcement learning,
where discrepancies between experienced
and expected values give rise to the predic-
tion errors that drive learning (Schultz et
al., 1997; Sutton and Barto, 1998; Pessigli-
one et al., 2006; Rutledge et al., 2010;
Kahnt et al., 2011).

Despite abundant and consistent ev-
idence for value representations in spe-
cific brain areas, we still know little
about how they come about and are in-
tegrated across multiple attributes. Ef-
forts to isolate value signals within a
neuroeconomic framework have used
carefully controlled stimulus character-
istics and action requirements in an ef-
fort to disambiguate value from its
components (O’Doherty, 2014; Hunt et
al., 2015). However, in the real world,
we often need to construct valuations
of never-before-seen objects. Recent studies
using foraging tasks have emphasized that
a more ethological contextualization of
decision-making provides a richer ac-
count of the computations which under-
lying choice (Cisek and Kalaska, 2010;
Kahnt et al., 2011; Chau et al., 2014;
Kolling et al., 2014), highlighting a need to
understand the individual component
processes that contribute to value estima-
tion. In this experiment, we drew inspira-
tion from such foraging tasks to ask how
current option value is constructed from
two component parts, quality and quantity.

We designed an experiment where participants integrated in-
formation about the quality of a giftcard (how subjectively valu-
able it was for them to be able to spend money at a particular
store) and its quantity (how much money was on the giftcard). In
a behavioral session, we characterized the combination of quality
and quantity to form integrated values using an auction proce-
dure [Becker-DeGroot-Marschak (BDM); Becker et al., 1964],
allowing us to select giftcards with distinct qualities. In the sub-
sequent fMRI experiment, participants evaluated a series of indi-
vidual giftcards without any choice requirement, allowing us to
examine correlates of quality, quantity, and value that were un-
contaminated by decision-related signals (Hunt et al., 2015).

We found that quality was represented in the inferior frontal
gyrus (IFG), extending into the lateral prefrontal cortex (PFC).
Conversely, quantity was associated with increasing activity in
the bilateral intraparietal sulcus (IPS). To identify regions in
which the two might be interacting in a manner consistent with
the calculation of value, we formulated an explicit interaction
term. This interaction term captures the fact that an extra unit of
money on the highest quality giftcard is more valuable to the
subject than an extra unit on the low-quality giftcard; you would
rather have another dollar to spend at a shop you really like than

at one you dislike. This interaction (higher slope of quantity cod-
ing with higher quality) correlated with activity in the posterior
cingulate cortex and bilateral superior temporal regions. Anterior
cingulate cortex (ACC) displayed a conjunction of all three ef-
fects, indicative of a substrate for the calculation of integrated
subjective value from its component parts. In keeping with this,
we also observed repetition suppression (RS) for integrated sub-
jective value in the cingulate cortex, with activity covarying with
the absolute difference in value between stimuli presented in con-
secutive trials.

Materials and Methods
Participants
Forty-seven participants (25 males) participated in the behavioral study,
with 26 returning for an fMRI session. Of these, one participant failed to
complete the experiment due to ill health, leaving 25 participants in total
for the imaging study. Both studies were approved by a local ethics com-
mittee (Research Ethics Committee UCL, reference 3450/002). Based on
pilot experiments, we selected 13 giftcards that were well known to the
participant population, maximized between-subject variability, and dis-
played minimal correlations between cards (i.e., preferences for a given
card could not be predicted from preferences for other cards).

During the behavioral session, participants completed the following
two tasks: an auction procedure, from which they could obtain a mixture
of up to £20 cash and a £20 giftcard, and a session of paired choices

D
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Figure 1. Experimental procedure. A, We used giftcards to manipulate quality and quantity. Cards from different shops had
different qualities, depending upon the subjective value of money that can be spent at that shop alone. Quantity varied as the
amount of money (number of £) depicted on the card. B, Following an initial behavioral session in which we mapped value
functions for different giftcards, a subset of participants was invited to return for an fMRI session. C, Behavioral experiment. The
first task involved an auction (BDM procedure). Participants were offered different cards with varying amounts of money on them
and indicated the maximum amount they would be willing to pay for that card. In the second (paired-choice) task, subjects made
choices between pairs of giftcards with equal quantities (£20). D, fMRI experiment. On most trials (six of seven), participants saw
only a single giftcard from one of three different shops, with a randomly varying quantity (amount of money). On decision trials
(one of seven), a second giftcard was displayed 2 s after the first, and participants had 4 s to make a choice between the two
giftcards. ITIs were normally distributed at �1.5 s.
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between cards worth £20 (Fig. 1). One trial was randomly selected across
both sessions and reimbursed appropriately. For the fMRI experiment,
participants first completed paired choices between cards worth £20 out-
side of the scanner, and subsequently chose between cards worth £1–20
within the scanner. One trial from each task was reimbursed, in addition
to a £20 flat rate for experiment completion.

Experimental design and statistical analyses
Behavioral session
Participants first performed an auction task (BDM) designed to elicit the
subjective valuation of different giftcards holding varying amounts of
money (Becker et al., 1964). Briefly, the BDM involves players placing a
minimum bid for an item on each trial. After the experiment, a single trial
is randomly selected for reimbursement. For that trial, a randomly drawn
number—the “cost”—is compared with the bid. If the cost is higher than
the bid, the player retains their endowment and does not receive the item.
If the bid is higher than the cost, then the player receives the item, but,
crucially, pays the cost rather than their bid. This removes an incentive to
place low bids, resulting in an optimal strategy whereby players report
their true values. Each of 13 giftcards were presented in association with
12 different quantities, giving a total of 156 trials. Following the auction
task, participants chose between pairs of giftcards of matched quantity
(£20). Each combination of cards was presented twice, yielding 325 trials
after the removal of trials involving two copies of the same card.

We selected a subset of participants to complete the scanning part of
the study. Selection was based upon reliability, stability, and diversity of
preferences over giftcards. We fit linear regressions to values reported
during the auction procedure, yielding the following equation for each
giftcard:

Integrated Value � � * Quantity � C,

where � and C (an intercept term) were fit using robust regression. The �
values thus obtained are a measure of the quality of a giftcard, the value of
a single unit of currency on that giftcard. We next assessed how well these
� values predicted paired choice (see Fig. 3), selecting subjects for whom
there was a close relationship.

For the scanning session, we selected three giftcards, which were cho-
sen to maximize variance in quality (see Fig. 3C). We thus selected the
lowest and highest quality card (max � and min �), and one closest to the
mean of the two. Having performed this selection procedure, we verified
that choices of these cards in the paired-choice session reflected the rank-
ings calculated from the BDM (see Fig. 3). These � values were used as
indicators of quality for the fMRI analyses in which parametric modula-
tors were used [general linear model (GLM) 2 and GLM3; see below].

fMRI task
The task design allowed us to examine representations of quality, quan-
tity, and their interaction using both linear analyses and measures of
repetition suppression. To avoid measurements being confounded by
variables related to the dynamics of stimulus comparison (Hunt et al.,
2015), on the majority of trials we presented a single stimulus (Fig. 1D)
and asked participants to evaluate its desirability. The presentation side
was flipped every 10 trials. Stimuli remained onscreen for 4000 ms before
being followed by an intertrial interval (ITI; normally distributed at 1500
ms) or, in one of seven trials, the appearance of a second giftcard. Partic-
ipants were asked to make a choice between the two within 4000 ms,
using a button box. Failure to register a choice within this time period
resulted in a “TIME OUT” message, and participants were informed
before scanning that if a timed-out trial was selected for reimbursement,
they would receive no payment for that part of the experiment. Each
giftcard displayed in the scanner was pseudocolored red or blue to reduce
gross visual differences between cards.

Repetition suppression in fMRI effects can show sensitivity to expec-
tation (Summerfield et al., 2008), necessitating counterbalancing of stim-
ulus order. We designed our trial presentation order such that there was no
relationship between the current trial and the next one. This served the dual
purposes of avoiding potential confounds in our repetition suppression

analysis, and ensuring consistent engagement of our subjects, who were un-
able to predict when they might have to make a decision.

We defined seven trial types (red and blue versions of each three gift-
cards � decision trials) and used a genetic algorithm to find a stimulus
(stim) order in which p(stimi

2�stimj
1) was matched for all stimuli i and j.

We manually removed trials on which decisions were repeated, leaving a
sequence of 97 stimuli. The quantity (1–20) on the giftcards was random-
ized, effectively orthogonalizing quality and quantity (mean correlation
coefficient across participants � 0.0074, p � 0.40). Participants com-
pleted four runs of the task, yielding a total of 340 stimulus evaluation
trials and 48 decision trials.

Logistic regression modeling of choices during fMRI task
We used logistic regression to characterize the factors modulating
choices in the scanner. For each participant, we fit a model to predict
whether they chose the new card ( presented during the decision trial) or
the old card (on-screen from the valuation trial):

Choice(t)

� s��0 � �0 QualityNew-Old � �2QuantityNew-Old � �3InteractionNew-Old),

where �0 is a constant term accounting for option-independent biases in
choice, �1–3 are regression coefficients describing the effect of each term
on choice, and s is the sigmoid function:

s� x� �
1

1 � e�x.

Quality was defined using the � values from the BDM auction (see above;
see Fig. 3A), while quantity merely reflected the monetary amount (in
pounds) depicted on each giftcard. We formulate the interaction term by
first normalizing quality and quantity, and then taking the product.

To assess choice predictability, we took the output of the model (val-
ued between 0 and 1), rounded it (such that choices were either a 0 or a 1),
and compared it to the vector of actual choices made by the participant.
Predictability was then defined simply as the percentage of choices cor-
rectly predicted by the model.

fMRI data acquisition
Data were acquired using a Siemens 3 T Trio Scanner with a 32-channel
head coil at the Wellcome Trust Centre for Neuroimaging. We used a 2D
echoplanar image (EPI) sequence optimized to minimize dropout in the
orbitofrontal cortex (OFC; Weiskopf et al., 2006), with voxels 3 mm
isotropic (TR � 3.36 s, TE � 30 ms), with 48 slices giving whole-brain
coverage. Slices were tilted at �30°. Scans were preceded by a field map
(TE1 � 10 ms, TE2 � 12.46 ms). The first five volumes of each run were
discarded to allow for T1 equilibration. We also acquired a T1-weighted
structural scan for each subject, comprising 176 slices over a field of view
of 256 mm with a 1 mm isotropic resolution (TR � 7.92 ms, TE � 2.48
ms; Deichmann et al., 2004). Throughout scanning, we monitored the
breathing rate, using a pneumatic belt and pulse, and blood oxygenation,
using an infrared pulse oximeter (Model 8600 F0, NONIN). Both were
digitized and recorded via Spike2 (version 6.17), and subsequently in-
cluded in GLM analyses of brain activity along with regressors derived
from motion correction (Hutton et al., 2011).

fMRI data preprocessing
All preprocessing and data analysis took place in SPM12 (http://www.
fil.ion.ucl.ac.uk/spm/). Subsequent data visualization took place in
MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html) and
MRIcroGL (http://www.cabiatl.com/mricrogl/). Having discarding the
first 5 volumes, we corrected EPIs for field inhomogeneities using ac-
quired field maps. We then bias corrected, slice-time corrected (to the
middle slice), and realigned and unwarped to the first EPI for each par-
ticipant. EPIs were then co-registered to each participant’s structural
scan. EPIs were then coregistered to each participant’s structural scan.
We used the DARTEL toolbox for between-subject registration and nor-
malization (Ashburner, 2007). Structural images were first segmented
into white matter, gray matter, and CSF components. Segmented images
were then iteratively warped into normalized MNI space, providing a
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template that was then used to normalize EPIs, a step that included
Gaussian smoothing at 8 mm FWHM.

fMRI data analysis
Data were analyzed using a series of GLMs. These were estimated for each
participant, including the calculation of contrasts between different re-
gressors (first-level analysis). This provided summary statistics (� values)
that could be tested at a population level versus a null hypothesis that they
were on average equal to zero (second-level analysis; Friston et al., 1999).
To obviate multiple comparisons when performing whole-brain analy-
ses, we applied a correction using a cluster-defining threshold of p �
0.005, and a cluster-corrected familywise error (FWE) threshold of p �
0.05, except in the analysis of repetition suppression (GLM2, below),
where a more lenient cluster-forming threshold of p � 0.01 was used,
which is in line with recent repetition suppression studies (Barron et al.,
2013; Garvert et al., 2015; Boorman et al., 2016). To extract the parameter
estimates displayed in Figure 5, we used group-functional ROIs thresh-
olded at p � 0.005. For the conjunction analysis described in Figure 5, we
took the product of three binary masks (quality, quantity, and interac-
tion), each thresholded at puncorrected � 0.05, resulting in an FWE rate of
puncorrected � 0.000125.

GLM1: quality and quantity. Our first GLM incorporated separate
onset regressors for cards of different qualities (low, medium, and high).
Each of these was modeled as a 4-s-long boxcar and was associated with a
parametric modulator corresponding to the quantity on the card at each
presentation. We used a fourth-onset regressor corresponding to deci-
sion trials, which were modeled as 	 functions. This GLM was used to
perform a whole-brain analysis of value computations during evaluation
trials.

We performed the following three key contrasts:

Quality: [QualityHigh � QualityLow]

Quantity: [QuantityHighQuality � QuantityMediumQuality � QuantityLowQuality]

Interaction: [QuantityHighQuality � QuantityLowQuality].

The interaction analysis was constructed to test for regions displaying
steeper coding of quantity for high-quality cards compared with low-
quality cards, consistent with value integration. This corresponds to an
intuition that an extra unit of a more desirable good (e.g., a Ferrari) is
worth more than an extra unit of a less desirable good (e.g., an apple). We
excluded trials preceding decisions from the evaluation regressors to
guard against contamination of the evaluation regressors by decision-
related activity, a possibility arising out of the lack of ITI between evalu-
ation and decision trials.

GLM2: repetition suppression. Following the numerosity-coding liter-
ature (Piazza et al., 2004, 2007; Jacob and Nieder, 2009), we designed a
repetition–suppression analysis based upon the absolute change in value
between trials (see Fig. 7A). We used this analysis to reveal repetition
suppression effects within ROIs identified by the whole-brain analysis
using GLM1.

	IntegratedValue(t) � �IntegratedValue(t) � IntegratedValue(t � 1)�.

where IntegratedValue(t) is simply the product of quality and quantity
on trial t. We used a single-onset regressor to represent all giftcard pre-
sentations, again using a 4 s boxcar, with parametric modulators for
	Integrated Value, and, as a precaution, Integrated Value. The inclusion
of Integrated Value in the model allowed us to confirm that the effects of
	Integrated Value were not simply the result of spurious correlation with
Integrated Value itself. Trials following decisions were excluded as they
were preceded by a pair of stimuli, obfuscating the calculation of stimulus
similarity. As before, we used a second-onset regressor for decision trials.
Contrasts were calculated merely as the value of the relevant parametric
modulators.

GLM3: integrated value. To obtain a measure of integrated value cod-
ing, we used a single 4 s boxcar for all evaluation trials, which was asso-
ciated with a parametric modulator for integrated value (Quality 

Quantity), excluding predecision trials as in GLM1. As in GLM1 and 2,
decision trials were modeled in a separate regressor with 	 onsets. We

used this analysis within ROIs identified by the whole-brain analysis in
GLM1, to confirm that the ACC region showing a conjunction of quality,
quantity, and interaction effects could also be described as coding-
integrated value.

Statistical tests. Parameter estimates from fMRI are normally distrib-
uted, permitting the use of parametric statistics (t tests and Pearson
correlations). When analyzing distributions that we knew a priori to be
non-normal (e.g., predictability, which is bounded at 0 and 100), we used
nonparametric equivalents (sign tests and Spearman rank coefficients).
All statistical testing was performed in Matlab.

Results
Behavioral session establishes stable quality estimates
We used a behavioral session to identify participants for whom
we could find giftcards with consistently different subjective
qualities (Fig. 1B). The behavioral session consisted two tasks.
Participants (n � 47) performed a BDM auction (Becker et al.,
1964) and a series of paired choices, each involving a selection of
13 giftcards (Fig. 1C). In the BDM auction, players reported how
much they would be willing to pay for a giftcard loaded with a
certain amount of money, from £1 to £20. Subsequently, partic-
ipants made paired choices between different giftcards contain-
ing matched sums (£20).

We used a linear fit to the relationship between the amount of
money on the giftcard and the amount bid for each giftcard dur-
ing the BDM to provide a measure of the quality of each giftcard
for each participant (Fig. 2A). To maximize power in the fMRI
study, we selected subjects whose bids were predictable (Fig. 2A)
and for whom we could select three giftcards with distinct quali-
ties (Fig. 2B, circled points, C). By way of confirmation that
BDM-estimated values predicted choice, we next compared qual-
ity estimates from the BDM with the number of choices of each
giftcard in the paired-choice session, preferring subjects for
whom there was a high correlation (Fig. 2B).

Selected subjects thus displayed consistent BDM bids, a high
correlation between preferences elicited in the BDM and paired-
choice sessions, and a low maximum correlation among quality,
quantity, and integrated value (Fig. 3). Integrated value, calcu-
lated as the product of quality and quantity, effectively provided a
prediction of the bid a participant would place for a given gift-
card. The correlation among quality, quantity, and integrated
value reflects the diversity of giftcard qualities. Giftcards with
disparate qualities limit the correlation between quantity and
integrated value (Fig. 2C, i, iii), while if all giftcards have similar
qualities, the quantity/integrated value correlation will be high
(Fig. 2C, ii).

fMRI experiment: subjects integrate quality and quantity
in choice
For each participant in the fMRI experiment (n � 25), we used
data from the behavioral session to select the following three
giftcards: the giftcard that displayed the steepest relationship be-
tween BDM bid and quantity (high quality); the giftcard that
displayed the lowest (low quality); and a giftcard of intermediate
slope (medium quality; Fig. 3A). In a prescanning paired-choice
session, we confirmed that preference estimates from the preced-
ing behavioral session were stable, with subjects making choices
among the three selected giftcards in a highly predictable manner
(Fig. 3B).

Within the scanner, participants made choices between gift-
cards of varying quality and quantity on one of seven trials (Fig.
1D), resulting in a total of 48 decisions. Participants remained
highly engaged throughout, exceeding the time limit for choice of
4000 ms in only 7 of 1200 choices. We used a logistic regression
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analysis to quantify the impact of differences between the two
options upon choice. We calculated an interaction term as the mean-
centered product of quality and quantity. Intuitively, the interaction
term captures the fact that an extra pound on the highest quality
giftcard is more valuable to the subject than an extra pound on
the low-quality giftcard. Differences among options in quality,
quantity, and their interaction all influenced participants’ choices
(quality: t(24) � 8.6, p � 0.001; quantity t(24) � 13.7, p � 0.001;
interaction: t(24) � 3.8, p � 0.001; Fig. 3C), implying that partic-
ipants combined information about quality and quantity to esti-
mate integrated subjective value, rather than considering the two
attributes independently.

Brain activity associated with quality, quantity, and
their interaction
In the scanner, participants were shown a single giftcard and
asked to internally evaluate it (evaluation trials), in the knowl-
edge that they might have to make a fast decision between that
option and another (decision trials; Fig. 1D). The preponderance

of valuation trials (340 of 388) provided us with an opportunity
to examine value computation in isolation, without potentially
confounding effects of decision dynamics (Hunt et al., 2015).

To isolate elements of value representation, we used GLMs of
voxelwise brain activity to examine the representation of quality,
quantity, and their interaction in valuation trials. We split card pre-
sentations by quality (low, medium, high) and associated each onset
with a parametric modulator corresponding to the quantity pre-
sented on that trial. This allowed us to index the main effects of card
quality (QualityHigh � QualityLow, card quantity (QuantityLowQuality

� QuantityMediumQuality � QuantityHighQuality), and the interac-
tion between the two (QuantityHighQuality � QuantityLowQuality).

The interaction term allows us to identify regions where quan-
tity affects activity more when giftcard value is high compared
with when it is low. By decomposing value in this way—into
quality, quantity, and their interaction—we can identify brain
regions displaying specific relationships with each component, as
well as regions showing an overlap of all three effects. This con-
junction analysis is more stringent than a simple contrast for

B CA

Figure 2. Example participants from behavioral experiment. We used data from the behavioral session to determine subsequent inclusion in an fMRI study based on criteria of consistency and
diversity of preferences for different giftcards (assessed using the predictability of BDM ratings), relationships between BDM and paired-choice tasks, and correlations between quantity and
subjective value. A, First, we examined quantity– bid relationships for the 13 different giftcards. The slope of the quantity– bid relationship for each giftcard is a measure of that the quality of the
giftcard, with higher slopes corresponding to more valuable brands. Here, the participant in i has diverse but noisy preferences, the participant in ii is consistent but has similar preferences across
giftcards, while the participant in iii displays an acceptable level of consistency while maintaining diverse preferences. B, To assess preference stability, we compared the slope of lines estimated from
the BDM task with the number of times each giftcard was chosen in the paired-choice task. The participant in i shows a weak relationship between choices in each session; the participant in ii is
consistent but shows little variability; and the participant in iii is both consistent and displays diverse preferences. C, For the fMRI experiment, we selected three giftcards for each participant that
differed maximally in quality. Here we show BDM plots for selected cards. As before, i is noisy but shows diverse quality preferences, ii has similar preferences over giftcards, and iii has consistent
and diverse preferences over giftcards.
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integrated value, because it prevents erroneously identifying re-
gions that simply have a strong correlation with only quality or
quantity. Motivated by this same logic, recent studies formulate
fMRI contrasts for reward prediction errors (RPEs) as a conjunc-
tion of positive coding for reward and negative coding for reward
expectation, thus avoiding false-positive results arising from the
correlation between RPEs and other variables such as reward
itself (Rutledge et al., 2010).

We found three largely nonoverlapping patterns of response
corresponding to the representation of offer quality, quantity,
and their interaction. Higher card quality was associated with
greater activity in bilateral IFG, centered on the pars opercularis
(left: peak MNI � �54, 12, 30; t(24) � 4.79, pFWE-corrected � 0.023;
right: peak MNI � 51, 9, 27; t(24) � 4.37, pFWE-corrected � 0.032;
Fig. 4A). On the left, this extended into dorsolateral PFC (peak
MNI � �36, 48, 24; t(24) � 3.16, pFWE-corrected � 0.044) and
included Broca’s area, an area associated with semantic compre-
hension (Price, 2012), arguably a process necessary for evaluating
abstract stimuli such as giftcards. Parameter estimates extracted
from group-level functional ROIs within IFG (defined at p �
0.005) suggested an absence of sensitivity to either quantity
(t(24) � 1.18, p � 0.24) or the interaction of quantity and quality
(t(24) � 1.53, p � 0.14) in this region, although direct compari-
sons did not distinguish quality coding from that of quantity or
the interaction (quantity: t(24) � 1.88,p � 0.073; interaction:
t(24) � 1.88,p � 0.17).

Offer quantity correlated with activity in bilateral IPS (Left:
peak MNI, �27, �66, 51; t(24) � 4.77, pFWE-corrected � 0.001;
right: peak MNI, 33, �66, 51; t(24) � 4.68, pFWE-corrected � 0.001)
resonating with a role for this region in numerical reasoning in
humans and nonhuman primates (Nieder and Miller, 2004; Pi-
azza et al., 2004, 2007; Pinel et al., 2004; Harvey et al., 2013; Fig.
4B). As for IFG, activity in the IPS was selective for number, with
no sensitivity to quality (t(24) � 0.19, p � 0.85) or the interaction
of quality and quantity (t(24) � 0.84, p � 0.41). This indicates that
IPS is not performing value coding per se, but specifically repre-
sents the quantity of available options. Direct comparisons con-
firmed that quantity correlations were greater than those for
quality (t(24) � 3.52, p � 0.0017) and for the interaction (t(24) �
3.36, p � 0.0025). We also observed quantity-related activity in
bilateral visual cortex (left: peak MNI, �33, �87, �12; t(24) �
5.54, pFWE-corrected � 0.001; right: peak MNI, 27, �87, �12;
t(24) � 5.49, pFWE-corrected � 0.001).

Finally, we asked whether activity in any region of the brain
was associated with an interaction between quality and quantity,
correlating more steeply with quantity for high-quality giftcards
compared with low-quality giftcards. This is a signature of value
computation, involving additional processing above and beyond
a simple reflection of option quality or quantity. The most prom-
inent effect was located along the posterior cingulate cortex (peak
MNI, �12, �15, 54; t(24) � 3.57, pFWE-corrected � 0.001) where
activity was specific to the interaction term, with no evidence of
quality (t(24) � �0.14, p � 0.89) or quantity (t(24) � 0.77, p �
0.45) correlations, implying that despite the involvement of this
region in value computation, it does not represent an integrated
value signal per se. Direct comparisons confirmed that the inter-
action effect exceeded both quality (t(24) � 2.93, p � 0.0072) and
quantity (t(24) � 2.53, p � 0.018) contrasts. Interaction contrast
effects were also present in bilateral superior temporal lobes (left:
peak MNI, �63, �45, 0; t(24) � 5.55, pFWE-corrected � 0.001; right:
peak MNI, 48, �33, 3; t(24) � 4.85, pFWE-corrected � 0.001; Fig.
4C).

Computation of integrated value from component parts in
the cingulate
Having characterized neural responses to individual components
of option value (quality, quantity, and their interaction), we next
asked whether any regions represented integrated value. To do so,
we formulated a parametric regressor for subjective integrated
value, by combining quality and quantity mutliplicatively in the
manner suggested by our behavioral results (Fig. 3).

However, since integrated value is correlated with quality and
quantity (though this correlation is limited by design) testing for
effects of integrated value presents a problem as regions sensitive
to quality or quantity alone might appear to reflect integrated value.
To overcome this, we supplemented our parametric analysis with a
conjunction analysis, reasoning that a region truly representing in-
tegrated value ought to display sensitivity to all of its components:
quality, quantity, and their interaction. Importantly, the interaction
of two mean-centered variables is decorrelated from either compo-
nent, giving us a way to check for correlates of the computation of
subjective value.

Both analyses revealed a striking convergence on the ACC
(Fig. 5) where activity covaried with a parametric modulator for
integrated value (peak MNI, �12, 21, 39; t(24) � 6.04, pFWE-corrected

� 0.001) and showed a conjunction of effects of quality, quantity,

B CA

Figure 3. Behavioral results for subjects in scanning experiment. A, Average quantity– bid functions show the difference in quality for three selected giftcards for subjects who completed both
the behavioral and fMRI sessions (n �25). B, In a prescanning paired-choice session, we confirmed that the ordering of cards by quality was highly consistent between sessions. C, Analysis of choices
made in the MRI scanner. During the fMRI experiment, participants made 48 choices between cards of varying quality and quantity (Fig. 1D). We used the differences between options to predict
choices using logistic regression. The differences between options in both quality (t(24) � 8.6, p � 0.001) and quantity (t(24) � 13.7, p � 0.001) were predictive of choice. Importantly, the
interaction between quality and quantity also predicted choice (t(24) � 3.8, p � 0.001), consistent with the multiplicative relationship expected from the observed quantity– utility functions (A).
Errors bars represent the SEM across subjects.
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and their interaction (all p � 0.05uncorrected). This chimes with
known roles of this regions, including the fact that it contains neu-
rons that multiplex attributes in value-based decision-making (Ken-
nerley et al., 2011) and its necessity for value learning (Rushworth
and Behrens, 2008; Hayden et al., 2009). Decomposing the interac-
tion effect within the ACC, we observed that although quantity
coding for all three qualities was positive, it was only signifi-
cantly so in the high-quality condition (QuantityLowQuality:
t(24) � 0.15, p � 0.87; QuantityMidQuality: t(24) � 1.51, p � 0.14;
QuantityHighQuality: t(24) � 4.24, p � 0.001). By way of compari-
son, all three of these effects were significant in the IPS region
pictured in Figure 4B, with no significant difference between
coding of quantity for high-quality and low-quality giftcards
(QuantityLowQuality: t(24) � 2.30, p � 0.03; QuantityMidQuality: t(24) �
2.69, p � 0.012; QuantityHighQuality: t(24) � 4.78, p � 0.001; Quanti-
tyHighQuality vs QuantityLowQuality: t(24) � 1.17, p � 0.25).

We next reasoned that if the ACC value estimates guide
choice, then we should see greater activity in decision trials com-
pared with valuation trials. This was indeed the case with decision
trials associated with enhanced activity in the same region (peak

MNI, 9, 15, 45; t(24) � 17.03, pFWE-corrected � 0.001; Fig. 5B).
Dorsally, this region overlaps with activity in dorsomedial PFC
(dmPFC) showing an integrated value difference signal (Lebre-
ton et al., 2009; Grueschow et al., 2015) and previously charac-
terized as the final value comparison step before motor output
(Hare et al., 2011).

Our analyses revealed dissociable representations of qual-
ity, in the IFG, and quantity, in the IPS. Although we lack the
temporal precision to test whether these segregated represen-
tations precede the emergence of integrated value signals in
ACC, we nevertheless can ask whether between-subject vari-
ability in component coding is related to between-subject
variability in ACC representations. We found evidence that
this was the case, with stronger IFG encoding of quality asso-
ciated with stronger coding of quality in ACC (r � 0.63, p �
0.001; Fig. 5C), while stronger IPS encoding of quantity was
associated with stronger quantity coding in the ACC (r � 0.68,
p � 0.001; Fig. 5F ). Importantly, the converse correlations did
not hold, with parameter estimates for IGF quality unrelated

C

B

A

Figure 4. Representation of quality, quantity, and their interaction. A, We observed bilateral coding of offer quality (QualityHigh � QualityLow) bilaterally in the IFG. B, Increasing quantity, as
tested by QuantityHighQuality � QuantityMediumQuality � QuantityLowQuality, was associated with greater activity bilaterally in the IPS. C, Activations in the posterior cingulate cortex were consistent
with representing the interaction of quality and quantity but not either variable separately (QuantityHighQuality � QuantityLowQuality). Errors bars represent the SEM across subjects, SPM values were
thresholded at p � 0.01 for visualization.
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to ACC quantity (r � 0.04, p � 0.83) and IPS quantity unre-
lated to ACC quality (r � 0.14, p � 0.50) coding (Fig. 5 D, E).
This specificity suggests that observed correlations reflect
meaningful inter-regional relationships rather than correlated
variance in signal-to-noise ratio between participants.

Strength of neural quantity coding reflects
choice predictability
The degree to which subjects’ choices were correctly predicted by
our logistic regression varied from 69% to 92%. We reasoned that
stronger neural representations of value components should lead

B

C D

E F

A

Figure 5. Computation of value from component parts in the anterior cingulate cortex. A, Overlapping effects of quality, quantity, and their interaction in the ACC. A conjunction analysis revealed
overlapping representations of each component ( puncorrected � 0.05; green) in the ACC, suggesting a nexus for the computation of value. A complementary analysis using an explicit representation
of integrated value as a parametric modulator identified the same region ( pFWE-corrected � 0.001; turquoise). Time course displayed for illustration purposes. B, Decision � nondecision trials. The
ACC also showed higher activity in trials upon which a decision was made compared with valuation trials (red), overlapping with the conjunction analysis identified in A (green). C, Participants with
stronger representations of quality in the IFG showed stronger representations of quality in the ACC (r � 0.63, p � 0.001). D, Quality sensitivity in IFG was unrelated to quantity coding in ACC (r �
0.04, p � 0.83). E, Quantity sensitivity in IPS was unrelated to quality coding in ACC (r � �0.14, p � 0.50). F, Participants with stronger representations of quantity in the IPS showed stronger
representations of quantity in the ACC (r � 0.68, p � 0.001). Each point is one participant.
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to more predictable choices. Using parameter estimates (� val-
ues) extracted from our GLM analyses, we asked whether
between-subject variability in � values related to between-subject
choice predictability. We found that the strength of neural corre-
lations with quantity, but not quality, was associated with pre-
dictability of choice (Fig. 6). Mean � values in both the IPS (� �
0.60, p � 0.002) and ACC (� � 0.42, p � 0.039) were positively
correlated with choice predictability, suggesting that stronger
neural representations of quantity correspond to more reliable
choices. Correlations between predictability and quality coding
in the IFG (� � 0.41, p � 0.104) and ACC (� � 0.30, p � 0.142)
were also positive but did not reach significance, perhaps reflect-
ing the greater range of values for quantity than quality or the
potential impact of overtraining on giftcard quality. We observed
no relationship between interaction coding in ACC and predict-
ability (� � �0.04, p � 0.83). We note that after applying a
conservative Bonferroni correction for the five comparisons we
make here, only the effect in the IPS survives an adjusted thresh-
old of � � 0.01.

Using the summed log-likelihood of choices according to the
logistic regression model as an alternative measure of choice predict-
ability yielded a consistent pattern of results, although the effect in
the ACC was no longer significant at � � 0.05 (IPS: � � 0.55, p �
0.004; ACC: � � 0.35, p � 0.089). We did not observe any other
correlations between the parameters of our logistic regression model
for behavior and those of our GLMs for neural activity.

Repetition suppression for integrated value in the ACC
RS describes the phenomenon whereby repeated presentation of
stimuli that are similar along some dimension evoke reduced activity
in brain regions sensitive to that attribute (Grill-Spector et al., 2006).
This is putatively due to a reduction in activity in neurons activated
in both trials (Fig. 7). This provides a means to assay the neural
overlap in the representation of two stimuli such as foods (Barron et
al., 2013), faces (Loffler et al., 2005), or even agents (Garvert et al.,
2015). This can reveal nonmonotonic codes invisible to traditional
GLM approaches, such as tuned numerosity representations in the
parietal cortex (Piazza et al., 2004, 2007; Jacob and Nieder, 2009).
Since our task involved the calculation of value from information
about quantity, we hypothesized that value representations in the
ACC might show a similar form.

We asked whether RS provides additional evidence of value
encoding in ACC. We constructed a GLM where we modeled the

absolute difference in integrated value (	IntegratedValue) be-
tween subsequent trials, as well as the Integrated Value on each
trial. If neurons in a brain region are undergoing RS, aggregate
activity as assayed by BOLD should covary with the absolute
difference between trials (Barron et al., 2016). We found evidence
for repetition suppression to value in dorsal ACC (peak MNI,
�3, 3, 51; t(24) � 3.86, pFWE-corrected � 0.003), just posterior to the
activity related to monotonic encoding of integrated value (Fig.
7B). These activations were partially overlapping, such that the
integrated value coding conjunction identified in Figure 5
showed effects of both 	IntegratedValue and Integrated Value
(Fig. 7C; 	IntegratedValue: t(24) � 2.48, p � 0.020; Integrated
Value: t � 3.26, p � 0.0034). Repetition suppression for inte-
grated value was surprisingly widespread. We also observed rep-
etition suppression for value bilaterally in the lingual gyrus (left:
peak MNI, �15, �45, �9; t(24) � 6.18, pFWE-corrected � 0.001;
right: peak MNI, 15, �48, 3; t(24) � 4.56, pFWE-corrected � 0.001),
the right superior temporal sulcus (peak MNI, 63, �30, 3; t(24) �
5.80, pFWE-corrected � 0.001), and bilaterally in the posterior insula
(left: peak MNI, �30, 0, �3; t(24) � 5.00, pFWE-corrected � 0.001;
right: peak MNI, 33, �6, �12; t(24) � 3.60, pFWE-corrected �
0.001).

Discussion
Value representations are often studied as monolithic entities.
Indeed, considerable effort has been expended in identifying ab-
stract behavioral and neural signatures of scalar value estimates.
However, recent work suggests that during choice components of
value compete at an attribute level to guide decisions (Hunt et al.,
2014), emphasizing the importance of decomposing value into its
constituent parts. Here we show that, in the absence of choice,
integrated value correlates appear in the ACC, with component
representations in the IFG (quality) and IPS (quantity; Figs. 5, 6).
A distinct network appears to integrate the two, with posterior
cingulate and superior temporal lobe activations corresponding
to the interaction between quality and quantity (Fig. 4). A more
posterior region of the ACC displays repetition suppression to
integrated value (Fig. 7).

Correlates of quality and quantity in the brain
Bilateral IFG activity scaled with the quality of the giftcard pre-
sented on each trial (Fig. 4A). This was unexpected, given the

BA

Figure 6. A, B, Neural quantity sensitivity relate to choice predictability. We found that coefficients for quantity in IPS (�� 0.60, p � 0.002; A) and the ACC (�� 0.42, p � 0.039; B) correlated
with the predictability of participants’ choices, as assessed by the ability of our logistic regression model to predict choice. Correlations with quality coding in the IFG (�� 0.41, p � 0.104) and ACC
(� � 0.30, p � 0.142) were positive but not significant. Each point is one participant.
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scarcity of reports of IFG involvement in value-based decision-
making (but see Rogers et al., 1999; Zysset et al., 2006; Liljeholm
et al., 2011). A priori, the OFC might represent a more promising
candidate for the representation of stimulus quality. However,
representations in the OFC appear to be particularly entangled
with stimulus identity (Padoa-Schioppa and Assad, 2008;
Noonan et al., 2011; Barron et al., 2013; Klein-Flügge et al., 2013;
McNamee et al., 2013; Howard et al., 2015), potentially reflecting
the central role of the OFC in providing an internal model of the
world (Wilson et al., 2014). For instance, Padoa-Schioppa and
Assad (2008) describe OFC cells that respond specifically to one
juice or another, which they describe as reflecting the taste of a
given juice. This encoding of juice identity is distinct from the
reward quality, and no study has reported OFC unit responses
that reflect quality alone (i.e., the preference ordering of different
stimuli), while being insensitive to quantity. It seems, therefore,
that the OFC is particularly interested in tracking relationships
between specific rewards and their predictors (Noonan et al.,
2011; Takahashi et al., 2013; Stalnaker et al., 2014, 2015; Lopatina
et al., 2015; Lucantonio et al., 2015; Boorman et al., 2016), rather

than estimating stimulus quality per se. Furthermore, a recent
study (Schuck et al., 2016) found that OFC exclusively repre-
sented hidden variables related to the current state. The lack of
OFC involvement in our task is likely to reflect the static and
transparent relationship between stimuli and outcomes in our
experiment.

The involvement of the IFG in the representation of stimulus
quality is consistent with the semantic nature of the giftcard stim-
uli we used. IFG is commonly activated in lexical tasks (Price,
2012), with left hemisphere lesions to this area producing impair-
ments in language production and comprehension. In one of the
few studies attempting to parse value into distinct components,
Lim et al. (2013) offered participants T-shirts that varied in their
esthetic and semantic properties. They found correlations with
esthetic value in the fusiform gyrus and semantic value in the
superior temporal gyrus, while ventromedial PFC (vmPFC) ac-
tivity correlated with the value of both attributes. This suggests
that the extraction of quality may occur in concert across brain
areas specialized for the analysis of distinct stimulus features, in
the same way that feedforward models of visual inputs eventually

B C
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Figure 7. Repetition suppression for value in the anterior cingulate cortex. A, Repetition suppression analysis logic. We hypothesize a population of neurons tuned to value where the different
neurons have overlapping tuning curves spanning the range of values presented. Black arrows denote stimulus value for that trial. If consecutive trials activate nonoverlapping populations
of neurons, evoked responses for each stimulus are similarly high on each trial (top panel in orange). However, repeated presentation of the same stimulus produces repeated activation of the same
neurons on consecutive trials, leading to a reduction in the neural response (bottom panel in blue). Summation over all neurons in the population (as in the BOLD signal measured in fMRI), leads to
higher activity when consecutive stimuli activate unique subsets of neurons (top panel) than when consecutively activated populations overlap (bottom panel). Predicted BOLD activity is thus
proportional to the absolute difference in value between consecutive trials. B, Evidence for multiple forms of value coding in the cingulate. We examined cingulate representations of repetition
suppression to integrated value (change in value from trial n �1 to trial n,	IntegratedValue; green), and monotonic encoding of integrated value (a standard parametric modulator approach; red).
Voxels sensitive to repetition suppression were more posterior, with monotonic encoding stronger in anterior voxels. C, The ACC region identified in the conjunction analysis (Fig. 5A) also shows
repetition suppression in the integrated value. We extracted mean parameter estimates for 	IntegratedValue and for integrated value from the voxels identified in the conjunction analysis. Both
were positive on average (	IntegratedValue: t(24) � 2.48, p � 0.020; Integrated Value: t � 3.26, p � 0.0034). Error bars represent the SEM across participants.
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produce value estimates in deep reinforcement learning networks
(Mnih et al., 2015; Silver et al., 2016). This suggests that a repre-
sentation of stimulus quality in IFG may be specific to semanti-
cally rich stimuli, such as those used here.

Conversely, our observation of quantity coding in the IPS
(Fig. 4B) is predicted from the literature (Nieder, 2016). A wide
variety of animals show an ability to make ethologically relevant
decisions using number, from lions (McComb et al., 1994) to
crows (Rahman et al., 2014). Even newborn chicks are capable of
tracking the number of an imprinted object that is placed behind
a screen (Rugani et al., 2009). In macaques, such judgments rely
upon a network of frontal and parietal regions containing neu-
rons tuned to different numbers, including the number zero
(Nieder et al., 2002; Nieder and Miller, 2004; Ramirez-Cardenas
et al., 2016).

Studies in humans have made use of model-based decoding
analyses (Harvey et al., 2013) and repetition suppression designs
(Piazza et al., 2004, 2007; Jacob and Nieder, 2009) to provide
evidence that similar tuning curves for number exist in the hu-
man IPS. Our results imply that the same IPS circuitry subserves
number representation in value computation. This is consistent
with the recent observation that when number and value are
decorrelated, the IPS tracks quantity and not value (Kanayet et
al., 2014). This serves to clarify the role of parietal cortices in
value-based decision-making, suggesting that when financial
stimuli are used (Ballard and Knutson, 2009; Clithero et al., 2009;
Chau et al., 2014), evaluation occurs within a financial frame-
work (e.g., the BDM auction; Plassmann et al., 2007; Medic et al.,
2014), or, if stimuli merely differ in magnitude (Louie et al.,
2011), parietal responses to quantity may be misconstrued as
representing value or its comparison. Conversely, we find that the
IPS specifically represents the quantity of an available option, and
that the strength of numerical representations in IPS correlates
both with choice predictability and ACC quantity coding. This is
consistent with neurons in IPS contributing to the representation
of stimulus value in the ACC, and this latter representation sub-
sequently being used to guide choice. However, it is unclear why
choice predictability is so much more strongly linked to quantity
coding than it is to quality coding (in IFG and ACC) and to
interaction coding (in the ACC). We suspect that the greater
range of quantities than qualities in our experiment may have
increased our power to observe relationships with quantity cod-
ing, but this remains an open question.

The role of the ACC in evaluation
We found that activity in the ACC was consistent with the repre-
sentation of integrated value. ACC showed a positive correlation
with integrated value. Even after accounting for the effects of
quality and quality, ACC tracked the interaction term character-
istic of integrated value in this task (Figs. 5C, 6A). Beckmann et al.
(2009) parcellated the cingulate cortex according to connectivity.
The region we identify corresponds to their region 4, which
shows strong connectivity to dorsolateral prefrontal cortex, and
is commonly implicated in value-based tasks. The region show-
ing repetition suppression effects may be more situated in their
region 5, which has a higher connectivity to the parietal cortex.
This raises the possibility that the repetition suppression we ob-
serve is inherited from tuned numerical representations in pari-
etal cortex (Nieder and Miller, 2004).

The ACC is frequently identified in both human (Bush et al.,
2002; Kolling et al., 2012; Boorman et al., 2013) and animal ex-
periments (Seo and Lee, 2007; Hayden et al., 2009; Hayden and
Platt, 2010; Kennerley et al., 2011; Cai and Padoa-Schioppa,

2012) of value-based choice. The more dorsal region in which we
find signatures of integrated value is associated with tasks
wherein participants assign value to actions (Beckmann et al.,
2009). This is the case in our experiment, since giftcards were
displayed either on the left-hand or the right-hand side of the
screen, such that assessing the value of a particular giftcard was
the same as assessing the value of a left/right button press. Dorsal
ACC appears to be particularly engaged by foraging type tasks, in
which the pertinent comparisons are between options presented
sequentially (Seo and Lee, 2007; Kolling et al., 2012; Boorman et
al., 2013). We further note that since the positive value correla-
tions we observe in the ACC are recorded in the absence of
choice, they cannot be explained as a function of choice difficulty
and are more consistent with a proposed role in sequential for-
aging decisions (Kolling et al., 2016).

We did not observe value-related activity in the vmPFC, the
part of the cortex most frequently associated with valuation
(Rushworth and Behrens, 2008), or in the ventral striatum. This
agrees with recent observations suggesting that sequential (Hunt
et al., 2013) or time-limited (Jocham et al., 2014) choices do not
engage vmPFC. Indeed, a growing body of evidence suggests that
the ACC is particularly involved when subjects make sequential,
foraging-type decisions, which are characterized by an evaluation
of whether to engage or not (Kolling et al., 2012, 2016). Con-
versely, whether evaluation alone effectively engages vmPFC is
unclear. Although early reports suggested that the vmPFC was
part of an automatic valuation system (Lebreton et al., 2009),
recent work suggests otherwise (Grueschow et al., 2015). The few
studies that report value-related activity in macaque vmPFC do
so in the context of free viewing (Strait et al., 2014; Abitbol et al.,
2015), raising the possibility that the vmPFC is particularly en-
gaged when values are compared via repeated eye movements
(Krajbich et al., 2010). The observation that vmPFC is crucial for
episodic memory and imagination (Hassabis and Maguire, 2009;
Benoit et al., 2014), and a predominance of saccade-frequency
theta oscillations in mPFC (Paz et al., 2008; Adhikari et al., 2010)
hints at a more general role for the vmPFC in mediating a short-
term plasticity allowing features— of a scene, an episode, or a
choice—to be integrated over several seconds. This might explain
why our task, which required participants to evaluate a single
stimulus at a single location, did not modulate vmPFC activity.

Our finding that the cingulate cortex integrates information
about quality and quantity to form a multiplicative value repre-
sentation of the current stimulus is also interesting in light of a
literature implicating the cingulate in the representation of values
associated with “model-based” cognition (Wunderlich et al.,
2012; Doll et al., 2015). This describes flexible computation of
value associated with a certain stimulus, and is typically con-
trasted with “model-free” cognition, in which stimulus or action
values are cached and updated only through repeated experience
(Dolan and Dayan, 2013). The multiplication of quantity and
quality that we observe in the ACC is consistent with the idea that
the cingulate provides a model that produces estimates of quan-
tities relevant to behavior (O’Reilly et al., 2013; Economides et al.,
2014; Kolling et al., 2014). In our case, utility was maximized by
combining quality and quantity in a multiplicative manner, and
this is what the ACC appears to do, in a manner that reflects the
coding of quality and quantity in the frontal and parietal lobes
respectively (Fig. 5C,F).

Our design also enabled us to perform a repetition suppres-
sion analysis, allowing us to reveal coding schemes hidden to
conventional BOLD analyses. We found that parts of the cingu-
late cortex displayed repetition suppression to integrated value,
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with activity that scaled with the absolute difference in value
between trials (Fig. 7A). This region was posterior to the peak
activity associated with monotonic integrated value, extending
into the area identified in the conjunction analysis of quality,
quantity, and their interaction (Fig. 7B). Although the precedent
from the numerosity-coding literature is to suppose that RS re-
sults of this kind provide positive evidence of nonmonotonic
tuning (Piazza et al., 2004, 2007; Ansari and Dhital, 2006; Jacob
and Nieder, 2009), we are cognizant that such repetition suppres-
sion effects are not an unambiguous signature of nonmonotonic
codes. In modeling work reported previously, we observe that
repetition suppression effects such as the ones we observe here
can result from mixed linear codes combined with divisive adap-
tation. Furthermore, given the role of the ACC in comparing
option values over time (Kolling et al., 2012, 2014), the observed
relationship with variance in value from trial to trial could reflect
a cognitively meaningful surprise signal, potentially related to
environmental volatility (Behrens et al., 2007). Recent work ob-
serves just such a signal in a biophysically plausible model of
reward learning, in which learning is adapted to volatility via
metaplasticity (Farashahi et al., 2017).

To conclude, we find that a distributed network comprising
the intraparietal sulcus, inferior frontal gyrus, and posterior cin-
gulate and superior temporal sulcus contribute to the computa-
tion of integrated value in the ACC. The strength of signals in the
ACC reflected the degree to which they were represented in brain
areas coding for quality (IFG) and quantity (IPS), and stronger
brain correlations with quantity were associated with more pre-
dictable choices. We further demonstrate that parts of the ACC
also show repetition suppression to integrated value, which is
consistent with the idea that tuning for value is nonmonotonic in
parts of the cortex. Our findings demonstrate how value is
assembled from its component parts and emphasize the po-
tential for repetition suppression as an assay of a population-
encoding scheme.
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