
Systems/Circuits

Contribution of Sensory Encoding to Measured Bias

X Miaomiao Jin and X Lindsey L. Glickfeld
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710

Signal detection theory (SDT) is a widely used theoretical framework that describes how variable sensory signals are integrated with a
decision criterion to support perceptual decision-making. SDT provides two key measurements: sensitivity (d�) and bias (c), which reflect
the separability of decision variable distributions (signal and noise) and the position of the decision criterion relative to optimal,
respectively. Although changes in the subject’s decision criterion can be reflected in changes in bias, decision criterion placement is not
the sole contributor to measured bias. Indeed, neuronal representations of bias have been observed in sensory areas, suggesting that
some changes in bias are because of effects on sensory encoding. To directly test whether the sensory encoding process can influence bias,
we optogenetically manipulated neuronal excitability in primary visual cortex (V1) in mice of both sexes during either an orientation
discrimination or a contrast detection task. Increasing excitability in V1 significantly decreased behavioral bias, whereas decreasing
excitability had the opposite effect. To determine whether this change in bias is consistent with effects on sensory encoding, we made
extracellular recordings from V1 neurons in passively viewing mice. Indeed, we found that optogenetic manipulation of excitability
shifted the neuronal bias in the same direction as the behavioral bias. Moreover, manipulating the quality of V1 encoding by changing
stimulus contrast or interstimulus interval also resulted in consistent changes in both behavioral and neuronal bias. Thus, changes in
sensory encoding are sufficient to drive changes in bias measured using SDT.
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Introduction
Perceptual decision-making is a multistep process through which
sensory information about the external world is first transformed
into a neuronal code and then used to make a behavioral choice.
In this process, both sensory encoding (i.e., the process by which
a decision variable is generated) and the cognitive aspects of the

decision-making process (i.e., the selection and application of a
decision rule) are critical factors that determine the final choice
(Gold and Shadlen, 2007; Carandini and Churchland, 2013;
Romo and de Lafuente, 2013; Hanks and Summerfield, 2017).

Efforts to dissect the relative contribution of sensory and
cognitive processes to decision-making often take advantage of
signal detection theory (SDT), a classical and widely used frame-
work that allows inference of the underlying decision variable
distributions (e.g., signal and noise) and decision rule from be-
havioral measures (Green and Swets, 1966). In particular, SDT
allows the use of hit and false alarm (FA) rates to extract two
aspects of the perceptual decision: sensitivity (d�) and bias (c).
Measures of sensitivity allow inference of the separability of the
underlying decision variable distributions of signal and noise (or
target and distractor). Thus, this measure is thought to reflect the
quality of encoding and integration in sensory circuits that pro-
vide input to the decision-making circuits (Bashinski and Bacha-
rach, 1980; Bennett et al., 2013; Pinto et al., 2013; Luo and
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Significance Statement

Perceptual decision-making involves sensory integration followed by application of a cognitive criterion. Using signal detection
theory, one can extract features of the underlying decision variables and rule: sensitivity (d�) and bias (c). Because bias is measured
as the difference between the optimal and actual criterion, it is sensitive to both the sensory encoding processes and the placement
of the decision criterion. Here, we use behavioral and electrophysiological approaches to demonstrate that measures of bias
depend on sensory processes. Optogenetic manipulations of V1 in mice bidirectionally affect both behavioral and neuronal
measures of bias with little effect on sensitivity. Thus, changes in sensory encoding influence bias, and the absence of changes in
sensitivity do not preclude changes in sensory encoding.
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Maunsell, 2015; Jurjut et al., 2017; Ni et al., 2018). On the other
hand, bias measures the overall tendency to classify the stimulus
as signal or noise. Thus, it can reflect the subject’s decision crite-
rion. In fact, c is often used synonymously with “criterion” and is
therefore commonly thought to reveal cognitive contributions to
the decision-making process and involve areas downstream of
sensory cortex (McDonald et al., 2000; Grove et al., 2012; Jones et
al., 2015; de Gee et al., 2017; Crapse et al., 2018; Luo and Maun-
sell, 2018; van Vugt et al., 2018).

Although changes in bias can result from a change in the sub-
ject’s decision strategy, bias is the difference between the optimal
and actual decision criterion, and thus changes in sensory encod-
ing that shift the optimal criterion will result in a change in bias
even when there is no change in decision criterion (Fig. 1A). This
could happen when changes in the signal and noise distributions
are not opposite and proportional (Witt et al., 2015). Indeed,
neuronal correlates of bias have been identified in sensory corti-
cal areas. Human neuroimaging experiments have found a strong
correlation between the strength of representation of prior infor-
mation (such as expected stimulus features or locations) in sen-
sory areas and the strength of behavioral bias (White et al., 2012;
Kok et al., 2013; Vintch and Gardner, 2014). Similarly, spontane-
ous fluctuations in the excitability of sensory cortical areas cor-
relate with spontaneous fluctuations in behavioral bias (Iemi et
al., 2017). Although these data suggest that activity in sensory
areas can influence behavioral bias, these correlational studies
cannot rule out the possibility that these effects are due to feed-
back from decision-making areas.

Although cognitive factors are clearly an important determi-
nant of bias, we propose that at least some changes in bias are due
to effects on sensory encoding. To directly test this hypothesis, we
generated a behavioral paradigm in which we could address the
causal relationship between activity in sensory areas and mea-
sured bias: a go/no-go orientation discrimination task in which

mice need to discriminate target from distractor orientations
(Fig. 1B). This task allows measures of hit and FA rates, and
therefore bias and sensitivity. Importantly, in previous work we
have identified the computation, and therefore the decision vari-
able, that the mice use to solve this task: instead of optimally
estimating the stimulus orientation from the activity of a tuned
population, the decision-making circuit linearly sums the activity
in visual cortical circuits, with higher weight given to neurons
that prefer targets while ignoring those that prefer the distractor
(Fig. 1C; Jin et al., 2019). Therefore, the decision variable and
decision criterion can be approximated in units of firing rate.
Thus, manipulations that coincidently alter firing rates in re-
sponse to targets and distractors will shift the signal and noise
distributions in the same direction, change the optimal criterion,
and induce a change in measured bias (Fig. 1A).

Indeed, we found that altering neuronal responses to targets
and distractors through either direct optogenetic manipulation
of neurons in primary visual cortex (V1) or manipulation of
visual stimulus properties resulted in a reliable change in behav-
ioral bias with relatively little impact on sensitivity. Further, elec-
trophysiological recordings from neurons in V1 during each of
these manipulations also revealed a strong effect on bias in the
same direction as during behavior. Thus, changes in bias can be
driven by changes in either cognitive factors or sensory encoding,
and the lack of a change in sensitivity does not preclude a change
in sensory encoding.

Materials and Methods
Animals. All animal procedures conformed to standards set forth by the
NIH, and were approved by the IACUC at Duke University. Twenty-
seven mice [both sexes; 3–24 months old; singly and group housed (1– 4
in a cage) under a regular 12 h light/dark cycle; C57/B6J (Jackson Labo-
ratories, 000664) was the primary background with up to 50% CBA/CaJ
(Jackson Laboratories, 000654)] were used in this study. Pvalb-cre
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Figure 1. Optogenetically suppressing or exciting V1 decreases or increases hit and FA rates in an orientation discrimination task. A, Schematic of effect of shifting signal and noise distributions
on bias measured using signal detection theory. Top, Distributions of target (22.5°; solid black, signal) and distractor (0°; solid gray, noise) responses. Note that bias (c) is measured as the distance
between the actual (black vertical line) and optimal (c � 0; gray vertical line) criterion. Bottom, Manipulations that decrease both the target and distractor distributions shift the optimal criterion
to the left, and therefore result in an increase in bias. Purple lines indicate the measured sensitivity (d�) that is the distance between the mean of target and distractor distributions. B, Schematic of
behavior setup and trial progression. Blue light is turned on for a single target or distractor presentation on each trial. V1 suppression (blue) and excitation (red) is achieved via optogenetically driving
PV� or VGAT� neurons and Emx1� neurons respectively. C, Schematic of perceptual choice circuit for the orientation discrimination task. Orientation tuned excitatory neurons (shades of gray)
converge onto the decoder with weights biased toward target-preferring neurons (modified from Jin et al., 2019). D, Cumulative release rate [as fraction of all targets (black) or distractor (gray)
presentations] as a function of reaction times relative to the onset of target or distractor stimulus for an example mouse in the control condition. Vertical lines represent the react window used to
calculate both hit and FA rate. E, Hit rate and FA rate (inset) for control (black) and V1 suppression (blue; left) or excitation (red; right) for one example mouse each. Note that the example mouse for
V1 suppression is the same as in D. Hit rates are fit with a Weibull function; vertical dotted lines are threshold, error is 95% confidence interval.
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(tm1(cre)Arbr; Jackson Laboratories, 008069; n � 17; PV::Cre), VGAT-
ChR2-EYFP (Slc32a1-COP4*H134R/EYFP; Jackson Laboratories, 014548; n �
4) and Emx1-IRES-Cre (tm1(cre)Krj; Jackson Laboratories, 005628; n �
6; EMX1::Cre) were crossed to C57/B6J mice for in vivo extracellular
electrophysiology (n � 11) and behavior (n � 18) experiments. Note that
two of the mice (one PV::Cre and one Emx1::Cre) were used in both
behavior and recording.

Cranial window implant. Dexamethasone (3.2 mg/kg, s.c.) and
Meloxicam (2.5 mg/kg, s.c.) were administered at least 2 h before surgery.
Animals were anesthetized with ketamine (200 mg/kg, i.p.), xylazine (30
mg/kg, i.p.), and isoflurane (1.2–2% in 100% O2). Using aseptic tech-
nique, a headpost was secured using cyanoacrylate glue and C&B Meta-
bond (Parkell), and a 5 mm craniotomy was made over the left
hemisphere (center: 2.8 mm lateral, 0.5 mm anterior to lambda) allowing
implantation of a glass window (an 8 mm coverslip bonded to two 5 mm
coverslips (Warner, no. 1) with refractive index-matched adhesive (Nor-
land, no. 71) using Metabond.

The mice were allowed to recover for 1 week before habituation to
head restraint. Habituation to head restraint increased in duration from
15 min to �2 h over 1–2 weeks. During habituation and electrophysiol-
ogy sessions, mice were head restrained while allowed either to freely run
on a circular disc (InnoWheel, VWR) or to rest in a plastic tube.

Retinotopic mapping. Retinotopic maps generated from intrinsic auto-
fluorescence or cortical reflectance (for VGAT-ChR2-EYFP mice). For
intrinsic autofluorescence, the brain was illuminated with blue light (473
nm LED, Thorlabs) or a white light source (EXFO) with a 462 � 15 nm
bandpass filter (Edmund Optics), and emitted light was measured
through a green and red filter (500 nm long-pass); for cortical reflec-
tance, the brain was illuminated with orange light (530 nm LED, Thor-
labs), and all of the reflected light was collected. Images were collected
using a CCD camera (Rolera EMC-2, Qimaging) at 2 Hz through a 5�
air-immersion objective (0.14 numerical aperture, Mitutoyo), using Mi-
cromanager acquisition software (NIH). Stimuli were presented at 4 – 6
positions (drifting, sinusoidal gratings at 2 Hz) for 10 s, with 10 s of mean
luminance preceding each trial. Images were analyzed in ImageJ (NIH)
to measure changes in fluorescence (dF/F; with F being the average of all
frames) to identify V1 and the higher visual areas. Vascular landmarks
were used to identify targeted sites (V1) for electrophysiology and opto-
genetics experiments.

Viral injection. We targeted V1 in PV::Cre mice (n � 6) for expression
of Channelrhodopsin2 (ChR2) and in Emx1::Cre mice (n � 6) for ex-
pression of Chronos. Dexamethasone (3.2 mg/kg, s.c.) was administered
at least 2 h before surgery and animals were anesthetized with isoflurane
(1.2–2% in 100% O2). The coverslip was sterilized with 70% ethanol and
the cranial window removed. A glass micropipette was filled with
virus [AAV5.EF1.dFloxed.hChR2.YFP (titer: 3.74e12 GC/ml; UPenn,
CS0384), AAV9.hSyn.FLEX.rc.Chronos.GFP (titer: 1.25e12 GC/ml; Ad-
dgene, 59056), or AAV2/9.CAGGS.FLEX.ChR2.tdTomato (titer: 2.44e12
GC/ml; Addgene, 18917)], mounted on a Hamilton syringe, and lowered
into the brain. Fifty nanoliters of virus were injected at 250 and 500 �m
below the pia (30 nl/min); the pipette was left in the brain for an addi-
tional 10 min to allow the virus to infuse into the tissue. Following injec-
tion, a new coverslip was sealed in place, and for behavioral experiments,
an optical fiber (400 �m diameter; Doric Lenses) was attached to the
cranial window above the injection site. Optogenetic behavioral experi-
ments and electrophysiology experiments were conducted at least 2
weeks following injection to allow for sufficient expression.

Behavioral task. Animals were water scheduled and trained to discrim-
inate the orientation of visual stimuli or detect the appearance of a visual
stimulus by manipulating a lever. The behavior training and testing oc-
curred during the light cycle.

For the orientation discrimination task, we first trained mice to detect
a full-field, 90° orientation difference (target) from a static grating (dis-
tractor). Most mice (n � 12) were trained with a 0° (vertical) distractor;
however, two mice were trained with a 45° (counterclockwise from ver-
tical) distractor. On the initial days of training, mice were rewarded for
holding the lever for at least 400 ms (required hold time) but not �20 s
(maximum hold time). At the end of the required hold time, the grating
changed orientation (90° counterclockwise difference from the distrac-

tor) until the mouse released the lever or the maximum hold time ex-
pired. Typically, within 2 weeks of training, the mice began releasing the
lever as soon as the target orientation appeared. Once the animals began
reliably responding to the target orientation, we added a random delay
between lever press and target stimulus to discourage adoption of a tim-
ing strategy. Over the course of the next few weeks, the task was made
harder by (in roughly chronological order): (1) increasing the random
delay, (2) decreasing the target stimulus duration and reaction time win-
dow, (3) removing the stimulus during the intertrial interval (ITI), (4)
shrinking and moving the stimuli to more eccentric positions, (5) adding
a mean-luminance interstimulus interval (ISI) to mask the motion signal
in the orientation change, and finally (6) introducing hard targets (range:
9 –90°) to probe discrimination threshold. Delays after errors were also
added to discourage lapses (missing the easiest target; i.e., 90°) and early
releases (releases before the reaction time window).

In the final form of the task, each trial was initiated when the ITI (3 s)
had elapsed and the mouse had pressed the lever. Trial start triggered the
presentation of a series of 100 ms static sinusoidal, Gabor patches [diam-
eter: 30°, spatial frequency (SF): 0.1 cycle/°, contrast: 100%, positioned at
an eccentricity of 30 – 40° in azimuth and 0 –10° in elevation] followed by
a target orientation of the same parameters but of a different orientation.
The target orientation occurred with a variable delay (flat distribution)
after at least two distractor presentations (up to 9 distractors). Following
each target, additional distractors were presented until either the mouse
released the lever or the reaction time expired. Within each trial, each
stimulus presentation (distractors and target) was separated by a mean-
luminance ISI (250, 500, or 750 ms). Some variables were randomized on
a trial-by-trial basis (e.g., number of distractor presentations and target
orientation), whereas other variables were randomized within a trial on a
presentation-by-presentation basis (e.g., ISI). Each trial had the possibil-
ity of having a target presentation, if the mouse held the lever through the
all of the preceding distractor presentations. Mice received water reward
only if they released the lever within 100 – 650 ms (sometimes extended
to 1000 ms) after a target occurred. If mice released the lever before
reaction time began (early release) or failed to release the lever by the time
the reaction time expired (miss), the trial would be aborted and addi-
tional time (2– 4 s) would be added to the ITI.

For a subset of mice (n � 5; see Fig. 6), the contrast of each presenta-
tion was also randomized (Michelson contrast: 30, 50, and 70%) on a
presentation-by-presentation basis; in these experiments the stimulus
size was reduced to 20° and the SF increased to 0.16 cycle/° to reduce the
contribution of surround suppression and therefore linearize the con-
trast–response functions (Sengpiel et al., 1997; Nienborg et al., 2013). To
compensate for the difficulty induced by low contrast and small size of
the stimuli, we presented the task stimuli at a more central location
(5–15° in azimuth and 10° in elevation).

For the contrast detection task (see Fig. 5), we first trained mice to
detect a full-field, 100% contrast, 0° static target grating from mean
luminance (gray) screen that appeared at the end of the required hold
time (400 ms). Once the animals started to respond to the appearance of
the target grating stimulus by releasing the lever, we gradually made the
task harder by: (1) increasing the random delay (final max value: 3.5 s)
between the lever press and a target grating appearance; (2) shrinking and
moving the stimuli to more eccentric positions (30° in diameter, SF of 0.1
cycle/°, positioned at an eccentricity of 30 – 40° in azimuth and 0 –10° in
elevation); and (3) introducing hard targets (range: 4 –100% contrast) to
probe contrast detection threshold. Delays after errors were also added to
discourage lapses and early releases.

For optogenetic stimulation (Figs. 1, 3, and 5), we delivered blue light
to the brain though a 400 micrometer optic fiber from a 473 nm LED
(Thorlabs) or a 450 nm laser (Optoengine) and calibrated the total light
intensity out of the fiber. For the orientation discrimination task, the
light power was titrated so that it did not induce significant changes in the
lapse rate. For V1 suppression, the mean light power was 0.27 � 0.07 mW
(range: 0.07– 0.4 mW); and for V1 excitation, the mean light power was
0.06 � 0.02 mW (range: 0.02– 0.1 mW; Figs. 1, 3). On each trial, a single
stimulus (either the distractor two stimuli before the target, the distractor
before the target, the target, or the distractor after the target) was targeted
with equal probability. The light was turned on �30 ms before the time of
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visual presentation onset for the duration of the stimulus (100 ms). For
the contrast detection task, the light stimulation was on for the entire
duration of a trial on 50% of trials with the mean power 0.36 � 0.04 mW
(range: 0.25– 0.4 mW; Fig. 5). Behavioral control and stimulus presenta-
tion used MWorks (http://mworks-project.org), and custom software in
MATLAB (MathWorks).

Notably, there are overlapping animals in the datasets for the optoge-
netic (Figs. 1, 3), contrast (see Fig. 6), and ISI manipulations (see Fig. 7)
for the orientation discrimination task. Table 1 describes the overlap and
difference in time in collecting these datasets. Numbers (1–3) indicate
the time sequence in which the data were collected for each mouse,
whereas 0 reflects no training on that task. Four mice were trained in a
single task, nine mice were trained on two tasks (thus belonged to two
datasets), and only one mouse was included in all datasets. Notably, all
four mice in the contrast detection task (see Fig. 5) are from a different
cohort.

Visual stimulation. Visual stimuli were presented either on a 144 Hz
(Asus) or 120 Hz (Samsung) LCD monitor, calibrated with an i1 Display
Pro (X-rite), for electrophysiology and behavior experiments, respec-
tively. The monitor was positioned 21 cm from the contralateral eye.
Circular Gabor patches containing static sine-wave gratings alternated
with periods of uniform mean luminance (60 cd/m 2).

Three visual stimulus protocols were used for electrophysiology exper-
iments. Protocol 1 (Figs. 2, 4): Each trial began with six sequential static
distractor presentations (0°; duration: 100 ms; diameter: 30°; SF: 0.1
cycle/°; contrast: 100%; ISI: 250 ms) followed by a target presentation of
the same parameters but of different orientations (22.5, 45, or 90°). Op-
togenetic stimulation during Protocol 1 was matched to the behavioral
conditions. Protocol 2 (see Fig. 6): similar to Protocol 1, except the con-
trast of each stimulus presentation was randomized from 30, 50, and
70%. As in the behavior, the stimulus size was reduced to 20° in diameter
(SF: 0.16 cycle/°) to limit the contribution of increasing surround sup-
pression with increasing contrast. Protocol 3 (see Fig. 7): similar to Pro-
tocol 1, except: (1) the number of distractors was randomized from two
to nine within each trial, and (2) the ISI between each presentation was
randomized (250, 500, or 750 ms). All protocols had an ITI of 4 s.

Extracellular electrophysiology. Electrophysiological signals were
acquired with a 32-site polytrode acute probe (either A4x8-5mm-100-
400-177-A32 (4 shanks, 8 site/shank at 100 �m spacing) or A1x32-Poly2-
5mm-50s-177-A32 (1 shank, 32 sites, 25 �m spacing; NeuroNexus)
through an A32-OM32 adaptor connected to a Cereplex digital head-
stage (Blackrock Microsystems). Unfiltered signals were digitized at 30
kHz at the headstage and recorded by a Cerebus multichannel data ac-
quisition system (Blackrock Microsystems). Visual stimulation synchro-
nization signals were also acquired through the same system via a
photodiode directly monitoring LCD output.

On the day of recording, the cranial window (and the optic fiber, if it
was already implanted from behavioral experiments) was removed, and a
small durotomy performed to allow insertion of the electrode into V1. A
ground wire was connected via a gold pin cemented in a burr hole in the

anterior portion of the brain. The probe was slowly lowered into the
brain (over the course of 15 min with travel length of �800 �m) until the
most superficial recording site was in the brain and allowed to stabilize
for 45– 60 min before beginning recordings. For optogenetic stimulation
in Protocol 1, the optic fiber was held in place via an articulated arm
(Flexbar, SKU 14830) to allow light delivery (473 nm LED, Thorlabs) to
the recording site. For V1 suppression, the mean light power was 0.28 �
0.02 mW (range: 0.1– 0.4 mW); and for V1 excitation, the mean light
power was 0.05 � 0.003 mW (range: 0.03– 0.06 mW), matching the
ranges that were used in the behavioral tests.

Of the 11 mice that were used for extracellular electrophysiology, 3
were previously trained in the orientation discrimination task, 3 were
trained in a contrast discrimination task (not in this study), and 5 were
naive. To test whether training history might influence our results, we
compared bias measured from neuronal populations recorded in trained
versus naive mice. The effects of optogenetic manipulation of bias was
independent of whether the mice were previously trained [interaction
between effects of V1 excitation and training history (naive vs trained) on
bias: p � 0.51, DF � 1; two-way ANOVA] or which task they were trained
on [interaction between effects of V1 suppression and task (contrast vs
orientation discrimination) for bias: p � 0.8, DF � 1; two-way ANOVA].

Data processing
Behavior processing and analysis. All behavioral processing and analysis
were performed in MATLAB. All trials were categorized as either an early
release, hit, or miss based on the time of release relative to target onset:
responses occurring earlier than 100 ms after the target stimulus were
considered early releases; responses occurring between 200 and 550 ms
after the target were considered hits; failures to respond before 550 ms
after the target were considered misses. The same reaction window (200 –
550 ms) was used following each distractor to calculate false alarm (FA)
rate (thus FAs are a subset of early releases). This window as selected to
ensure that the majority of the hits and FAs are because of stimulus
driven responses to the immediately preceding stimulus (Fig. 1D) and
there are independent reaction windows for adjacent stimuli with short
ISIs (Jin et al., 2019). Thus, each distractor presentation was categorized
as either a FA or correct reject (CR), and each target presentation was
either a hit or a miss. Because there were no distractors presented in the
contrast detection task (see Fig. 5), we calculated FA rate by simulating
the timing of potential distractor presentations to match the potential
timing of target presentations, and assessing the probability of the mouse
releasing the lever during these windows.

Behavioral sessions were manually cropped to include only consecu-
tive trials in each session with stable periods of performance. Sessions
with optogenetic manipulations were selected based on the following
criteria: (1) at least 40% of trials were hits, and (2) 	50% of trials were
early releases. Sessions with stimulus manipulations were selected based
on the following criteria: (1) at least 50% of trials were hits, and
(2) 	35% of trials were early releases. Based on these criteria, the data in
Figure 3, V1 suppression, included 16 � 3 (range: 8 –19) sessions for each
mouse with 4793 � 706 trials (range: 3408 – 6695); Figure 3, V1 excita-
tion, included 29 � 13 (range: 3–58) sessions for each mouse with 8416 �
3981 trials (range: 1551–18,102); the data in Figure 5 included 36 � 14
sessions (range: 5– 60) for each mouse with an average of 13,275 � 5519
trials per mouse (range: 2084 –25,302); the data in Figure 6 included 34 �
13 (range: 11–75) sessions for each mouse with 8975 � 3519 trials (range:
1017–23,181); and the data in Figure 7 included 17 � 3 sessions (range:
5– 46) for each mouse with an average of 6348 � 815 trials per mouse
(range: 2593–11,857).

Hit rate was computed from the number of hits and misses for each
stimulus type:

Hit rate �
hit

hit � miss
.

FA rate was computed from the total number of FAs and CRs in the
session:

FA rate �
FA

FA � CR
.

Table 1. Mice overlap and timeline among three datasets

Mouse ID Genotype Optogenetics Contrast ISI

a EMX1::Cre 1 0 0
b EMX1::Cre 1 2 0
c VGAT-ChR2 1 2 0
d EMX1::Cre 2 0 1
e EMX1::Cre 2 0 1
f PV::Cre 2 0 1
g VGAT-ChR2 2 0 1
h PV::Cre 3 2 1
i PV::Cre 0 2 1
j PV::Cre 0 2 1
k PV::Cre 0 2 1
l PV::Cre 0 0 1
m PV::Cre 0 0 1
n PV::Cre 0 0 1
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Signal detection theory (Green and Swets, 1966) was applied to measure
behavioral sensitivity (d�) and bias (c). Extreme values of hit and FA rate
(i.e., 0 and 1) were replaced with 0.5/n and (n 
 0.5)/n, respectively,
where n is the number of target or distractor trials (Macmillan and Ka-
plan, 1985; Stanislaw and Todorov, 1999). d� and c were then calculated
as follows:

d� � Z(HR) � Z(FAR),

c � �
Z(HR) � Z(FAR)

2
,

where Z is the inverse of the cumulative distribution function of the
normal Gaussian distribution; HR is hit rate, and FAR is FA rate.

Because the detection threshold varied across mice and not all the mice
were tested at exactly the same orientations, the hit rate for 22.5° is
extrapolated based on a Weibull function fitted from the psychometric
curve for each mouse.

Electrophysiology processing and analysis. Individual single units were
isolated using the SpyKing CIRCUS package (http://spyking-circus.
readthedocs.io/en/latest/). Raw data were first high-pass filtered (�500 Hz) and
spikes were detected when a filtered voltage trace crossed threshold (9–13 me-
dianabsolutedeviationscomputedoneachchannel).Acombinationofdensity-

based clustering and template matching algorithms
was used to automatically cluster the spikes. The
resulting clusters were then inspected and
adjusted manually using a MATLAB GUI.
Clusters with refractory period violations (	2
ms, �1% violation) in the autocorrelogram
and that were not stable across the whole re-
cording session were discarded from the data-
set. Clusters were combined if they met each of
three criteria by inspection: (1) similar wave-
forms, (2) coordinated refractory periods in
the cross-correlogram, and (3) similar ISI dis-
tribution shape. Unit position with respect to
the recording sites was calculated as the average
of all site positions weighted by the waveform
amplitude of each site. For V1-suppression or
-excitation experiments, we also quantified the
similarity of the waveforms between control
and optogenetic conditions using correlation
coefficient (r) values (Fig. 2C). Because for ma-
jority of the cells, V1 suppression strongly re-
duce firing rate rendering few or even no spikes
for analyzing waveforms, we extended the win-
dow starting from 200 ms before visual onset,
end with 250 ms after visual offset. Signal and
noise ratio of the trough value of the waveform
shape was calculated as mean divided by SD
across spikes. All of the subsequent analysis was
performed in MATLAB.

Visually-evoked responses of each unit in V1
were measured based on average peristimulus
time histograms (PSTHs; bin size: 20 ms; Fig.
2B) over repeated presentations (�25 trials) of
the same stimulus. Response amplitudes were
measured on a trial-by-trial basis: by subtract-
ing the firing rate at the time of the visual stim-
ulus onset from the value at the peak of the
average PSTH within a window of 0 –100 ms
after the visual onset. However, in the case of
V1 excitation, responses were measured by
subtracting the baseline firing rate (value at vi-
sual onset, bin 0 ms, multiplied by 6) from the
number of spikes during the visual presenta-
tion window (0 –100 ms, 6 bins). This is be-
cause the peak response latencies after V1
excitation were often shorter than the latencies
of the visual responses in the control condition

(Fig. 2B). “Responsive cells” were chosen as having statistically signifi-
cant visually-evoked responses using a paired t test to compare baseline
responses (averaged over 0 –100 ms before the visual onset) with visually-
evoked responses (averaged over 0 –100 ms after the visual onset; this
analysis window excluded off-responsive units from analysis). For V1-
suppression experiments, we excluded cells that were significantly driven
by the light stimulation. For all protocols, we included cells that were
significantly driven by either the first distractor stimulus or any of the
target orientations. For Protocol 2, this test was only performed for the
highest contrast stimuli. Thus, we included 70/110 cells for V1 suppres-
sion; and 83/109 cells for V1 excitation; for Protocol 2, we included
92/151 cells and for Protocol 3, 74/100 cells were included.

For calculation of predicted hit rate and FA rate: the distribution of
single trial responses to the 22.5° target was compared with the distribu-
tion of responses to the distractor (0°, third-sixth stimulus). For Protocol
1-V1 suppression, the decision criterion for each cell was fixed as the
mean of the responses to the suppressed distractor and the target in
control trials (Fig. 4A). For Protocol 1-V1 excitation, the decision crite-
rion for each cell was fixed as the mean of the responses to the distractor
in control conditions and the excited target. We also chose alternative
decision criterion values by using sliding criterion values (10 bins with
equal distance between the maximum and minimal firing rates across

A B

D

F

E

C

Figure 2. Optogenetically suppressing or exciting V1 decreases or increases neuronal responses to both targets and distractors.
A, Schematic of extracellular recording setup. Stimuli are presented as in Figure 1B to passively viewing mice. B, Left, Mean
waveform shapes for control and V1 excitation for and an example cell. Shaded area is SD across spikes. Right, Same cell’s responses
to 22.5° target (top) and 0° distractor (bottom) for control (black) and V1 excitation (red). Black horizontal bar is the duration of the
visual presentation and red horizontal bar is the duration of light delivery for exciting V1. Shaded area is SEM across trials. C, Top,
Histogram of the correlation coefficient of waveform shapes between control and V1 suppression/excitation. Bottom, Signal-to-
noise ratio (SNR; mean/SD) of the trough value of the waveform across all the cells (n � 153 cells, including V1 suppression and
excitation). D, Distributions of spikes summed across a simultaneously recorded populations in response to distractor (0°; open
bars) and target (22.5°; filled bars) stimuli on control trials (black) and during V1 excitation (red; n � 16 cells; top) or suppression
(blue; n � 17 cells; bottom) for one example experiment each. Triangles show the mean of the distribution. E, Comparison of
neuronal responses (FR, in hertz) to the 22.5° target (left) and 0° distractor (right) between control and V1 excitation (red)/
suppression (blue) on the current stimulus (StimN). Filled circles are individual cells and error bars are SEM across cells with white
dots in the center showing the mean of the population (excitation: n � 83 cells, 3 mice; suppression: n � 70 cells, 3 mice). F,
Comparison of neuronal responses (FR, in hertz) to the 22.5° target (left) and 0° distractor (right) on StimN when the previous
stimulus (StimN
1) was excited/suppressed versus control.
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conditions) to choose the one that yielded: (1) the maximum difference
between the predicted hit and FA rate among the most separable pair of
signal and noise distributions, and (2) the predicted bias in the control
condition closest to the behavioral bias (c � 1). For Protocol 2, the
decision criterion was fixed across all contrasts for each cell as the mean
of the responses to the lowest contrast distractor (0°-30%) and the high-
est contrast target (22.5°–70%). For Protocol 3, the decision criterion was
fixed across all ISIs for each cell as the mean of the responses to the most
adapted distractor (0°-250 ms ISI) and the most recovered target (22.5°–
750 ms ISI). Thus, hit rate or FA rate across all conditions (either con-
trasts, ISIs, or V1 suppression/excitation) was calculated as percentage of
trials of the target or distractor responses that is higher than the decision
criterion, respectively.

The predicted hit and FA rate were used to calculate neuronal d� and c
using the same equations as were used for the behavioral data. To avoid
confounds of directionality (because an increase in a positive d� and a
decrease in a negative d� are both increases in sensitivity), only cells that
had a positive d� in the control condition (V1 suppression: 47/70; V1
excitation: 45/83), or across contrasts (19/92) and ISIs (21/74 cells) were
included.

“Nonparametric” measures of sensitivity (A�; Pollack and Norman,
1964) and bias (B�; Hodos, 1970; Grier, 1971) were calculated as follows:

A� �
1

2
�

(HR � FAR)(1 � HR � FAR)

4HR(1 � FAR)
,

B� �
HR(1 � HR) � FAR(1 � FAR)

HR(1 � HR) � FAR(1 � FAR)
.

Experimental design and statistical analysis
All behavioral and neuronal data were tested for normality using a Lil-
liefors test. Whereas behavioral measures were normally distributed,
electrophysiological measures of spike rates were not. Therefore, behav-
ioral data were compared with either a t test or ANOVA with post hoc
Tukey HSD test for datasets with two and multiple groups, respectively.
However, for the neuronal activity we used only nonparametric tests
(Wilcoxon signed rank test and Friedman test with post hoc Tukey HSD
test to compare two and multiple groups, respectively). Sample sizes were
not predetermined by statistical methods, but are similar to other studies.
The numbers of cells, animals, or experiments were provided in the
corresponding text, figures, and figure legends. All error values in the text
are SEM unless otherwise specified. Data collection and analysis were not
performed blind to experimental conditions, but all visual presentation
conditions in extracellular recording and behavior experiments are
randomized.

Data and code availability
All relevant data and code are available from the corresponding author
upon reasonable request.

Results
To explore whether purely sensory changes can affect measured
bias in perceptual decision-making, we designed an orientation
discrimination task in which we could (1) measure hit and FA
rate to calculate bias and sensitivity, and (2) control the neuronal
responses to both targets and distractors (Fig. 1B; Jin et al., 2019).
In this task, a head-fixed mouse must press a lever to initiate trials
and release it to report a target orientation. Each trial began with
the repeated presentation of at least two (and up to nine) iso-
oriented gratings [“distractors”: 0° (vertical) or 45° (counter-
clockwise of vertical), 100 ms duration] followed by a grating of a
different orientation from the distractor (“target”, range: 9 –90°
counter-clockwise from the distractor, 100 ms duration). Within
a trial, each stimulus presentation was separated from the preced-
ing presentation by a mean-luminance ISI to eliminate rotation
artifacts when transitioning from distractor to target orienta-
tions. If the mouse released the lever within a window (200 –550
ms; Fig. 1D; details in Materials and Methods) following the onset

of the target stimulus, it was considered a hit; if the mouse re-
leased the lever within the same window following a distractor
stimulus, it was considered a FA. Thus, we could use these behav-
ioral measures to calculate sensitivity and bias using SDT (Green
and Swets, 1966).

In addition to being appropriate for making measurements of
SDT, this task has a couple of additional advantages. First, the
mice performed the task at a high level of proficiency with low
lapse rates (measured as 1-hit rate for 90° targets, 0.053 � 0.008;
range 0.003– 0.107; n � 14 mice), FA rates (0.048 � 0.004; range
0.032– 0.098; n � 14 mice), and threshold for orientation dis-
crimination (25.2°�1.3°; range 14.2°–32.0°; n � 14 mice). Thus,
there are minimal concerns about changes in motivational state
or arousal that could influence our measures of bias. Second, our
previous work has determined how neuronal activity in V1 is
used to perform this task: the downstream decoder simply sums
V1 spike rates, with higher weight given to neurons that prefer
targets while ignoring those that prefer the distractor (Fig. 1C; Jin
et al., 2019). Therefore, the decision variables and decision crite-
rion can be approximated in units of firing rate and neuronal
responses to targets and distractors can be regarded as signal and
noise distributions respectively. Thus, we can use a variety of
approaches to alter V1 excitability to coincidently change signal
and noise distributions and determine whether these changes in
sensory encoding can induce changes in measured bias.

Direct suppression and activation of V1 bidirectionally alters
behavioral measures of bias
To directly test the contribution of sensory encoding in V1 to
measures of bias, we optogenetically manipulated the firing rates
(FRs) of V1 neurons. We virally or genetically expressed excit-
atory opsins (ChR2 or Chronos) in either inhibitory or excitatory
neurons using transgenic mouse lines (PV::Cre or VGAT-ChR2
and EMX1::Cre). Thus, using these different mouse lines, we can
use blue light to either activate inhibitory interneurons to sup-
press V1 or activate excitatory neurons to excite V1. We applied
these optogenetic tools to suppress or excite V1 neurons specifi-
cally during presentation of targets or distractors either during
performance of the orientation discrimination task (Fig. 1B,E) or
in passively viewing mice (Fig. 2). Notably, the light powers used
did not induce significant changes in the lapse rate (V1 suppres-
sion vs Control: 0.10 � 0.02 vs 0.08 � 0.01; p � 0.13, n � 4 mice,
paired t test; V1 excitation vs Control: 0.06 � 0.03 vs 0.12 � 0.06;
p � 0.18, n � 4 mice, paired t test), suggesting similar levels of
arousal across conditions. Although orientation discrimination
was tested with targets of multiple orientations in each mouse
(ranging from 9 to 90°; Fig. 1E), for simplicity we focused our
analysis of behavior and neuronal activity on distractors (0°) and
targets near threshold (22.5°).

Extracellular recordings from V1 neurons (Fig. 2A–C) re-
vealed that optogenetic activation of inhibitory neurons signifi-
cantly reduced neuronal responses to both targets near the
animals’ discrimination threshold and distractors (FR changes by
V1 suppression: 22.5°: 
6.6 � 1.2 Hz, p 	 10
9; 0°: 
5.5 � 1.2
Hz, p 	 10
10; n � 70 cells; Wilcoxon signed rank test; Fig.
2D,E), whereas activation of excitatory neurons increased visu-
ally driven responses (FR changes by V1 excitation: 22.5°: 2.6 �
0.4 Hz, p 	 10
8; 0°: 2.5 � 0.3 Hz, p 	 10
11; n � 83 cells;
Wilcoxon signed rank test). Importantly, these effects of optoge-
netic manipulation were largely temporally selective, as we saw
little to no effect on stimuli (StimN) for which the preceding
stimulus (StimN
1) was optogenetically manipulated (FR
changes by V1 suppression: 22.5°: p � 0.02; 0°: p � 0.50; FR
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changes by V1 excitation: 22.5°: p � 0.58; 0°: p � 0.79; Wilcoxon
signed rank test; Fig. 2F).

Because we think that the decision variable is closely related
the total firing rate in V1 (Jin et al., 2019), we expect that the
reduction in firing rates because of activation of inhibitory in-
terneurons will decrease the decision variable and make it less
likely to cross the decision threshold. Consistent with this hy-
pothesis, we found that optogenetic suppression of activity in V1
reduced behavioral hit rate (22.5° target: V1 suppression vs Con-
trol: p 	 0.005; n � 4 mice; paired t test; Figs. 1E, 3B) and FA rate
(V1 suppression vs Control: p � 0.02; n � 4 mice; paired t test).
These associated changes in both hit and FA rate resulted in
changes in bias (c) measured by SDT. Indeed, we found a signif-

icant increase in measured bias (c for 22.5° target: V1 suppression
vs Control: p 	 0.005; paired t test; Fig. 3C) and a slight decrease
in sensitivity (d� for 22.5° target: V1 suppression vs Control: p �
0.05; paired t test). Conversely, optogenetic excitation of V1 in-
creased behavioral hit rate (22.5° target: V1 excitation vs Control:
p 	 0.01; n � 4 mice; paired t test; Figs. 1E, 3B) and FA rate (V1
excitation vs Control: p 	 0.01; n � 4 mice; paired t test), result-
ing in a decrease in measured bias (c for 22.5° target: V1 excitation
vs Control: p 	 0.005; paired t test; Fig. 3C) and a slight decrease
in sensitivity (d� for 22.5° target: V1 excitation vs Control: p �
0.05; paired t test). As with the neuronal data, the effects of opto-
genetic manipulation were temporally selective: optogenetic ma-
nipulation of activity during a stimulus had no effect on bias or
sensitivity on the subsequent stimulus (V1 suppression, c: p �
0.51; d�: p � 0.44; V1 excitation, c: p � 0.31; d�: p � 0.72; paired
t test; Fig. 3D).

Notably, there are cognitive contributions to bias that cause
fluctuations over the duration of a trial or session. For instance,
because the hazard function for target appearance is not flat, the
expectation of a target increases with trial duration (Kang and
Maunsell, 2012; Jin et al., 2019), and this will decrease bias. In-
deed, we found that thresholds on short trials (�2 s) were
slightly, though not significantly, higher than on long trials (�3 s;
long vs short: 24.9°�2.2° vs 26.9°�1.7°; p � 0.37; n � 8 mice;
paired t test) and FA rates on short trials were slightly, but not
significantly, lower than on long trials (long vs short: 0.08 � 0.02
vs 0.06 � 0.01; p � 0.27; n � 8 mice; paired t test). However, the
effects of optogenetic manipulations in V1 on bias were not de-
pendent on trial length (interaction between V1 excitability and
trial length, V1 suppression: p � 0.71, DF � 1; V1 excitation: p �
0.79, DF � 1; two-way ANOVA), or number of distractor pre-
sentations (interaction between V1 excitability and distractor
numbers (2– 4 vs 6 – 8 distractors: V1 suppression: p � 0.76,
DF � 1; V1 excitation: p � 0.71, DF � 1; two-way ANOVA).
Thus, the observed effects of V1 excitability on bias were robust to
fluctuations in bias over the duration of a trial.

Direct suppression and activation of V1 bidirectionally alters
neuronal measures of bias
To test whether the changes in sensory encoding in V1 can qual-
itatively account for the changes in behavioral bias, we predicted
neuronal bias by using neuronal activity in V1 recorded during
the passively viewing condition. These recordings were per-
formed in non-behaving mice to avoid the potential contribution
of feedback from decision-making areas. We used these data to
determine whether the predicted neuronal bias changed in the
same direction as observed behaviorally. We first constructed the
signal and noise distributions for each cell as its response to 22.5°
targets and 0° distractors, respectively, and then applied a deci-
sion criterion across control and optogenetic manipulation con-
ditions to predict hit and FA rate. The decision criterion was fixed
across optogenetic conditions and was chosen as the mean of
each cell’s responses to the maximum and minimum response
conditions to avoid conditions that resulted in ceiling or floor
effects on the hit and FA rates (Fig. 4A). For V1 suppression, we
chose the criterion as the mean between the average responses to
optogenetically suppressed distractors (0°) and control targets
(22.5°); for V1 excitation, we chose the mean between the average
responses to control distractors (0°) and optogenetically excited
targets (22.5°). This criterion was then applied to the neuronal
response distributions such that responses larger than the crite-
rion were considered hits or FAs, whereas responses smaller than
the criterion were considered misses or correct rejects. These
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Figure 3. Suppressing or exciting V1 increases or decreases behavioral bias. A, Schematic of
behavior setup and trial progression. StimN is the stimulus that the animal responded to by
releasing the lever and StimN
1 is the stimulus preceding StimN. V1 suppression (blue) and
excitation (red) is achieved via optogenetically driving PV� or VGAT� neurons and Emx1�
neurons, respectively. B, Comparison of the hit (22.5°; left) and FA rate (0°; right) between
control and V1 suppression (blue; n � 4 mice) or excitation (red; n � 4 mice) on StimN. Filled
circles are individual mice and error bars are SEM across mice with white dots in the center
showing the mean of the population. C, Same as B, for bias (left) and sensitivity (right) at 22.5°.
D, Same as C, for V1 suppression or excitation on StimN
1.
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were then used to calculate “predicted” hit and FA rates. Because
the decoder in this task largely monitors target preferring cells
while ignoring distractor preferring cells (Fig. 1C; Jin et al., 2019),
we only focused on cells that had a positive d� in the control
condition. In addition, this selection criterion aids in the inter-
pretation of changes in d�: in neurons with positive d�, increases
in d� reflect increases in discriminability, whereas the opposite is
true for neurons with negative d�.

Suppressing neuronal activity in V1 decreased the predicted
hit rate (22.5° target: V1 suppression vs Control: p 	 10
6; n �
47 cells; Wilcoxon signed rank test; Fig. 4B) and FA rate (V1
suppression vs Control: p 	 10
7; n � 47 cells; Wilcoxon signed
rank test) leading to an increase in measured bias (c for 22.5°
target: V1 suppression vs Control: p 	 10
7; Wilcoxon signed
rank test; Fig. 4C) without significantly changing the sensitivity
(d� for 22.5° target: V1 suppression vs Control: p � 0.12; Wil-
coxon signed rank test). Conversely, increasing neuronal activity
in V1 increased predicted hit (22.5° target: V1 excitation vs Con-
trol: p 	 0.001; n � 45 cells; Wilcoxon signed rank test; Fig. 4B)
and FA rate (V1 excitation vs Control: p 	 10
6; n � 45 cells;
Wilcoxon signed rank test), resulting in a decrease in measured
bias (c for 22.5° target: V1 excitation vs Control: p 	 10
5; Wil-
coxon signed rank test; Fig. 4C) and sensitivity (d� for 22.5° tar-

get: V1 excitation vs Control: p 	 0.001; Wilcoxon signed rank
test).

These effects on bias were not due to our neuronal selection
criterion. If we only focused on neurons with d� 	 0 (distractor
preferring neurons), the effects of V1 excitability on measured
bias were in the same direction (c for 22.5° target: V1 suppression
vs Control: 1.95 � 0.16 vs 0.02 � 0.38; p 	 10
4; n � 23 cells; V1
excitation vs Control: 0.43 � 0.08 vs 0.68 � 0.19; p � 0.03; n � 38
cells; Wilcoxon signed rank test). Nor were the effects on bias
because of our chosen decision criterion. If instead of choosing
the mean firing rate, we chose a decision criterion that maximized
the difference between hit and FA rate, the effects of V1 excitabil-
ity on neuronal bias remained in the same direction (c for 22.5°
target: V1 suppression vs Control: 1.82 � 0.13 vs 0.08 � 0.26, p 	
10
8; n � 47 cells; V1 excitation vs Control: 0.41 � 0.18 vs 0.98 �
0.15, p 	 10
7; n � 45 cells; Wilcoxon signed rank test). Alter-
natively, if we chose a decision criterion that matched the bias
measured in control behavioral conditions (c � 1; notably, this
bias is conservative, likely because of the high ratio of distractor to
target presentations), we still observed similar effects of manipu-
lating V1 activity on bias (c for 22.5° target: V1 suppression vs
Control: 2.14 � 0.07 vs 1.38 � 0.06, p 	 10
7; V1 excitation vs
Control: 0.78 � 0.09 vs 1.16 � 0.07, p 	 0.001).

SDT measures have underlying assumption that the decision
variable distributions are standard normal. Although we are un-
able to preclude that the true decision variable distributions are
not normal, the neuronal responses were not. To determine
whether the normality assumption is necessary for our main con-
clusion about the directionality of changes in bias by V1 manip-
ulation, we also measured “nonparametric” equivalences of
sensitivity (A�; Pollack and Norman, 1964) and bias (B�; Hodos,
1970; Grier, 1971). Similar to parametric measures, we found that
V1 suppression induced an increase in B� (for 22.5° target: V1
suppression vs Control: 0.47 � 0.05 vs 0.27 � 0.03, p 	 10
3; n �
47 cells; Wilcoxon signed rank test), whereas V1 excitation in-
duced a decrease in B� (V1 excitation vs Control: 
0.02 � 0.02 vs
0.16 � 0.02, p 	 10
6; n � 45 cells; Wilcoxon signed rank test).
We also observed a slight increase in A� when suppressing V1 (A�
for 22.5° target: V1 suppression vs Control: 0.64 � 0.02 vs 0.63 �
0.01; p � 0.04; n � 47 cells) and a decrease in A� when exciting V1
(V1 excitation vs Control: 0.47 � 0.03 vs 0.61 � 0.01; p 	 10
4;
n � 47 cells). This suggests that our results are robust to the
assumed distributions of the decision variables.

Together, our electrophysiology data show that manipulating
excitability of neurons in V1 is sufficient to alter bias even in the
absence of a flexible decision criterion and decision-related feed-
back signals. Moreover, the neuronal and behavioral changes in
bias are in the same direction, suggesting that the changes in
sensory encoding could be responsible for the changes in behav-
ioral bias.

V1 suppression also increases behavioral bias in a contrast
detection task
The interpretation of the effects of optogenetically manipulating
firing rates during the orientation discrimination task depends in
part on the presumed decision variable: namely, that the down-
stream perceptual choice circuit is monitoring the firing rates of
the neurons in the visual cortex. This is also likely the decision
variable used for contrast detection. To demonstrate that the
effects of V1 excitability on measured bias is a general phenome-
non across behavioral tasks with similar decoding strategy, we
tested whether V1 suppression also increases bias in a contrast
detection task (Fig. 5). In this task, mice pressed the lever to
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Figure 4. Suppressing or exciting V1 increases or decreases neuronal bias. A, Left, Schematic
of extracellular recording setup. Right, For V1 suppression, the criterion (solid red line) is set as
the mean of each cell’s responses to the maximum and minimum response conditions. In the
case of optogenetic suppression, this is the mean of the 22.5° targets in the control condition
(black) and the suppressed 0° distractors (light blue). B, Predicted hit (22.5°; left) and FA rate
(0°; right) from neuronal responses using a fixed criterion for each cell (see Materials and
Methods). Error is SEM across cells (V1 suppression-blue: n �47 cells, 3 mice; V1 excitation-red,
n�45 cells, 3 mice). C, Predicted bias (left) and sensitivity (right) using the predicted hit and FA
rate in B.
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initiate each trial and release it when a grating (contrast range:
4 –100%) appeared on the gray screen (Fig. 5A,B). Like the ori-
entation discrimination task, the mice had low lapse rates (mea-
sured as 1-hit rate for 100% contrast: 0.065 � 0.012; range 0.038 –
0.086; n � 4 mice), FA rates (0.072 � 0.003; range 0.068 – 0.080;
n � 4 mice), and threshold for contrast detection (7.7%�1.2%;
range 5.8%–11.1%; n � 4 mice). V1 suppression was achieved by
optogenetically activating inhibitory interneurons [in PV::Cre
(n � 2) and VGAT-ChR2 (n � 2) mice]. The light power was also
titrated so that there was no difference between lapse rate across
conditions (V1 suppression vs Control: 0.06 � 0.004 vs 0.06 �
0.01; p � 0.83, n � 4 mice, paired t test). As in the orientation
discrimination task, we found that V1 suppression significantly
decreased hit rate (10% contrast: V1 suppression vs Control: p 	
0.005; n � 4 mice; paired t test; Fig. 5C) and slightly, but not
significantly, reduced FA rate (V1 suppression vs Control: p �
0.09; n � 4 mice; paired t test), resulting in a significant increase
in measured bias (c for 10% contrast: V1 suppression vs Control:
p 	 0.01; paired t test; Fig. 5D) and decrease in sensitivity (d� for
10% contrast: V1 suppression vs Control: p 	 0.005; paired t
test). Thus, manipulation of V1 activity is sufficient to alter bias
in multiple perceptual tasks with similar decoding strategies.

Manipulation of stimulus contrast affects measures of bias
Optogenetic tools allow for the direct manipulation of firing
rates, however any manipulation that coincidently increases or
decreases firing rates in response to targets and distractors is pre-
dicted to impact measures of bias. For instance, neurons in V1
usually have monotonic contrast–response functions (Ohzawa et
al., 1982), and therefore decreasing stimulus contrast should de-
crease firing rates in response to both targets and distractors,
shifting the optimal criterion to lower stimulus values. Thus, we
modified our orientation discrimination task to vary stimulus
contrast (30, 50 and 70%) on a presentation-by-presentation ba-
sis (Fig. 6A). We chose this range of contrast (30 –70%) to ensure
that there was no significant difference between the lapse rates
across contrast conditions (measured as 1-hit rate for 90° targets,
70 vs 30%: 0.06 � 0.02 vs 0.10 � 0.02; p � 0.32, DF � 2; n � 5
mice, one-way ANOVA). Extracellular recordings confirm
that manipulation of contrast significantly affected firing rates
in response to both targets [22.5°: FR changes from 70 to 30%:


4.5 � 0.7 Hz, p 	 10 
7; n � 92 cells; DF � 2; Friedman test
( p 	 10 
8) with post hoc Tukey HSD test; Fig. 6B] and distrac-
tors [0°: FR changes from 70 to 30%: 
4.2 � 0.5 Hz, p 	 10 
9;
n � 92 cells; Friedman test ( p 	 10 
25) with post hoc Tukey
HSD test].

Consistent with lower stimulus contrast driving lower firing
rates, we found that decreasing stimulus contrast significantly
reduced the animal’s hit rate [22.5° target- one-way ANOVA
(p � 0.05; DF � 2) with post hoc Tukey HSD test for 70 vs 30%:
p � 0.04; n � 5 mice; Fig. 6C] and FA rate [one-way ANOVA
(p 	 10
3) with post hoc Tukey HSD test for 70 vs 30%: p 	
10
3]. These changes in hit and FA rate resulted in a significant
increase in bias (c for 22.5° target: one-way ANOVA (p 	 0.005)
with post hoc Tukey HSD test for 70 vs 30%: p 	 0.005; Fig. 6D)
without a significant change in sensitivity (d� for 22.5° target:
one-way ANOVA; p � 0.81). Notably, we observed a larger effect
on bias when comparing low (30%) vs high (70%) contrast, than
when comparing low (30%) vs intermediate (50%) contrast (dif-
ference in bias: 30 –70 vs 30 –50%: 0.88 � 0.10 vs 0.43 � 0.05; p 	
0.005; paired t test). This suggests that the size of the effect on
measured bias depends on the size of the effect on sensory encod-
ing.

As with optogenetic manipulation of neuronal activity, the
effects of manipulating visual stimulus features on behavior were
consistent with the observed effects on V1 activity. Lowering
stimulus contrast decreased both the predicted hit rate [22.5°
target: Friedman test (p 	 0.01, DF � 2) with post hoc Tukey HSD
test for 70 vs 30%: p � 0.02; n � 19 cells; Fig. 6E] and FA rate
[Friedman test (p 	 10
6) with post hoc Tukey HSD test for 70 vs
30%: p 	 10
5], resulting in an increase in measured bias [c for
22.5° target: Friedman test (p 	 10
3) with post hoc Tukey HSD
test for 70 vs 30%: p 	 10
3; Fig. 6F] without significantly chang-
ing the predicted sensitivity (d� for 22.5° target: Friedman test,
p � 0.08). Thus, changes in the quality of sensory encoding
through variation of visual stimulus properties can affect behav-
ioral and neuronal measures of bias.

Manipulation of adaptation state affects measures of bias
Varying stimulus contrast revealed that stimulus manipulations
of sensory encoding can affect measured bias. To demonstrate the
ubiquity of this phenomenon, we manipulated a different prop-
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Figure 5. Suppressing V1 increases behavioral bias in a contrast detection task. A, Schematic of behavior setup and trial progression for a contrast detection task. Blue light is turned on during
the entire length of a trial. V1 suppression (blue) is achieved via optogenetically driving PV� or VGAT� neurons. B, Hit rate (left) and FA rate (right) for control (black) and V1 suppression (blue)
for one example mouse. Hit rates are fitted with a Weibull function; vertical dotted lines are threshold, error is 95% confidence interval. C, Comparison of the hit (10% contrast; left) and FA rate (0%
contrast; right) between control and V1 suppression (blue; n � 4 mice). Filled circles are individual mice and error bars are SEM across mice with white dots in the center showing the mean of the
population. D, Same as C, for bias (left) and sensitivity (right) at 10% contrast.
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erty of the task design that affects sensory encoding: ISI (250, 500,
and 750 ms; Fig. 7A). Varying the ISI, like varying contrast, alters
the strength of sensory responses, where shorter ISIs drive sup-
pressive adaptation and lower firing rates (Clifford et al., 2007; Jin
et al., 2019). Indeed, extracellular recordings revealed that adap-
tation significantly decreased the neuronal responses to distrac-
tors [0°: 250 ms: 6.3 � 1.1 Hz; 500 ms: 8.7 � 1.5 Hz; 750 ms:
10.2 � 1.6 Hz; Friedman test (p 	 10
9, DF � 2) with post hoc
Tukey HSD test for FR changes from 750 to 250 ms ISI: p 	 10
8;
n � 74 cells; Fig. 7B], whereas slightly, but not significantly, de-
creasing responses to targets (22.5°: 250 ms: 9.3 � 1.4 Hz; 500 ms:
10.4 � 1.7 Hz; 750:11.7 � 1.8 Hz; Friedman test, p � 0.17).
Although there was an asymmetric effect of ISI on targets and
distractors (consistent with the stimulus-specific effects of adap-
tation; Müller et al., 1999; Dragoi et al., 2000), the net effect of
adaptation is to reduce firing rates and this should decrease the
optimal criterion and therefore increase bias.

Consistent with this prediction, decreasing the ISI decreased
both hit rate [22.5° target: one-way ANOVA (p � 0.02; DF � 2)
with post hoc Tukey HSD test for 750 vs 250 ms: p � 0.01; n � 11
mice; Fig. 7C] and FA rate [one-way ANOVA (p 	 10
8) with
post hoc Tukey HSD test for 750 vs 250 ms: p 	 10
8]. The
decrease in both hit and FA rate supported an increase in mea-
sured bias [c for 22.5° target: one-way ANOVA (p 	 10
3) with
post hoc Tukey HSD test for 750 vs 250 ms: p 	 10
4; Fig. 7D],
without a coincident change in sensitivity (d� for 22.5° target:
one-way ANOVA, p � 0.85). Importantly, the range of ISIs se-
lected here did not affect lapse rate such that there was minimal

concern of different arousal states across ISI conditions (750 vs
250 ms: 0.05 � 0.01 vs 0.05 � 0.01; p � 0.97; DF � 2; one-way
ANOVA). Similar to the contrast manipulation, the size of the
effect on bias depended on the size of the effect on sensory en-
coding (difference in bias: 250 –750 vs 500 –750 ms: 0.50 � 0.04
vs 0.32 � 0.02; p 	 10
3; paired t test).

As with manipulating contrast, the behavioral effects of ma-
nipulating ISI were expected from the observed changes in neu-
ronal activity recorded in V1. Using a fixed-decision criterion, the
decreased responses to targets and distractors with decreasing ISI
significantly decreased the predicted FA rate [0°: Friedman test
(p 	 10
4, DF � 2) with post hoc Tukey HSD test for 750 vs 250
ms: p 	 10
4; n � 21 cells; Fig. 7E] and slightly, but not signifi-
cantly, decreased the hit rate (22.5° target: Friedman test, p �
0.37) resulting in an increase in measured bias [c for 22.5° target:
Friedman test (p 	 0.005) with post hoc Tukey HSD test for 750 vs
250 ms: p 	 0.005; Fig. 7F] without a change in sensitivity (d� for
22.5° target: Friedman test, p � 0.26). Thus, the effects of ISI on
behavioral bias were consistent with the effects of ISI on sensory
encoding. Together, these data demonstrate that both direct op-
togenetic, and indirect stimulus-dependent, manipulations of
sensory encoding affect both behavioral and neuronal measures
of bias.

Discussion
Here we provide both behavioral and neuronal evidence that
measures of bias are sensitive to changes in sensory encoding.
Directly manipulating neuronal excitability in V1 induced pre-
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Figure 6. Decreasing stimulus contrast decreases both hit and FA rate and increases behavioral and neuronal bias in the orientation discrimination task. A, Left, Schematic of behavioral setup.
Stimulus contrast is varied [30% (light gray), 50% (dark gray), or 70% (black)] on each stimulus presentation. Right, Hit rate and FA rate (inset) for each contrast for an example mouse. Hit rates are
fit with a Weibull function; vertical dotted lines are threshold, error is 95% confidence interval. B, Left, Schematic of extracellular recording setup. Right, Comparison of neuronal responses (FR, in
hertz) to the 22.5° target (black) and 0° distractor (green) between 30 and 70% contrast. Filled circles are individual cells and error bars are SEM across cells with white dots in the center showing the
mean of the population (n � 92 cells, 4 mice). C, Comparison of behavioral hit (left; 22.5° target) and FA rate (right; 0° distractor) between two contrasts (70 vs 30%). Filled circles are individual mice
and error bars are SEM across mice with white dots in the center showing the mean of the population (n � 5). D, Same as C, for bias (left) and sensitivity (right) at 22.5°. E, F, Same as C and D, for
predicted (E) hit and FA rate and (F ) bias and sensitivity from the neuronal data (n � 19 cells, 4 mice).
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dictable changes in behavioral bias with comparatively little effect
on sensitivity in the performance of both an orientation discrim-
ination task and a contrast detection task. Moreover, by varying
either stimulus contrast or adaptation state in the orientation
discrimination task, we also observed robust changes in bias.
Changes in the firing rates of neurons in V1 reflect these same
changes in bias, even in the absence of a flexible decision criterion
and feedback of decision-making signals. These results clearly demon-
strate that changes in bias are not necessarily solely because of cognitive
mechanisms, and conversely, that the lack of a change in sensitivity does
not preclude effects on sensory encoding.

There have been previous reports that causal manipulations of
sensory areas can drive biases in behavioral choices. Electrical
stimulation or optogenetic inactivation of direction-selective
neurons in the sensory visual area MT can bias the monkey’s
choice toward or away from the neurons’ preferred direction in
two-alternative forced choice (2AFC) tasks, suggesting that ma-
nipulation of sensory areas can induce perceptual biases (Salz-
man et al., 1990; Ditterich et al., 2003; Fetsch et al., 2018).
However, 2AFC tasks are criterion free and therefore not amena-
ble to bias measured by SDT as in go/no-go tasks. In go/no-go
tasks, there have been previous reports that manipulations of
areas related to the decision-making process can drive biases in
response probability. For instance, unilateral manipulation of
superior colliculus in monkeys and the dorsal striatum in mice
both alter bias in go/no-go change detection tasks (Herman et al.,
2018; Wang et al., 2018). However, whether manipulation of
activity in a primary sensory area could reliably and predictably

alter perceptual bias as measured with SDT was less clear. Here we
demonstrate that activating or inactivating sensory area V1 can
decrease or increase bias in a go/no-go orientation discrimina-
tion task.

We think it is unlikely that the observed effects on bias in our
study are entirely because of changes in the animals’ decision
criterion because we have carefully limited the contributions of
several cognitive factors that might otherwise impact bias. First,
all conditions (optogenetic stimulation, ISI, and contrast) were
varied on a presentation-by-presentation basis within each trial
such that the animal could not predict the upcoming condition.
Together with the lack of effect on stimuli immediately following
the manipulation, it is unlikely that the mouse could adjust its
decision criterion on these short time scales. Second, these ma-
nipulations do not significantly affect lapse rate across conditions
suggesting that levels of arousal and engagement are constant.
Finally, although animals might be more liberal as trial length or
the number of distractors increases in a trial, the effects of opto-
genetic manipulations on bias remained the same regardless of
whether the stimuli appeared either early or late in a trial or how
many distractors had appeared.

However, if the animal were to compensate for the changes in
sensory encoding by shifting its decision criterion, this could
cancel the effects of sensory encoding on bias, making it seem as
though there were no change in bias at all. Therefore, a lack of a
change in bias does not guarantee a stable decision criterion. As
we have shown, changes to sensory encoding that alter the target
and distractor distributions in the same direction are common-
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Figure 7. Adaptation decreases both hit and FA rate and increases behavioral and neuronal bias in the orientation discrimination task. A, Left, Schematic of behavioral setup. ISI is varied [250 ms
(light gray), 500 ms (dark gray) or 750 ms (black)] on each stimulus presentation. Right, Hit rate and FA rate (inset) for each ISI for an example mouse. Hit rates are fit with a Weibull function; vertical
dotted lines are threshold, error is 95% confidence interval. B, Left, Schematic of extracellular recording setup. Right, Comparison of neuronal responses (FR, in hertz) to the 22.5° target (black), and
0° distractor (green) after 750 or 250 ms ISIs. Filled circles are individual cells and error bars are SEM across cells with white dots in the center showing the mean of the population (n � 74 cells, 4
mice). C, Comparison of behavioral hit (left; 22.5° target) and FA rate (right; 0° distractor) between two ISIs (750 vs 250 ms). Filled circles are individual mice and error bars are SEM across mice with
white dots in the center showing the mean of the population (n � 11). D, Same as C, for bias (left) and sensitivity (right) at 22.5°. E, F, Same as C and D, for predicted (E) hit and FA rate and (F ) bias
and sensitivity from the neuronal data (n � 21 cells, 4 mice).
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place. For instance, the classic gain-change effects of both spatial
and feature attention on neuronal activity should drive changes
in both sensitivity and bias (Treue and Maunsell, 1996; Treue and
Martínez-Trujillo, 1999). In contrast, changes to sensory encod-
ing that proportionally change target and distractor distributions
in opposite directions, such that the optimal criterion is stable,
are less common.

We were initially surprised at the comparatively small effect of
the optogenetic and stimulus manipulations on sensitivity com-
pared with the large effects on bias. In particular, one might ex-
pect that changing stimulus contrast should affect sensitivity on
the orientation discrimination task. However, similar effects have
been observed with contrast manipulations in a go/no-go orien-
tation discrimination task (Long et al., 2015), and we think that
the observed effects can be largely explained by the computation
that the mouse is using to perform the task. Our previous study
suggests that the circuits downstream of V1 are monitoring the
total firing rates of a population of target-responsive sensory neu-
rons (Jin et al., 2019). When the firing rate of this population
exceeds some threshold, a target is detected. The data presented
here support this model: increases in contrast or ISI or optoge-
netic activation of V1 neurons increase V1 firing rates and so are
mistaken for target orientations. Although the proposed decoder
is suboptimal for discriminating orientations, we do not think
our results are specific to this orientation discrimination task or
limited to this particular decoder strategy. First, we also observe
that decreases in firing rate in V1 increase bias in a contrast de-
tection task in which a similar all positive sum decoder is feasible.
Second, some optimal decoding strategies that compute the esti-
mated orientation from the population activity, for instance
through a likelihood function, are also sensitive to manipulations
of excitability in sensory cortex because of changes in certainty,
and thus may also affect measured bias (Stocker and Simoncelli,
2006).

We find that manipulating stimulus contrast and ISI induced
relatively small effects on V1 activity, and therefore the predicted
hit rate, compared with the effects observed behaviorally (Figs.
6C vs E, 7C vs E). This discrepancy could be because of multiple
factors. First, although we think we have identified the general
computation used to perform this task, we cannot determine the
precise weighting assigned to the neuronal population, and
therefore the transformation between neuronal activity and be-
havior. Second, although V1 is required for this task, it is likely
not the final visual processing stage. For instance, visual informa-
tion in V1 is routed to higher visual cortical and areas (Wang and
Burkhalter, 2007; Glickfeld et al., 2013; Glickfeld and Olsen,
2017); this process may transform representations to become
more sensitive to contrast or ISI before feeding into the decoder.
Indeed, our preliminary results suggest that some higher visual
areas are also required for this task and they are more sensitive to
adaptation than V1. Although the magnitude of the effects on
firing rate and behavior differ, the fact that both measures change
in the same direction across our manipulation conditions
strongly supports our argument that changes in bias can be in-
duced by changes in the sensory encoding.

Our data reveal that combining optogenetics and SDT to dis-
sociate the sensory and cognitive contributions to perceptual
decision-making in distinct brain circuits is not straightforward.
This is because standard application of SDT conflates perceptual
and response bias (Witt et al., 2015). Realizing this confound,
some groups have designed tasks to support the dissociation of
sensory and cognitive contributions through SDT analyses. One
such approach is to take advantage of the temporal separability

between these processes. For instance, studies normally use pre-
stimulus cues to bias the behavioral choice, but by adding a post-
stimulus cue design one can better dissociate the effects of cue on
sensory encoding and response bias (Bang and Rahnev, 2017).
Other groups have taken advantage of clever stimulus design. For
instance, using noisy stimulus sets to generate trial-by-trial vari-
ability enables experimenters to use regression-based approaches
to measure stimulus sensitivity across conditions, and thereby
dissociate perceptual and response bias (Wyart et al., 2012;
Kloosterman et al., 2019). Together, these approaches can be
combined with optogenetics to determine the extent to which
brain areas and circuits contribute to the various stages of per-
ceptual decision-making.

In conclusion, we have provided thorough experimental evi-
dence that bias measured from SDT is not independent of sensory
encoding, and in fact bias can be changed via directly manipulat-
ing sensory area V1. This introduces a conundrum that changes
in bias can either result from sensory or cognitive mechanisms or
both, which could be resolved via experimental design and new
mathematical approaches. Our data are most consistent with a
sensory role for V1, in which changes in sensory encoding are
propagated to downstream decision-making areas and alter bias
by shifting the optimal decision criterion relative to the actual
decision criterion. Future work will be needed to determine
whether V1 also contributes to cognitive aspects of the decision-
making process.
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