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Individuals with sleep apnea often exhibit changes in cognitive behaviors consistent with alterations in the hippocampus. It is hypothe-
sized that adult neurogenesis in the dentate gyrus is an ongoing process that maintains normal hippocampal function in many mamma-
lian species, including humans. However, the impact of chronic intermittent hypoxia (IH), a principal consequence of sleep apnea, on
hippocampal adult neurogenesis remains unclear. Using a murine model, we examined the impact of 30 d of IH (IH30 ) on adult neuro-
genesis and synaptic plasticity in the dentate gyrus. Although IH30 did not affect paired-pulse facilitation, IH30 suppressed long-term
potentiation (LTP). Immunohistochemical experiments also indicate that IH perturbs multiple aspects of adult neurogenesis. IH30

increased the number of proliferating Sox2 � neural progenitor cells in the subgranular zone yet reduced the number of doublecortin-
positive neurons. Consistent with these findings, cell lineage tracing revealed that IH30 increased the proportion of radial glial cells in the
subgranular zone, yet decreased the proportion of adult-born neurons in the dentate gyrus. While administration of a superoxide anion
scavenger during IH did not prevent neural progenitor cell proliferation, it mitigated the IH-dependent suppression of LTP and prevented
adult-born neuron loss. These data demonstrate that IH causes both reactive oxygen species-dependent and reactive oxygen species-
independent effects on adult neurogenesis and synaptic plasticity in the dentate gyrus. Our findings identify cellular and neurophysio-
logical changes in the hippocampus that may contribute to cognitive and behavioral deficits occurring in sleep apnea.

Key words: adult neurogenesis; hypoxia

Introduction
Increased risk of neurocognitive impairment is commonly ob-
served in sleep apnea, a predominant form of sleep-disordered
breathing that afflicts both children and adults (Malhotra and
White, 2002; Young et al., 2009; Sforza and Roche, 2012; Tan et al.,
2013; Leng et al., 2017; Maski et al., 2017). These impairments in-
clude learning and memory deficits (Jackson et al., 2011), difficulties
in attention (Beebe and Gozal, 2002), and emotional dysregulation

(Schröder and O’Hara, 2005). Although neuroimaging studies sug-
gest that multiple brain regions are impacted by sleep apnea, the
hippocampal formation is frequently identified as a site of injury in
this condition (Morrell et al., 2003; Castronovo et al., 2009; Canessa
et al., 2011; Torelli et al., 2011; Cha et al., 2017).

Intermittent hypoxia (IH) is a principal consequence of sleep
apnea and has been implicated as a unique factor that may cause
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Significance Statement

Individuals with sleep apnea experience periods of intermittent hypoxia (IH) that can negatively impact many aspects of brain
function. Neurons are continually generated throughout adulthood to support hippocampal physiology and behavior. This study
demonstrates that IH exposure attenuates hippocampal long-term potentiation and reduces adult neurogenesis. Antioxidant
treatment mitigates these effects indicating that oxidative signaling caused by IH is a significant factor that impairs synaptic
plasticity and reduces adult neurogenesis in the hippocampus.
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cognitive decline (Gozal et al., 2001; Polotsky et al., 2006). In
rodent models, IH exposure leads to impaired spatial learning
and memory, and coincides with suppressed long-term potenti-
ation (LTP) within the CA1 region of the hippocampus. How-
ever, CA1 is only one hippocampal network that may be
impacted by sleep apnea, and recent neuroimaging work suggests
that this condition may alter adult neurogenesis in the dentate
gyrus region of the hippocampus (Cha et al., 2017).

Adult neurogenesis uniquely supports the dentate gyrus by
providing a source for cellular heterogeneity among the principal
cells of this network (Schmidt-Hieber et al., 2004; Ge et al., 2007).
When compared with relatively older and more mature counter-
parts, new adult-born granule cells are more excitable. Thus, con-
ditions that alter hippocampal adult neurogenesis are likely to
impact hippocampal neurophysiology as well (Arendt et al.,
1983; Li et al., 2008; Bartesaghi et al., 2011).

Oxygenation influences adult neurogenesis (Panchision,
2009; Mazumdar et al., 2010; De Filippis and Delia, 2011; Chatzi
et al., 2015). While previous investigations have reported IH-
mediated changes to adult neurogenesis, these studies demon-
strate opposing data in regard to the generation of adult-born
neurons (Gozal et al., 2003; Pedroso et al., 2016). Specifically,
Gozal et al. (2001, 2003) show that IH increased the number of
newly born neurons, while data from Pedroso et al. (2016) demon-

strate a reduction in a similar population. Thus, the survival and
integration of adult neurons under IH remains to be resolved.

Here, we examine how IH affects both synaptic plasticity and
adult neurogenesis in the dentate gyrus of mice exposed to 30 d of
IH (IH30). IH30 suppressed LTP and reduced the number of
adult-born granule cells generated by adult neurogenesis. IH30

also caused an increase in neural progenitor cell proliferation in
the subgranular zone (SGZ). While the administration of the
superoxide anion scavenger manganese(III) tetrakis(1-methyl-4-
pyridyl)porphyrin (MnTMPyP) prevented both the reduction of
LTP and suppression of the generation of adult-born granule cells, it
did not prevent IH-dependent enhancement in cell proliferation.
These findings indicate a primary role for IH-dependent reactive
oxygen species (ROS) signaling in the observed phenomena, yet IH
appears to also act in a manner independent of ROS to affect pro-
cesses in the dentate gyrus.

Materials and Methods
Study approval. All animal protocols were performed with the approval
of the Institutional of Animal Care and Use Committee (IACUC) at
Seattle Children’s Research Institute or at The University of Chicago, in
accordance with National Institutes of Health guidelines.

Animals. Mice were housed in AAALAC-approved facilities with a 12 h
light/dark cycle and ad libitum access to food and water. All mice were
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Figure 1. Prolonged IH exposure attenuates LTP within the dentate gyrus. A, LTP of the fEPSP following HFS in control (blue circles; n � 9 slices, 7 animals), IH10 (yellow triangles; n � 4 slices,
2 animals), IH20 (magenta diamonds; n � 8 slices, 3 animals), and IH30 (red squares; n � 10 slices, 7 animals) illustrate differences in potentiation following HFS. Representative traces of evoked
fEPSPs are shown above the graph with baseline (black trace) and post-HFS induction indicated (color traces: control, blue; IH10, yellow; IH20, magenta; IH30, red). Arrows at the bottom indicate the
time sampled for B and C. Calibration: 0.2 mV, 10 ms. B, Immediately following HFS, a difference among groups was observed (F(3,27) � 6.667, p � 0.0016). A post hoc Dunnett’s test revealed no
difference immediately following HFS between control and IH10 groups, yet did in both IH20 and IH30 groups in the fEPSP slope when compared with control. C, Sixty minutes post-HFS, a difference
among groups was detected (F(3,27) � 9.529, p � 0.0002). Post hoc Dunnett’s test revealed that, while no difference was present between the control and IH10 groups, the fEPSP in both the IH20

and IH30 groups was reduced compared with control group. In a subset of experiments (n � 4 slices, 3 animals), applying to a larger stimulation current during HFS did not to evoke LTP in the IH30

group (B and C, white triangles). *p � 0.05.
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maintained on a C57BL/6 background. Nes-
tin-CreER T2/Ai27D (Nestin-CreER T2 mice,
Imayoshi et al., 2006; Ai27D mice, The Jackson
Laboratory; RRID:IMSR_JAX:012567) mice
were used for birth-labeling experiments.

Male and female mice [postnatal day 30
(P30) � 5 d] were exposed to IH as previously
described (Garcia et al., 2016). The IH para-
digm was executed during the light cycle and
lasted for 8 h/d (i.e., 80 IH cycles/d) for 10 d
(IH10), 20 d (IH20), or 30 d (IH30). A single
hypoxic cycle was achieved by flowing 100%
N2 into the chamber for �60 s, which created a
hypoxic environment where the nadir O2

chamber reached 4.5 � 1.5% for 7 to 10 s and
was immediately followed by an air break
(�21% O2; 300 s). In a subset of experiments,
mice were treated daily with a cell-permeable
superoxide anion scavenger, MnTMPyP (Enzo
Life Sciences; 15 mg/kg; http://www. enzolif-
esciences.com/ALX-430-070/ mntmpyp-.-
pentachloride/) via intraperitoneal injections
throughout IH exposure.

Slice preparation for electrophysiology. Acute
hippocampal slices were prepared from mice
(P60 to P80) unexposed to IH (control) or
mice exposed to IH10, IH20, or IH30. Tissue
harvest occurred immediately following IH10

and IH20 exposure and within 5 d following the
end of IH30 exposure. Mice were anesthetized
with isoflurane and killed by rapid decapita-
tion. The cerebrum was rapidly harvested and
blocked, rinsed with cold artificial CSF (aCSF)
and mounted for vibratome sectioning. The
mounted brain tissue was submerged in aCSF
(4°C; equilibrated with 95% O2, 5% CO2), and
coronal corticohippocampal brain slices (450
�m thick) were prepared. Slices were immedi-
ately transferred into a holding chamber con-
taining aCSF equilibrated with 95% O2,
5%CO2 (at 20.5 � 1°C). Slices were allowed to
recover a minimum of 1 h before transfer into
recording chamber and were used up to 8 h
following tissue harvest. The composition of
aCSF was as follows (in mM): 118 NaCl, 30 Glu-
cose, 25 NaHCO3, 3.0 KCl, 1.5 CaCl2, 1.0
NaH2PO4, and 1.0 MgCl2. The osmolarity of aCSF was 305–315 mOsm,
and when equilibrated with 95% O2/5% CO2, the pH was 7.42 � 2.

Extracellular recordings of the field EPSP. The field EPSP (fEPSP) in the
dentate gyrus was evoked by electrical stimulation. The stimulation elec-
trode was positioned into the medial perforant path, and the recording
electrode (�1 M�) was placed into the molecular layer (ML) of the
dentate gyrus. The intensity of the electrical current (100 – 400 �A; 0.1–
0.4 ms duration) was set to the minimum amount of current required to
generate the half-maximal fEPSP [i.e., �50% of the maximal initial slope
(mi) of the fEPSP]. To block potential influence by GABAergic transmis-
sion, picrotoxin (25 �M) was added to the bath at 10 min before recordings.

To examine paired-pulse facilitation, the fEPSP was evoked every 20 s
with interpulse intervals of ranging from 20 to 500 ms. Paired-pulse
facilitation was measured before and following tetanic stimulation. The
paired-pulse ratio (PPR) at each interpulse interval was calculated ac-
cording to the following equation:

PPR �
m2

m1

where m2 is the mi evoked by the second stimulus pulse, and m1 is the mi

evoked by the first stimulus pulse.
To examine LTP, the half-maximal fEPSP was evoked every 20 s. After

10 min of recording the baseline fEPSP, LTP was induced using high-

frequency stimulation (HFS). HFS consisted of four 500 ms trains of
stimuli (200 Hz) given at 30 s intervals. Following the HFS, the fEPSP the
recording continued for up to an hour. The fEPSP slope was averaged
in 2 min windows and normalized to baseline values. All recordings
were made using the Multiclamp 700B Amplifier (Molecular Devices:
https://www.moleculardevices.com/systems/conventional-patch-clamp/
multiclamp-700b-microelectrode-amplifier). Acquisition and post hoc anal-
yses were performed using the Axon pCLAMP10 software suite (Molecular
Devices; https://www.moleculardevices.com/systems/axon-conventional-
patch-clamp/pclamp-11-software-suite).

Tissue processing and histological analyses. Following IH30 or normoxia
exposure, mice were anesthetized with isoflurane and transcardially per-
fused with saline and 40 ml of 4% paraformaldehyde according to
IACUC-approved protocols. Brains were dissected and postfixed in 4%
paraformaldehyde overnight. Dissected brains were then cryoprotected
in 30% sucrose for a minimum of 2 d until equilibrated and frozen in
blocks of optimum cutting temperature (OCT) medium by supercooled
ethanol. Blocks containing a single hemisphere from each animal were
coronally sectioned at a thickness of 40 �m on a Leica cryostat, and
stored in a cryoprotectant solution of primarily glycerol at �20°C until
time of use. Every 12th section was sampled, ensuring each animal in the
study had at least three usable sections through the septal region of the
dentate gyrus that contained both the suprapyramidal and infrapyrami-
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Figure 2. Prolonged IH exposure does not influence paired-pulse facilitation (PPF). A, Representative traces of evoked fEPSPs
during PPF are shown. Calibration: 0.2 mV, 10 ms. B, PPF of the fEPSP was similar between control (blue circles, n � 6 slices; 4
animals) and IH30 (red squares, n �6 slices, 5 animals) at all six interpulse intervals (IPIs) tested: 40 ms IPI (IPI 40), t(9.990) �0.904,
p � 0.386; IPI 80, t(9.890) � 0.813, p � 0.4352; IPI 200, t(9.963) � 1.169, p � 0.269; IPI 300, t(9.79) � 0.406, p � 0.693; IPI 400,
t(8.512) � 0.515, p � 0.619; IPI 500, t(9.997) � 0.556, p � 0.591. C, PPF at IPI 50 was similar before and following high-frequency
stimulation for control (blue, n � 6 slices, 3 animals; t(5) � 0.8110, p � 0.4542) and IH30 (red, n � 8 slices, 3 animals; t(7) �
1.777, p � 0.1188). Black-filled symbols represent mean for each group.
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dal blades. Immunohistochemistry was performed on floating sections
using fluorescent dye-conjugated secondary antibodies, as previously de-
scribed (Hodge et al., 2008, 2012). All protocols included an overnight,
�18 h, exposure to the primary antibodies used and a 2 h exposure to
fluorescently conjugated secondary antibodies. The primary antibodies
used in the present study were rabbit anti-synaptoporin (1:500; catalog
#102002, Synaptic Systems; RRID:AB_887841), rabbit anti-Ki67 (1:100;
catalog #VP-RM04, Vector Laboratories; RRID:AB_2336545), goat anti-
Sox2 (1:250; catalog #sc17320, Santa Cruz Biotechnology; RRID:
AB_2286684), goat anti-DCX (1:400; catalog #sc8066, Santa Cruz
Biotechnology; RRID:AB_2088494), rabbit anti-RFP (1:500; catalog
#600-401-379, Rockland; RRID:AB_2209751), and mouse anti-GFAP (1:
20,000; catalog #MAB360, Millipore; RRID:AB_2109815). The antigen
Sox2 required additional retrieval using 0.1% citrate buffer solution before
exposure to the goat anti-Sox2 primary antibody (Hodge et al., 2012).

Hippocampal volume calculations. Single-plane images of all sections
containing usable dentate gyrus (defined above) were captured at low
magnification [10	, 0.8 numerical aperture (NA) air objective] on a
Zeiss LSM 710 confocal microscope using Zen software. Low-magni-
fication images of DAPI (catalog #D9542, Sigma-Aldrich; https://www.
sigmaaldrich.com/catalog/product/sigma/d9542?lang�en&region�US)
and synaptoporin, a synaptic vesicle protein enriched in the axons of dentate
gyrus neurons, were used to quantify the volumes of hippocampal subre-
gions. The granule cell layer (GCL) was determined by the area stained by
DAPI, the hilus was defined as the area between the suprapyramidal and
infrapyramidal blades of the dentate gyrus labeled by DAPI, and the mossy
fiber tract was defined by the entire area stained with synaptoporin. All

regions of interest were measured using Zen software (ZEN Digital Imaging
for Light Microscopy; RRID:SCR_013672). Volumes (V) were estimated
using Cavalieri’s principle, V � 
 A *i *d, taking the sum of aforementioned
areas (A) multiplied by the interval (i) and the distance (d) between sections
sampled (Rosen and Harry, 1990; Prakash et al., 1994; van Praag et al., 1999;
Chatzi et al., 2015).

Immunohistochemistry quantitation. Z-stack images were obtained for
all other immunohistochemical stains within the entire section of the
dentate gyrus using a 40	, 1.3 NA oil objective on a Zeiss LSM 710
confocal microscope with Zen software, and were quantified using Im-

ageJ software (RRID:SCR_003070). Multiple
images were required to capture the complete
dentate gyrus within each usable section. The
entire region of interest of the section, across
multiple images, was counted. Cells intersect-
ing the top plane of each image were excluded.
Cells per dentate gyrus were estimated using
Cavalieri’s principal: raw counts for all imaged
sections were multiplied by the interval (i) and
the distance (d) between sections sampled. For
counts of doublecortin-positive (DCX �) cells,
immature neurons were defined as having a
cell body located in the SGZ and a radial process
extending through the GCL. Examples of in-
cluded and excluded cells are shown in Figure 5A.
For counts of proliferating cells and of neural
progenitor cells, Ki67� and Sox2� counts were
conducted in the SGZ, GCL, hilus, and ML re-
gions within the dentate gyrus. The SGZ region of
interest was defined as previously described in the
study by Miller et al., 2013), which consisted of a
two- to three-cell-thick layer between the GCL
and hilus. The GCL was determined using DAPI
staining, the hilus was defined as the area between
the two dentate blades, excluding the overlap
from the SGZ region of interest, and the molecu-
lar layer was defined as the area up to 100 �m
from the dentate blade.

Pulse labeling experiments were performed
using Nestin-CreERT2/Ai27D mice to explic-
itly label a discrete cohort of neural progenitor
cells. The expression of the Ai27D reporter
[i.e., td-tomato, a red fluorescent protein

(RFP), fused with membrane-bound channelrhodopsin2] was induced in
Nestin-expressing cells using 180 mg/kg tamoxifen (catalog #54965-24-1,
Thermo Fisher Scientific; https://www.fishersci.com/shop/products/
tamoxifen-citrate-98-acros-organics-2/p-194883; dissolved in corn oil,
intraperitoneal injection). Mice (between P29 and P34) received two
consecutive intraperitoneal injections of tamoxifen separated by 18 h
intervals before exposure to IH. Tissue was harvested for immunohisto-
chemical study 30 –31 d following the final day of tamoxifen administra-
tion. Immunostaining for RFP was used to identify cells positive for the
td-tomato reporter molecule. Triple immunostaining for RFP along with
glial fibrillary acid protein (GFAP) and DCX were used in combination
with morphological assessment to divide birth-labeled cells into major
categories: (1) RFP � neural progenitor cells; (2) GFAP �/RFP � astro-
cytes; and (3) RFP � neurons. Based on colabeling patterns, RFP � neural
progenitor cells of the SGZ were further subdivided into the following:
(1) GFAP �/RFP � progenitor cells with radial glial morphology; (2)
RFP �-only neural progenitor cells; and (3) RFP �/DCX � neural pro-
genitor cells. GFAP �/RFP � progenitor cells were distinguished from
GFAP �/RFP � astrocytes based on morphology. RFP �-only neural pro-
genitor cells were located in the SGZ, neither exhibited clear radial pro-
cesses nor colabeled with either GFAP or DCX. RFP �-only neural
progenitor cells presumably represented the pool of birth-labeled non-
radial progenitors (i.e., T-box brain protein 2-positive cells) transition-
ing from the radial glial state but not yet expressing the DCX � phenotype
of late-stage progenitor cells. In addition to colabeling, RFP �/DCX �

neural progenitor cells were identified as having no projections into the
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Table 1. IH30 does not affect the volume of hippocampal subregions

Region
Control group
(mm 3)

IH30 group
(mm 3) t value p value

Granule cell layer 0.171 � 0.022 0.189 � 0.008 t(3.921) � 0.765 0.488
Hilus 0.212 � 0.031 0.331 � 0.104 t(5.854) � 1.090 0.318
Mossy fiber tract 0.279 � 0.036 0.324 � 0.020 t(4.884) � 1.093 0.325

Volumes for three distinct regions �(1) granule cell layer, (2) hilus, and (3) mossy fiber tract� were sampled and were
shown to not be significantly different between the control and IH30 groups. All values are given as the mean
volume � SEM (in mm 3; Control: n � 4, IH30: n � 6).
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GCL. RFP � neurons were morphologically
identified as having clear dendritic projections
into the GCL. Some, but not all, RFP � neurons
also expressed DCX.

Sholl analysis was conducted on fully visible
neurons selected from each experimental
group and imaged at high magnification
(100	, 1.46 NA oil objective) on a Zeiss LSM
confocal microscope. Images were compressed
into a maximum intensity projection in ImageJ
(NIH; Schindelin et al., 2012; Schneider et al.,
2012). Using the Simple Neurite Tracer ImageJ pl-
ugin, dendritic paths of individual neurons were
traced and analyzed with the Sholl analysis plugin
(available in FIJI; RRID:SCR_002285; Schindelin et
al.,2012).Concentriccirclesweredrawnaroundthe
cell body in 10 �m increments, and the number of
neurite intersections with each circle was calculated.
Intersections were plotted as a linear function of ra-
dius to serve as a measure for neurite complexity.
Analysis was limited to birth-labeled neurons hav-
ing at least one dendrite with a 120 �m length from
the soma.

Experimental design and statistical analyses.
All n values are the total number of animals,
unless otherwise noted. Statistics were per-
formed using Prism 6 (GraphPad Software;
RRID:SCR_015807). Comparisons between
two groups were conducted using unpaired
two-tailed t tests with Welch’s correction.
Comparisons between multiple groups were
conducted using a one-way ANOVA with a
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post hoc Dunnett’s test. The equality of variances between two groups was
determined with an F test. Sholl analysis was completed using a two-way
ANOVA of means. Data are presented as individual data points overlaid
on the mean � SEM. Significance was defined as *p � 0.05. Analyses that
were not statistically significant were defined as “n.s.”

Results
Duration-dependent and targeted influence of IH on synaptic
plasticity in the dentate gyrus
We sought to compare how LTP in the dentate gyrus was affected
following IH10, IH20, and IH30. During baseline conditions, there
was very little fluctuation in the evoked fEPSP in all groups sug-
gesting that submaximal basal synaptic transmission was similar
among control and the IH groups before HFS (Fig. 1A; control:
n � 9 slices, 7 animals; IH10: n � 4 slices, 2 animals; IH20: n � 8
slices, 3 animals; IH30: n � 10 slices, 7 animals). LTP was induced
by HFS in slices from control (i.e., 0 d IH) and IH10 groups but
was suppressed in slices following IH20 and IH30 (Fig. 1A). Im-

mediately following HFS, the fEPSP was potentiated in control
and IH10 groups, yet suppressed in both the IH20 and IH30 groups
(Fig. 1B). While potentiation of the fEPSP continued for up to 60
min post-HFS induction in the control and IH10 groups, no po-
tentiation was evident in the majority of slices from IH20 and IH30

(Fig. 1C). In a subset of experiments, we used a larger stimulus
current in an attempt to induce LTP in slices following IH30 yet
was unsuccessful in inducing LTP (Fig. 1B,C, white triangles; n �
4 slices, 3 animals). To further determine whether suppressed
LTP coincided with changes in presynaptic release probability,
we compared the paired-pulse profiles of the fEPSP in slices from
the control and IH30 groups across a range of interpulse intervals
(Fig. 2A). PPRs were similar between groups at all interpulse
intervals examined, suggesting that the presynaptic medial per-
forant pathway was unaffected by IH30 (Fig. 2B). Additionally, no
differences in the PPR were observed before and following tetanic
stimulation (Fig. 2C; control: n � 6 slices, 3 animals; IH30: n � 8
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slices, 3 animals). These findings indicate that IH-mediated
changes to synaptic plasticity not only are duration dependent,
but also target postsynaptic plasticity without significant changes
to presynaptic release probability before and following HFS.
IH has been reported to cause apoptotic activity throughout
the hippocampal formation (Yuan et al., 2015), which could
affect LTP and grossly impact anatomical structures within the
dentate gyrus. Therefore, we compared general anatomical
structures in the dentate gyrus and surrounding regions be-
tween control and IH30 groups for histological evidence of
anatomical differences between control and IH30 groups. The
volume of DAPI staining in the granule cell layer was similar
between groups, suggesting that IH30 did not cause gross
changes in volumes of the GCL or hilus (Table 1). Similarly, no
differences were observed in the volume of the hilus or synap-
toporin staining volume in the mossy fiber tract between
groups (Table 1).

IH30 differentially impacts neural progenitor cell number and
new neuron generation in the hippocampus
Hippocampal synaptic plasticity is influenced by changes in adult
neurogenesis (Snyder et al., 2001; Bruel-Jungerman et al., 2005;
Tashiro et al., 2007; Gu et al., 2012b; Park et al., 2015), and our
macroscopic observations could not discount the possibility that
IH30 perturbed this process. We examined the Sox2-positive
(Sox2�) neural progenitor cell population throughout the SGZ

to assess how the early stages of neurogenesis are affected by IH30.
Neural cells of the SGZ were identified by Sox2� labeling (Fig.
3A; control, n � 10; IH30, n � 7). IH30 appeared to increase the
Sox2� neural progenitor cells (Fig. 3B). Relative to control, there
was a 30% increase following IH30 (Fig. 3C).

We sought to determine whether the increased Sox2� popu-
lation in the SGZ reflected an increase in proliferation by coim-
munolabeling Sox2 and the mitotic marker Ki67 (Fig. 4A; n � 4
animals/group). Sox2�/Ki67� cells in the SGZ increased follow-
ing IH30 when compared with control (Fig. 4B). Under control
conditions, 6.1 � 0.7% of the Sox2� population was colabeled
with Ki67�; whereas following IH30, 9.2 � 0.2% of the Sox2�

population colabeled with Ki67�. This represented an approxi-
mate 50% increase in the Sox2�/Ki67� population following
IH30 (Fig. 4C). Since Sox2 is also expressed in non-neural pro-
genitor cells (e.g., glia) outside of the SGZ (Komitova and Er-
iksson, 2004; Brazel et al., 2005), we tested whether IH30

stimulated the proliferation of SOX2� cells outside the SGZ.
Similar to the SGZ, SOX2�/KI67� colabeling in the hilus was
increased following IH30, increasing the percentage of proliferat-
ing cells from �0.96 � 0.96% in the control group to 1.20 �
0.20% in the IH30 group (Fig. 4D). In contrast to the SGZ and
hilus, no colabeling differences were observed between groups for
the GCL (Fig. 4E) and the ML (Fig. 4F). These data indicate that
IH30 causes regional-specific increases in SOX2� cell prolifera-
tion within the SGZ and hilus.
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To assess how IH influences the latter stages of adult neuro-
genesis, we examined how IH30 affected the number of immature
neurons as indicated by positive doublecortin labeling (i.e.,
DCX�) with dendritic projections into the GCL, under IH30 or
control conditions (Fig. 5A; control: n � 5; IH30: n � 5). DCX�

neural progenitor cells, which lack dendritic projections, were
not included in this analysis. DCX �-labeled immature neu-
rons decreased following IH30 (Fig. 5B). Following IH30, the
number of DCX � immature neurons was reduced by 30.4%
when compared with control (Fig. 5C). These results suggest
that IH causes a defect in the maturation from neural progen-
itor cell to neuron.

IH30-dependent changes to the neural progenitor cell fate in
the SGZ were assessed through birth-labeling experiments (Fig.
6A; control group, n � 9; IH30 group, n � 11). Consistent with
our observations with SOX2� cells in the SGZ, IH30 increased in
the percentage of GFAP�/RFP� cells with radial glial morphol-
ogy when compared with control (Fig. 6B; control, 11.11 �
2.43%; IH30, 24.48 � 4.45%). However, the percentage of RFP�-
only progenitor cells (Fig. 6C) and DCX�/RFP� progenitor cells
(Fig. 6D) were not different between control and IH30. Interest-
ingly, the proportions of GFAP�/RFP� astrocytes (Fig. 6E) were
also unchanged by IH30. However, IH30 reduced the percentage
of RFP� neurons when compared with controls (Fig. 6F), yet
Sholl analysis of a subset of neurons from control and IH30

groups revealed no differences in the complexity of the dendritic
trees of birth-labeled granule neurons (Fig. 6G; control group,
n � 7 neurons; IH30 group, n � 10 neurons).

MnTMPyP treatment mitigates the suppressive effects of IH30

on adult neurogenesis and synaptic plasticity
Increasing evidence suggests that IH causes an increase in ROS
signaling throughout the nervous system that can be mitigated by
antioxidant treatment (Row et al., 2003; Ramanathan et al., 2005;
Garcia et al., 2013; Snyder et al., 2017). Therefore, to determine
the involvement of ROS, the superoxide anion scavenger MnT-
MPyP was administered to subjects during IH30 (IHMnTMPyP),
and to control subjects for 30 d (controlMnTMPyP). We examined
the proportion of proliferating Sox2� cells throughout the
dentate gyrus (Fig. 7A; control, n � 5; IH30, n � 6). Following
IHMnTMPyP, the percentage of Ki67�/Sox2�-colabeled cells in
the SGZ was elevated by 46.84% (Fig. 7B) when compared with
controlMnTMPyP. However, in the hilus (Fig. 7C), GCL (Fig. 7D),
and ML (Fig. 7E) the proportion of Ki67�/Sox2�-colabeled cells
were not different between controlMnTMPyP and IHMnTMPyP

groups. These findings suggest that IH stimulates Sox2� cell pro-
liferation in the hilus through an ROS-dependent process, yet in
the SGZ proliferation of Sox2� cells by IH30 was an ROS-
independent phenomenon.

The DCX� immature neuronal population was no longer
suppressed following IHMnTMPyP when compared with control-

MnTMPyP (Fig. 8B; n � 6 vs n � 4, respectively). Similarly, no
changes were observed in the ratio of birth-labeled granule neu-
rons between IHMnTMPYP and controlMnTMPyP (Fig. 8D; n � 5 vs
n � 6, respectively). Thus, these findings indicate that ROS sig-
naling contributes to the reduction in DCX� immature neurons
and reduced generation of adult-born neurons caused by IH30.
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We further tested the efficacy of MnT-
MPyP to prevent the IH-dependent sup-
pression of LTP. In the IHMnTMPyP group,
tetanic stimulation was able to evoke LTP
in the dentate gyrus (Fig. 9A) and lasted
up to 60 min post-HFS (Fig. 9B; n � 6).
These data indicate that the generation of
ROS under IH30 contributes to deficien-
cies in synaptic plasticity.

Discussion
Although several reports have described
biochemical and neurophysiological changes
occurring in the hippocampus (Row et al.,
2003; Kumar et al., 2009; Xie et al., 2010;
Wall et al., 2014; Yagishita et al., 2017), the
impact of IH on the dentate gyrus of the
hippocampus has been largely been unad-
dressed. Here we address this issue by ex-
amining how IH affects synaptic plasticity
and adult neurogenesis in the dentate
gyrus. We observed the following: (1) IH
suppresses LTP in a duration-dependent
manner; (2) IH impacts multiple stages of
hippocampal adult neurogenesis, which
ultimately results in reduction in the gen-
eration of adult-born neurons; and (3)
antioxidant treatment mitigates the sup-
pression LTP and reduced neurogenesis
caused by IH. The consequences of these
observations are discussed further below.

Seven days of IH does not impact LTP
in the dentate gyrus (Wall et al., 2014).
Similarly, we observed that LTP in the
dentate gyrus is unaffected by IH10. How-
ever, increasing IH exposure to 20 or 30 d
led to the attenuation of LTP. Snyder et al.
(2017) recently reported that IH causes
oxidative stress in the entorhinal cortex, the origin of the presyn-
aptic fibers innervating the dentate gyrus. This raised the possi-
bility that IH20 and IH30 impaired LTP by decreasing presynaptic
excitability and/or affecting presynaptic release probability. In-
creasing the stimulation current during HFS, to compensate for
potential reduced presynaptic excitability, however, failed to
evoke LTP following IH30. Additionally, we did not observe a
change in paired-pulse facilitation before or following tetanic
stimulation and indicated that presynaptic release probability
was unaffected by IH30. Thus, while IH may impact neurons of
the entorhinal cortex, our observations suggest that IH-impaired
LTP is derived primarily from changes in postsynaptic plasticity.

The dentate gyrus is composed of principal neurons hetero-
geneous in relative age, a feature that appears to contribute to the
circuit properties of this network (Snyder et al., 2001). Immature
granule cells derived from adult neurogenesis (i.e., �40 d old) are
more intrinsically excitable (Schmidt-Hieber et al., 2004) and
receive less synaptic inhibition when compared with mature
granule cells (i.e., 
60 d old; Schmidt-Hieber et al., 2004; Ge et
al., 2007; Gu et al., 2012a). Immature granule cells preferentially
incorporate into circuits supporting spatial memory (Kee et al.,
2007), and changes in the generation of immature granule cells
correlate with the strength of LTP within the dentate gyrus (Park
et al., 2015). Thus, alterations in adult neurogenesis would be
predicted to cause significant functional remodeling of the den-

tate gyrus circuitry within a 3– 4 week timeframe. Indeed, we
observed weakened LTP following both IH20 and IH30. Decreased
neurogenesis also correlated with attenuated LTP following IH30,
and by mitigating the effects of IH30 on neurogenesis via antiox-
idant treatment, we were able to preserve LTP. These observa-
tions support the general notion that a positive relationship exists
between the strength of synaptic plasticity and adult neurogenesis
and that IH negatively impairs neurophysiology in the dentate by
reducing the number of adult-born neurons.

We observed that MnTMPyP administration during IH pro-
tected against both the attenuation of LTP and the reduction of
neurons generated by adult neurogenesis, suggesting a role for
IH-dependent ROS signaling. IH-dependent oxidative stress
throughout the nervous system has been demonstrated by mul-
tiple studies (Row et al., 2003; Ramanathan et al., 2005; Garcia et
al., 2013), including the dentate gyrus (Snyder et al., 2017). ROS
signaling is an important factor that affects the efficacy of the
synaptic plasticity. While endogenous superoxide anions may
stimulate LTP via PKC signaling (Klann et al., 1998), hydrogen
peroxide modulates the strength of synaptic plasticity in a
concentration-dependent manner (Kamsler and Segal, 2003).
Hydrogen peroxide also appears to be an important factor for
proliferation and neuronal differentiation of stem cells (Dickin-
son et al., 2011; Forsberg et al., 2013), yet oxidative stress may also
trigger apoptosis in intermediate progenitors and neuroblasts of
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the SGZ (Chatzi et al., 2015). Thus, our findings suggest that
IH-mediated effects on the dentate gyrus likely involve ROS-
mediated signaling and oxidative stress to suppress LTP and adult
neurogenesis.

IH-mediated oxidative stress can be generated through mul-
tiple mechanisms. IH-mediated signaling via hypoxia-inducible
factor 1a has been implicated to cause oxidative stress in the
hippocampus (Chou et al., 2013). Similarly, prolonged IH can
lead to cytokine elevations and long-term microglial changes in
the hippocampus (Sapin et al., 2015) that may cause oxidative
stress. These pathways may act uniquely on adult neurogenesis
but not affect synaptic plasticity or vice versa. Therefore, while it
will be critical to examine the basis for IH-dependent ROS sig-
naling in both LTP and adult neurogenesis, understanding how
IH may disrupt synaptic plasticity through mechanisms unre-
lated to adult neurogenesis, such as changes to the electrophysi-
ological properties of mature granule neurons, activation of glial
cells, and inflammation, will be important.

In agreement with previous investigations (Gozal et al., 2003;
Pedroso et al., 2016), we find that the Sox2� neural progenitor
cell population increased with IH exposure. However, while Go-
zal et al. (2003) concluded that IH promotes the generation of
adult-born neurons, Pedroso et al. (2016) reported that IH neg-
atively impacts the generation of adult-born neurons. We ob-
served that IH causes a reduction in DCX� neurons. Our
approach to label a discrete population of Nestin� neural pro-
genitor cells also provided substantial resolution for understand-
ing how IH affects a single cycle of neurogenesis (�28 d) not
achieved with prior studies. Consistent with the observed prolif-
eration in Sox2� cells, IH increased the proportion of birth-
labeled RFP�/GFAP� neural progenitor cells with radial glial
morphology in the SGZ. In contrast, the proportion of granule
neurons generated from the discretely labeled neural progenitor
population was reduced and agreed with the observation that
IH30 reduced DCX� neurons. The ability for MnTMPyP to mit-
igate the impact of IH on birth-labeled neurons following IH30

further indicate that enhanced ROS signaling, presumably
through oxidative stress, causes cell death in late progenitors
transitioning to immature neurons or in the immature neurons
themselves.

We also observed that Sox2� cell proliferation occurred in the
SGZ and hilus. The increased mitotic activity appeared to be
differentially affected by antioxidant treatment during IH. Sox2�

cell proliferation in the hilus presumably represented increased
glial expansion (Komitova and Eriksson, 2004; Brazel et al.,
2005). Hilar expansion of SOX2� cells was prevented by MnT-
MPyP; whereas, in the SGZ, IH-induced expansion of Sox2�

neural progenitor cells was unaffected by antioxidant treatment.
Thus, while IH may stimulate glial proliferation via an ROS-
dependent mechanism, Sox2� neural progenitor cell prolifera-
tion appears to be ROS independent. Hypoxia itself may be one
potential factor causing stimulation of neural progenitor cell pro-
liferation. Despite the brevity of a single bout of hypoxia (�30 s at
the 5% O2 nadir), the repeated hypoxic stimuli may be sufficient
to promote the proliferation of the neural progenitor cell pool, as
neural progenitor cells normally exist in hypoxic niches of the
SGZ (Chatzi et al., 2015). Additionally, neural progenitors in-
crease proliferation under mild hypoxic conditions (Studer et al.,
2000; Santilli et al., 2010). Although we did not examine the
long-term consequence of the IH-dependent expansion of the
neural progenitor cell population, growing evidence suggests that
the pool of neural progenitor cells in the hippocampus is finite
(Kippin et al., 2005; Furutachi et al., 2013; Ottone et al., 2014).

Therefore, IH-dependent expansion of the neural progenitor
population may accelerate depletion of the pool, leading to re-
ductions in the number of neurons generated by future cycles of
neurogenesis, even if IH is no longer experienced.

In conclusion, our study provides key insights into the
duration-dependent effects of IH on synaptic plasticity in the
dentate gyrus. The impairment of synaptic plasticity was accom-
panied by reduced adult neurogenesis. Thus, the IH-mediated
changes observed here suggest that sleep apnea may be a condi-
tion that dictates the outcome of hippocampal adult neurogen-
esis and synaptic plasticity. These changes may ultimately
contribute to decline in neurocognitive behaviors and injury in
the hippocampus when left untreated or undetected.
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