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Coherent neuronal dynamics play an important role in complex cognitive functions. Optogenetic stimulation promises to provide new
ways to test the functional significance of coherent neural activity. However, the mechanisms by which optogenetic stimulation drives
coherent dynamics remain unclear, especially in the nonhuman primate brain. Here, we perform computational modeling and experi-
ments to study the mechanisms of optogenetic-stimulation-driven coherent neuronal dynamics in three male nonhuman primates.
Neural responses arise from stimulation-evoked, temporally dynamic excitatory (E) and inhibitory (I) activity. Spiking activity is more
likely to occur during E/I imbalances. Thus the relative difference in the driven E and I responses precisely controls spike timing by
forming a brief time interval of increased spiking likelihood. Experimental results agree with parameter-dependent predictions from the
computational models. These results demonstrate that optogenetic stimulation driven coherent neuronal dynamics are governed by the
temporal properties of E/I activity. Transient imbalances in excitatory and inhibitory activity may provide a general mechanism for
generating coherent neuronal dynamics without the need for an oscillatory generator.
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Introduction
Spiking and local field potential (LFP) activity display coherent
patterns of activity across a range of temporal frequencies (Pesa-

ran et al., 2018). Coherent temporal structure has been proposed
to play an important role in the control of higher cognitive func-
tions (Womelsdorf et al., 2006; Buschman and Miller, 2007; Dean
et al., 2012; Wong et al., 2016) and enhanced corticocortical com-
munication more generally (Fries, 2005; Pesaran et al., 2018).
Despite this, whether and how complex cognitive functions de-
pend on the temporal structure of neuronal activity, as opposed
to the magnitude of the activity, has been highly debated. Causal
manipulations that generate frequency-selective coherent neuro-
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Significance Statement

We examine how coherent neuronal dynamics arise from optogenetic stimulation in the primate brain. Using computational
models and experiments, we demonstrate that coherent spiking and local field potential activity is generated by stimulation-
evoked responses of excitatory and inhibitory activity in networks, extending the growing literature on neuronal dynamics. These
responses create brief time intervals of increased spiking tendency and are consistent with previous observations in the literature
that balanced excitation and inhibition controls spike timing, suggesting that optogenetic-stimulation-driven coherence may
arise from intrinsic E/I balance. Most importantly, our results are obtained in nonhuman primates and thus will play a leading role
in driving the use of causal manipulations with optogenetic tools to study higher cognitive functions in the primate brain.
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nal dynamics are important for directly testing their functional
significance. However, to interpret the results of causal manipu-
lations we also need to understand how extrinsic modulations of
coherent neuronal dynamics recruit intrinsic cellular and net-
work mechanisms to generate the driven response.

In general, coherent neuronal dynamics depend on the tem-
poral precision and synchrony of spike timing (Buzsáki and
Wang, 2012), which is governed by the intrinsic dynamics of
excitatory (E) and inhibitory (I) postsynaptic potentials (Brunel
and Wang, 2003; Wehr and Zador, 2003). Typically, excitatory
and inhibitory activity are tightly correlated, with E preceding I
by several milliseconds (Okun and Lampl, 2008). Thus, inputs
that drive excitatory activity are closely followed by inhibitory
activity and form a brief time interval during which excitation
exceeds inhibition, allowing for temporally precise spiking in the
postsynaptic neurons (Gabernet et al., 2005; Haider et al., 2013;
Salkoff et al., 2015). The instantaneous frequency of coherent
neuronal activity is regulated by E/I balance (Atallah and Scanzi-
ani, 2009) and depends on the relative timing of E and I activity
(Keeley et al., 2017; Chariker et al., 2018). Empirically observed
neural activity is dynamic and episodic in the gamma (Burns et
al., 2010, 2011; Xing et al., 2012) and beta (Feingold et al., 2015;
Sherman et al., 2016; Rule et al., 2017) bands, suggesting that
oscillatory E and I activity may not be necessary to generate co-
herent neuronal dynamics.

We tested the hypothesis that optogenetic stimulation can
drive coherent neuronal dynamics by generating E/I responses
that arise from intrinsic E/I balance. Optogenetic stimulation has
been shown to alter neuronal dynamics extrinsically by manipu-
lating either excitatory or inhibitory activity alone (Cardin et al.,
2009; Sohal et al., 2009; Adesnik and Scanziani, 2010; Lu et al.,
2015; Ni et al., 2016; Veit et al., 2017). However, neuronal dy-
namics depend on the interaction between excitatory and inhib-
itory activity, which is governed by the local circuit. Because
stimulating either excitatory or inhibitory activity alone recruits
both excitatory and inhibitory postsynaptic responses in the net-
work (Pike et al., 2000; Gloveli et al., 2005; Tukker et al., 2007;
Buzsáki and Wang, 2012; Phillips and Hasenstaub, 2016), opto-
genetic stimulation may generate coherent neuronal dynamics
according to the relative timing of driven excitatory and inhibi-
tory responses.

We first developed a computational model of coherent
neuronal dynamics in response to optogenetic stimulation.
The individual E and I responses in the model have different
dynamics and combine to generate a brief, phasic increase in
the likelihood of spiking. The model shows that the coherent
neuronal dynamics depend on the temporal properties of this
combined E/I response, without the need for an oscillatory
generator. We experimentally tested the model predictions by
expressing ChR2(H134R) in macaque cortex delivered by an
AAV2/5 viral injection and measuring spiking and LFP re-
sponses to sequences of optogenetic stimulation pulses. We
demonstrate the generality of the findings across multiple re-
gions of the posterior parietal and frontal cortex. Finally, we
developed a spiking neural network model of the observed
neural dynamics and found that E/I responses with different
dynamics are an emergent property of the model. Together
these results suggest that optogenetic stimulation extrinsically
alters excitatory and inhibitory activity by recruiting E/I re-
sponses to shape coherent neuronal dynamics in the beta and
gamma frequency bands.

Materials and Methods
Experimental design and statistical analysis. The experimental design to
test the effects of optogenetic stimulation on coherent neuronal dynam-
ics consists of three parts. First, we built a phenomenological model of
optogenetic stimulation-evoked coherent neuronal dynamics. In this
model, the E/I response is defined as the optogenetic-stimulation-evoked
LFP response. In addition, the E/I response controls the likelihood of
spiking. Thus, the E/I response model directly links LFP activity and
spiking dynamics. To test whether changes in the E/I response are suffi-
cient for driving different coherent neuronal dynamics, we systematically
vary the parameters that control the temporal dynamics of the E/I re-
sponse and measure the spike-field coherence (SFC) in the simulations.

Next, we empirically test the phenomenological predictions of the E/I
response model. We measure both spiking and LFP activity during op-
togenetic stimulation in awake, alert nonhuman primates (NHP). We
measured evoked LFP and spiking responses to single stimulation pulses,
as well as coherent neuronal dynamics that result from extended pulse
sequences. To verify that the E/I response model captures the features of
the empirically observed neural activity, we fit the E/I response using the
empirically measured single pulse evoked LFP responses. The fitted pa-
rameters are then used in the E/I response model to generate simulated
coherent neuronal dynamics for the same conditions as the empirically
measured activity.

Finally, we perform simulations of leaky integrate-and-fire neurons
with a subpopulation of ChR2-positive neurons and compare the simu-
lated coherent neuronal dynamics with the empirical observed dynamics.
Importantly, the spiking network model offers access to EPSCs and IP-
SCs that could not be measured directly from extracellular electrodes.
We use the spiking network model to investigate the mechanisms of the
observed optogenetic stimulation-evoked coherent neuronal dynamics.

Animals. Recordings were taken from two male rhesus macaques
(Macaca mulatta; Monkey J: 12 years, 6.5 kg; Monkey H: 11 years, 10.5
kg) and one male cynomolgus macaque (Macaca fascicularis; Monkey B:
4 years, 5 kg). Monkeys J and H were part of previous studies using the
contralateral intraparietal sulcus and the ipsilateral frontal cortex. Mon-
key B had not been part of previous experiments. All animals were in
normal health and were group housed with other conspecifics at the
facility. All surgical and animal care procedures were approved by the
New York University Animal Care and Use Committee and were per-
formed in accordance with the National Institute of Health guidelines for
care and use of laboratory animals.

Injection surgery. We performed injections of optogenetic viral vectors
6 –25 weeks before recording. Subjects were maintained at a constant
depth of anesthesia with isoflurane (1–2%). Monkeys J and H were in-
jected in existing craniotomies. In Monkey B, after mobilizing the scalp
and other soft tissue, we made craniotomies over motor cortex to provide
access for injections. Injections were made through 26 s gauge stainless
steel cannulas (Hamilton) that were inserted through a thinned dura. For
each injection, 1 �l of AAV5-hSyn-ChR2(h134R)-EYFP was injected at a
rate of 0.05 �l/min. We made injections at 2–3 depths spaced 500 –750
�m across 2– 4 cortical sites per animal. We injected at multiple sites
simultaneously to increase the total number of injections sites and thus
increase the probability of having successful transduction at one or more
sites. We waited 20 min between each injection to allow the virus to
diffuse through the tissue. After injections, chambers were reclosed with
the chamber cap and periodically opened for cleaning and maintenance
while the viral vector was expressing.

Optical stimulation. We illuminated the injection site with a 473 nm
Laser (Shanghai Sanctity Laser) connected to a multimode fiber-optic
cable (200 �m core, BFL-200, Thorlabs). One end of the fiber-optic cable
was terminated with an FC/PC connecter and connected to a collimator
(PAFA-X-4-A, Thorlabs) for focusing light from the laser. At the other
end of the cable we removed a small amount of buffer with a microstrip-
per (T12S21, Thorlabs) and cleaved it with a diamond knife (S90R, Thor-
labs) to ensure a flat edge for minimal power loss.

The fiber-optic cable was placed on top of the thinned dura. The cable
was held in the microdrive and placed in the same guide tube as the
recording electrode. We did not insert the fiber into the brain to mini-

Shewcraft et al. • E/I Responses Shape Neuronal Dynamics J. Neurosci., March 4, 2020 • 40(10):2056 –2068 • 2057



mize damage to the neural tissue. Light power at the tip varied from 16 to
20.5 mW. (510 – 653 mW/mm 2), as measured before each experiment
using a power meter (PM100D, Thorlabs). Evoked potentials due to
artifacts from the Becquerel effect would have rapid onset or offset of
measured responses locked to the timing of the light (Cardin et al., 2010).
Light-based artifacts typically have a capacitive charging and discharging
profile, which has a rapid onset and offset tightly coupled to the onset and
offset of the light. The neural response is slower than the duration of the
light pulse and thus continues to increase for a brief period after the light
has been turned off. The onset is delayed because the ChR2 channel
dynamics are slower than the chemical response and thus the membrane
potential does not start to change immediately. The initial response re-
cruits network activity, which has a slow time course. This is particularly
evident for short light pulses (�5 ms). When there is no artifact, the
response inflection point occurs after the light is turned off. This is less
clear for longer pulse durations (�15 ms) because adaptation and other
properties of channel kinetics can lead to a decrease in the response
before the end of stimulation. We visually inspected evoked responses for
short duration pulses to ensure that that the onset of the response and the
inflection point were not aligned with the times when the light was
turned on and off and thus not artifacts from the Becquerel effect. We did
not find any evidence of rapid responses in the three subjects used in this
study. However, we have seen rapid responses in other subjects. One key
distinction is stimulation was done in these prior subjects with the fiber-
optic cable directly on the brain, rather than transdurally as in the present
study. In the current experiment, the Becquerel effect may have been
minimized because we stimulated through the dura, which may have
sufficiently scattered/diminished light power by the time it reached the
electrode.

Light pulse patterns were generated by proprietary software running in
LabVIEW (National Instruments) and converted to analog signals using
a DAQ card (USB-6251, National Instruments). Stimulation trials con-
sisted of 1-s-long bursts of square wave pulses. For each block of trials, we
controlled three stimulation parameters: pulse duration, pulse rate, and
pulse distribution. We varied pulse durations from 5 to 20 ms, pulse rates
from 5 to 20 Hz and used both Poisson and periodic pulse distributions.
Importantly, we do not use Poisson stimulation because we believe it
matches the temporal properties of the intrinsically generated coherent
neuronal dynamics. Rather, because Poisson stimulation has energy
across all frequencies it allows us to test the frequency content of the
driven response across a range of frequencies.

In rodents, both measurement and simulation have proposed that
�1% of light power density remains after light has passed through �1
mm of brain tissue (Aravanis et al., 2007; Huber et al., 2008; Yizhar et al.,
2011). However, primate brain tissue may have slightly different optical
properties, thus altering the light transmission. In addition, we stimu-
lated transdurally, which may have additional effects on the light.
However, we were able to record purportedly directly driven spiking
(low-latency, low-jitter) as far as 1.5 mm below the cortical surface (data
not shown), suggesting that we were activating neurons into layer 3.

We tested each recording site in pseudorandomly interleaved blocks of
recordings. Each block consisted of 30 – 60 repetitions of 1 s long se-
quences of square wave pulses (bursts), with 1–3 s of no stimulation
between each stimulation burst. We held other stimulation parameters
(pulse rate, duration, and intensity) constant within each block.

Poisson and periodic stimulation pulse trains were generated in silico
using the same pulse duration and rate parameters. Simulations con-
sisted of 1000 trials for each combination of parameters.

Electrophysiology. We recorded neural signals from awake, alert ma-
caques while they were seated, head-fixed in a primate chair (Rogue
Research) in a dark, quiet room. Neural signals were recorded on glass-
coated tungsten electrodes (Alpha-Omega; impedance: 0.7– 0.8 M� at 1
kHz) held in a FlexMT microdrive (Alpha Omega). Neural signals were
acquired at 30 kHz on an NSpike DAQ system and recorded using pro-
prietary data acquisition software. Neural recordings were referenced to
a metal wire placed in contact with the dura and away from the recording
site. We recorded driven LFP activity and multiunit spiking in premotor
cortex in Monkey B (premotor cortex) and posterior parietal cortex in
Monkeys J and H.

E/I response model. We model neuronal spiking according to a condi-
tional intensity function, ��t�, which represents the instantaneous firing
rate, such that probability of a spike occurring at time t is given by ��t��t
(Brown et al., 2003). In the absence of optogenetic stimulation, we model
background spiking activity as a Poisson process with a constant rate, �0

(Fig. 1A). We model background LFP activity as a process with increased
power at low frequencies; “brown noise”. For simplicity, we further as-
sume that background LFP activity is uncorrelated with spiking activity
and does not affect the value of ��t�. Under this assumption, spontaneous
spiking does not exhibit SFC, which may be inconsistent with typical
physiology. However, we find that SFC during optogenetic stimulation is
several times greater than spontaneous SFC (Hagan et al., 2012; Wong et
al., 2016) and thus dominated by the driven activity.

To simulate LFPs using an E/I response model, we generated
T

dt
sam-

ples of Brownian noise as background activity, with T � 1 s and dt � 1
ms. The driven component of the LFP consists of the impulse response to
stimulation pulses. For each recording site we fit a temporal impulse
function, 	�t�, which represents the time course of the neural response
following an impulse input (Adelson and Bergen, 1985), to the empiri-
cally measured stimulation pulse evoked LFP response as follows:

	�t� � �EE � �II, (1)

E�t� � Ae
At� �At��E

�E! � , (2)

I�t� � Ae
At� �At��I

�I!
� . (3)

The modeled LFP impulse response, 	�t�, is the sum the of the individual
E and I responses to stimulation. Measurements of LFP activity prefer-
entially weight contributions of EPSCs and IPSCs on neurons with open-
field geometries (Buzsáki et al., 2012; Pesaran et al., 2018). Because
inhibitory currents hyperpolarize the membrane potential and oppose
the effects of excitatory currents, we force I�t� to have a negative contri-
bution to 	�t�. Thus, 	�t� represents the sum of excitatory and inhibi-
tory currents; the E/I response.

The parameters A, �E and �I control the dynamics of the response. The
effect of both �E and A can be illustrated by finding the maximum of E�t�
as a function of t. By setting the derivative of E�t� with respect to t equal
to zero, we find that:

tmax,E �
�E

A
. (4)

Holding A constant while increasing �E results in E�t� that has a longer
latency onset and lasts for a longer duration. Conversely, holding �E

constant while increasing A results in E�t� that has a shorter latency onset
and lasts for a longer duration. The same holds true for A, �I, and I�t�.
Because A is the same for both E�t� and I�t�, �E and �I control the relative
contributions of the excitatory and inhibitory components to the E/I
response.

For the pure simulations, A, �exc and �inh were set to 1. To fit empirical
E/I response, �E, �I, A, �E, and �I were fit using a grid search to minimize
the squared error between the modeled response and the empirical re-
sponse. The parameters �E, and �I can only take positive integer values,
and �E, �I, and A were limited to positive values. For illustrative pur-
poses, we show the E response preceding the I response but this can be
reversed so that I precedes E by �E 	 �I (Cruikshank et al., 2010; Haider
et al., 2013).

We simulated the driven LFP by convolving the site-specific E/I re-
sponse, 	�t�, with a sequence of delta pulses determined by the stimula-
tion parameters. The driven LFP was added to the background activity to
generate the total simulated LFP activity.

We modeled spiking activity that was coherent with the LFP using a
Poisson point process with a conditional intensity function. The condi-
tional intensity function models stochastic spiking governed by a time-
varying instantaneous firing rate, ��t�:

2058 • J. Neurosci., March 4, 2020 • 40(10):2056 –2068 Shewcraft et al. • E/I Responses Shape Neuronal Dynamics



��t� � ��E�t� 
 �I�t� 
 �0� � dt, (5)

�E�t� � f�Espike�t�� � eEspike�t�, (6)

�I�t� � g�Ispike�t�� � eIspike�t�, (7)

Espike�t� � � 	�t�, 	�t� � 0
0, otherwise , (8)

Ispike�t� � � 	�t�, 	�t� � 0
0, otherwise , (9)

where �0 is the baseline firing rate, and dt is the sampling rate. Espike�t� and
Ispike�t� are determined by convolving the E/I response, 	�t�, with a Pois-
son process generated from the stimulus sequence parameters then pos-
itively or negatively rectifying to get the separate E and I responses. Thus,
Espike�t� and Ispike�t� are the time courses of driven E and I responses to the
sequence of stimulation pulses, respectively, that generate the fluctua-
tions in the conditional intensity function, ��t�. Individual action poten-
tials are then randomly generated at each time point from a binomial
random variable with p�spike at time t� � ��t��t. After a spike we used
a fixed refractory period by setting ��t� � 0 for 3 ms.

Simulations of the E/I response model were run using custom scripts
in MATLAB using a 1 ms time step. For each trial, we simulated 1 s of
baseline activity and 1 s of stimulation. We simulated 1000 trials for set of
stimulus parameters.

Spiking network model. The spiking network model consists of a net-
work of 4000 excitatory and 1000 inhibitory leaky integrate-and-fire
neurons, each of whose membrane potential, V, is described by the fol-
lowing equation:


m

dV

dt
� ��V � Vr� 
 VA � VG 


k
mIChR2

Cm
. (10)

Neurons are randomly connected to each other with a connection
probability Pe/i,e/i. In addition, the neurons receive connections from
external inputs (described in External inputs), which represent syn-
aptic input from spontaneous activity in other areas of the brain. The
synaptic potentials, VA and VG, taken from the Mazzoni model (Maz-
zoni et al., 2008), represent the sum of synaptic responses of each
neuron induced by individual presynaptic spikes from external inputs
and other excitatory (pyramidal, AMPA) and inhibitory (interneu-
rons, GABA) neurons in the model.


dA

dVA

dt
� �VA 
 xA, (11)


rA

dxA

dt
� �xA 
 
m�Jpyr�

pyr

��t � tpyr � 
L� 
 Jext�
ext

��t � text � 
L��,

(12)


dG

dVG

dt
� �VG 
 xG, (13)


rG

dxG

dt
� �xG 
 
m� Jint�

int

��t � tint � 
L�� . (14)

In the model, tpyr/int/ext is the time of a spike on a presynaptic neuron. The
synaptic currents generated by presynaptic spikes have latency 
L and
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Figure 1. Excitation and inhibition drive coherent neuronal dynamics. A, To model optogenetic stimulation of a population of transduced neurons, we simulated pulsatile responses generated
by direct activation of ChR2 channels and synaptic activity. Pulsatile responses are convolved with a stimulation sequence. The summed excitatory and inhibitory components, 	(t), comprise the
simulated LFP. The individual E and I activity govern the variable spiking rate in the Poisson process, which generates coherent spiking. B, Spontaneous activity in the model has no SFC. C, Optogenetic
stimulation drives correlated fields and spiking, leading to frequency-selective SFC. D, Simulated SFC for short and long E/I responses. Inset, E/I responses used in the simulation.
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have dynamics governed by their respective exponential rise times
�
rA, 
rG� and decay times �
dA, 
dG�. The efficacy of each connection type
is given by Jpyr/int/ext and is uniform for each neuron type. Table 1 shows
the parameters for the model.

External inputs. We modeled spontaneous external activity as in-
puts generated from excitatory neurons having random Poisson
spike trains with a time-varying rate, rext�t�, that is the same for all
neurons (Mazzoni et al., 2008). The spike trains are generated from a
Poisson process with a rate governed by an Ornstein–Uhlenbeck
process:

rext�t� � � c0 
 n�t�, c0 
 n�t� � 0
0, otherwise , (15)


n

dn�t�

dt
� �n�t� 
 �n �2


n
� �t�, (16)

where � �t� is Gaussian white noise, c0 is a non-time-varying mean firing
rate and rext�t� is half-wave rectified to ensure that all firing rates are
non-negative.

Channelrhodopsin photocurrent. We modeled the channelrhodopsin
photocurrent in the transduced neurons according to a model from Witt
et al. (2013).

IChR2�t� � �arefractgChR2FChR2�t, Wlight��V � VChR2�, (17)

FChR2�t,Wlight� � Aact�1 � e



t
tON
d


act ��Apersist 
 Ainact
�1� e



t
tON
d


inact
�1�


 Ainact
�2� e



t
tON
d


inact
�2� �, (18)

d � dA 
 dBWlight 

dc

Wlight
, (19)


act � 
act
�0� 
 cacte


kactWlight, (20)

Aact � a0 

amin � 1

1 
 � W0.5

Wlight
�2, (21)

Ainact
�1� � b0 


b1

b2 
 �Wlight � Winact�
2, (22)

Ainact
�2� � cinacte


kinactWlight, (23)

Apersist � 1 � Ainact
�1� � Ainact

�2� . (24)

The photocurrent, IChR2, is defined as the product of the conductance,
gChR2FChR2�t, Wlight�, and the driving force, V � VChR2, from the ChR2
channels at any time, t. When light stimulation is on, the conductance
varies over time as described by the function FChR2. When the light is off,
the conductance returns to baseline following a single exponential decay
with a time constant of 
OFF. The light-induced conductance change is
described as the product of activation and inactivation functions, which
depend on the time from light onset, t � tON, a light intensity-
dependent delay, d, and their respective time constants, 
act, 
inact

�1� , and

inact

�2� . The parameters for Equations 11–19 have been previously fitted to
photo conductance measured in vitro human embryonic kidney cells
transduced with AAV1/2-CAG-ChR2-YFP (Witt et al., 2013). Table 1
shows the parameters for the ChR2 current part of the model. Each
neuron of each type was randomly assigned to have ChR2 channels ac-
cording to the transduction probability for that cell type. We used a viral
vector containing the pan-neuronal hSyn promoter, which has expres-
sion rates that are similar across excitatory and inhibitory neurons (Di-
ester et al., 2011). Therefore, we set equal transduction probabilities
equal to 1% for both excitatory neurons and inhibitory neurons.

Previous studies have shown that transduced neurons do not have
robust spiking responses to individual light pulses at higher stimulation
frequencies (Lin et al., 2009), which is likely because of the slower kinetics
of ChR2 channels. This response fidelity drop-off tends to start at �20
Hz periodic stimulation and reaches near zero at �80 –100 Hz stimula-
tion (Cardin et al., 2009). Therefore, light pulses that occurred �50 ms
after the previous pulse activated ChR2 channels with a probability that
depended linearly such that:

arefract � �
1, �t � 50ms

1, P �
�t

50ms
,

0, otherwise

(25)

Table 1. Parameters used for simulations using the spiking network model


m,exc 20 ms
Vrest,pyr 0 mV
Vthresh,pyr 18 mV
Vreset,pyr 11 mV

m,int 10 ms
Vrest,int 0 mV
Vthresh,int 18 mV
Vreset,int 11 mV

L 1 ms

rG 0.25 ms

rA,int 0.2 ms

rA,pyr 0.4 ms

dA,int 1 ms

dA,pyr 2 ms

dG,pyr 5 ms

rG,pyr 0.25 ms

dG,int 5 ms

rG,int 0.25 ms

n 16 ms
Jext,int 0.95 mV
Jext,pyr 0.55 mV
Next 5000
Cm 0.5 nF
Jint,exc 1.7 mV
Jint,inh 2.7 mV
Jpyr,pyr 0.42 mV
Jpyr,int 0.7 mV
trefract,pyr 2 ms
trefract,int 1 ms
Pi,i 0.2
Pe,i 0.2
Pi,e 0.4
Pe,e 0.2
Winact 0.11

off 3 ms
k 1e10
dA 0.27
dB 
0.05
dC 
0.0126

act

�0� 0.74 ms
cact 12
kact 25
a0 1
amin 0.4
W0.5 0.38

inact

�1� 9.06 ms
b0 0.16
b1 0.013
b2 0.027

inact

�2� 59.6 ms
cinact 0.29
kinact 2.4
Wlight 0.3
gChR2 0.007 �S
VChR2 65 mV
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where P � unif�0,1� and is chosen individually for each close pulse oc-
currence and for each model neuron.

Preprocessing in vivo data. Broadband neural activity was split into
multiunit signals and LFPs by high-pass and low-pass filtering, respec-
tively, at 300 Hz. LFP signals were downsampled to 1 kHz. Multiunit
activity (MUA) was computed by applying a 3.5 SD threshold to the
multiunit signals to identify putative spikes. All waveforms that exceeded
this peak were labeled as multiunit action potentials.

Preprocessing in silico data. LFPs measure currents generated by syn-
aptic activity within a volume near the electrode (Logothetis, 2003).
Therefore, we followed Mazzoni et al. (2008) and modeled the LFP as a
sum of synaptic currents. Because interneurons typically have dendrites
that are organized in a symmetrical, closed-field configuration, we as-
sumed their contribution to the LFP would be minimal compared with
synaptic currents on the typically dipole-like dendrites of pyramidal neu-
rons (Buzsáki and Wang, 2012; Pesaran et al., 2018). Therefore, only
synaptic currents in pyramidal neurons contributed to our measure of
the model LFP. Adding together the absolute values of synaptic currents
has been shown to accurately reproduce the power spectrum and infor-
mation content of LFP recorded in macaque visual cortex (Mazzoni et al.,
2008). Simulated LFPs were also low-pass filtered at 300 Hz and down-
sampled to 1 kHz. Simulated multiunit activity consisted of all the
threshold crossings in the leaky integrate-and-fire model, as recorded by
the Brian simulator. The in vivo and in silico data were preprocessed, were
treated the same after preprocessing.

Data analysis. We computed multiunit peristimulus time histograms
(PSTHs) by aligning MUA to the onset time of light pulses. Individual
spikes were collected in 1 ms bins and the corresponding histogram was
smoothed by convolution with a Gaussian function with a SD of 1 ms. To
avoid corruption from nearby pulses, evoked potentials were computed
by averaging LFPs aligned to the onset time of light pulses only for pulses
that occurred at the end of a pulse train and did not have a pulse preced-
ing it by �50 ms.

Spectral analysis was performed using multitaper methods (Mitra and
Pesaran, 1999). The accuracy of the spectral quantities we used does not
depend on the center frequency of the estimate for all frequencies above
the minimum resolvable frequency, given by the frequency smoothing in
hertz (Jarvis and Mitra, 2001). For each recording, power spectra were
computed using a 1 s analysis window and �1.5 Hz frequency smooth-
ing. We computed power spectra for the LFP responses during entire 1 s
burst (stimulation epoch) and for 1 s before the burst (spontaneous
epoch). Power spectra were computed for neural signals for the sponta-
neous and stimulation epochs. Recording sites with power spectra that
did not exhibit a significant difference were not included in analysis. The
exclusion criteria for recording sessions did not depend on the frequency
content of the driven LFP response, the desired effect, but rather only that
there was any driven LFP response at all. Sites were excluded if there was
no change in the LFP power between spontaneous and stimulation peri-
ods for the 10 ms pulse duration condition, which was likely because of
the electrode being placed on the periphery of light cone and thus failing
to record driven neural activity. We explicitly confirm this in our exper-
iments by moving the electrode and observing driven responses. We
computed the spectrogram for each recording using a �250 ms analysis
window, stepped 50 ms between windows, with �2.5 Hz frequency
smoothing aligned to the start of the burst. We computed the SFC for
each recording using a 1 s analysis window with �3 Hz frequency
smoothing averaged across at least 30 repetitions.

Data availability. Data are available upon reasonable request.
Code accessibility. Software is available in a GitHub repository linked

from http://www.pesaranlab.org.

Results
Modeling optogenetic stimulation-evoked coherent
neuronal dynamics
Coherent neuronal dynamics arise from synchronous, tempo-
rally structured neuronal activity. SFC measures coherent neuro-
nal dynamics by estimating the strength of correlations between
spiking activity of individual neurons and neural population ac-

tivity in the form of simultaneously-recorded LFP activity. When
the spike times of a neuron can be predicted from fluctuations in
LFP activity at a particular frequency, the spiking is said to be
coherent with LFP activity at that frequency. Neurons that fire
consistently at a particular phase of LFP activity are coherent with
LFP activity. As a result, neuronal coherence is defined by coher-
ent spiking and LFP activity and can be measured by estimating
SFC between spiking and nearby LFP activity (Pesaran et al.,
2002, 2018).

Figure 1A presents a model of optogenetic stimulation-
evoked coherent neuronal dynamics and corresponding idealized
neural responses. During spontaneous activity, synaptic inputs
drive activity in a local network. We model spontaneous spiking
activity as being generated from a Poisson process with a constant
rate (Brown et al., 2003) and spontaneous LFP activity as being
generated from a Brown noise process. Under these assumptions,
spontaneous spiking is not coherent with spontaneous LFP activ-
ity (Fig. 1A, Spontaneous activity).

Direct activation of transduced neurons leads to excitatory
and inhibitory synaptic currents within the local network of neu-
rons. The resulting E and I currents in postsynaptic neurons oc-
cur at different moments in time, and the relative timing of the E
and I currents determines when neurons fire spikes (Higley and
Contreras, 2003; Wehr and Zador, 2003; Cruikshank et al., 2010;
Haider et al., 2013). Given that excitatory currents depolarize the
membrane potential and inhibitory currents hyperpolarize the
membrane potential, the cell has the greatest probability of firing
when E is high and I is low. Therefore, we model the impact of
optogenetic stimulation on spiking as an excitatory- and
inhibitory-dependent temporal change in the probability of the
cell firing (Fig. 1A, Spike generation). Thus, the timing of spiking
activity depends on the net postsynaptic E and I consequences of
each stimulation pulse. We use the term E/I response to describe
the net postsynaptic E and I resulting from stimulation.

To simulate neuronal activity that exhibits SFC, we need to
model the coupling between spiking and LFP activity. LFP activ-
ity predominantly reflects summed postsynaptic potentials (Buz-
sáki et al., 2012; Pesaran et al., 2018). Because the E and I
postsynaptic activity drives spiking, we can model the driven LFP
as the sum of the driven E and I responses, thus linking spiking

and LFP activity. LFP activity often follows power law scaling,
1

f b,

typically with b � 2 (Freeman and van Dijk, 1987; Freeman et

al., 2000; Miller et al., 2009). Therefore, we add brown noise � 1

f 2�
background activity to the driven LFP activity to generate the

simulated LFP (Fig. 1A, LFP). Using
1

f
background LFP produced

similar results.
We refer to this model of neuronal coherence as the E/I re-

sponse model. We model spontaneous spiking and LFP as uncor-
related so the spontaneous activity does not exhibit SFC (Fig. 1B).
Because optogenetic stimulation evokes E/I responses that result
in the likelihood of an action potential occurring varying dynam-
ically, changes in spike probability are coupled to LFP responses.
This coupling generates spikes that are coherent with LFP activity
(Fig. 1C). Importantly, the E/I response model predicts that the
coherence is due to the temporal dynamics, or shape, of the E/I
responses. In line with the prediction, SFC varied with the E/I
response duration such that longer E/I responses generated SFC
at lower frequencies (Fig. 1D). In our empirically measured E/I
responses, excitatory component dominated the early stage fol-
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lowed by inhibitory component. This is consistent with sensory
stimulation, which typically generates an increase in excitation
followed shortly by a corresponding inhibitory response (Higley
and Contreras, 2003; Wehr and Zador, 2003). However, inhibi-
tion may be stronger and have faster rise times than excitation in
certain circuits or behaviors (Cruikshank et al., 2010; Haider et
al., 2013). This regime would be captured in the E/I response
model by setting �E 	 �I.

Note that the neuronal coherence described by the E/I re-
sponse model depends on predictability between spikes and LFP
activity. This construction is consistent with, but does not re-
quire, invoking an oscillator or other phase-consistent process.
This construction is also consistent using SFC, as opposed to
other metrics of phase consistency, to estimate coherent neuronal
dynamics. This is because SFC measures linear predictability be-
tween spikes and LFP activity. Note also that our approach con-
trasts with and is complementary to previous work that has used
cell-type-specific optogenetic stimulation to generate neuronal
coherence.

Many computational models of the mechanisms of coherent
neuronal dynamics have focused on simulating periodic, oscilla-
tory activity (Wilson and Cowan, 1972; Börgers and Kopell, 2003;
Brunel and Wang, 2003; Keeley et al., 2019). However, empiri-
cally observed neuronal coherence is episodic (Burns et al., 2010,
2011; Xing et al., 2012; Feingold et al., 2015; Sherman et al., 2016;
Rule et al., 2017), with phase and frequency varying over time,
and can be narrow-band or broadband. The E/I response model
expands on these prior models to describe manipulations of em-
pirical coherent neural activity patterns, which are not necessarily
oscillatory or narrow-band and are episodic. Therefore, our
models suggest that the interaction between extrinsic inputs and
intrinsic circuit properties can drive episodic dynamics in addi-
tion to oscillatory dynamics shown in previous models.

Testing the E/I response model with optogenetic stimulation
Next, we tested whether optogenetic stimulation generates em-
pirically observed neural coherence according to the predictions
of the E/I response model. The model suggests that the frequency
of driven coherent neuronal dynamics depends on the E/I re-
sponse dynamics, in particular the duration of increased spiking
likelihood. Therefore, varying the duration of the stimulation
pulse should change the E/I response dynamics, and thus the
frequency content of the resulting driven coherent neuronal
activity.

To test this hypothesis, we injected AAV5-hSyn-ChR2
(H134R)-EYFP and recorded neuronal responses in three alert
macaque monkeys quietly seated in a primate chair. The hSyn
promoter results in similar proportions of light-sensitive neurons
in both excitatory and inhibitory cell types (Diester et al., 2011).
However, because of the greater proportion of excitatory neurons
in cortex, stimulation using a pan-neuronal promoter results in
non-uniform drive in which the excitatory response to stimula-
tion is greater than the inhibitory response. We recorded in the
inferior and superior parietal lobules in Monkeys H and J and
lateral to the postcentral dimple in Monkey B (Fig. 2A). We
observed strong viral expression at injection sites with robust
labeling of neurons and neuropil (Fig. 2B). We performed simul-
taneous in vivo optogenetic stimulation and recording using a
fiber-optic cable placed on a surgically thinned dura and adjacent
to the intracortical recording electrode (Fig. 2C). Stimulation
consisted of 1-s-long sequences of light pulses (stimulation ep-
och) followed by 1–3 s of no stimulation (spontaneous epoch;
Fig. 2D). Optogenetic stimulation reliably generated neural re-

sponses. These responses consisted of action potentials as well as
large evoked field potentials visible on an individual pulse basis in
the raw data (Fig. 2E–G).

We measured neuronal responses to stimulation sequences
composed of Poisson pulse trains with different pulse rates and
pulse durations. Figure 3A presents example neuronal responses
during a stimulation block with 5-ms-wide pulses delivered with
a 20 pulse/s Poisson pulse train. Individual stimulation pulses
drove spiking activity and evoked LFP responses at the stimula-
tion site (Fig. 3Ai,Aii). We estimated the E/I response, 	�t�, by
fitting the parameters using empirically measured evoked LFP
(Fig. 3Aiii). We used this fitted E/I response in the E/I response
model to simulate coherent neuronal dynamics. The simulated
SFC closely matched the empirically measured SFC (Fig. 3Aiv).
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Figure 2. Optogenetic stimulation in macaque cortex. A, Recording locations in all animals.
B, Example injection site with yellow fluorescent protein (YFP) labeled neurons and neuropil
from a horizontal section. Inset, Image of a single transduced neuron. C, Recordings were
performed with a single, acute electrode during trans-dural light stimulation with a fiber-optic
cable placed over a surgically thinned dura. D, Experimental design featured a 1 s stimulation
pulse sequence followed by 1–3 s of spontaneous activity without stimulation. E, Example
raster plot (top) and PSTH (bottom) of the spiking response triggered on each stimulation pulse
for Poisson distributed trains of 1 ms pulses at 10 pulse/s rate. F, Example broadband recording
during a pulse train containing 1 ms pulses at 10 pulse/s rate; optogenetic stimulation (blue).
Inset, Response to a single pulse. G, Example multiunit filtered data from F. Inset, Stimulation-
elicited action potential.
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This suggests that the E/I response model captures the phenom-
enology of the coherent neuronal dynamics driven by optoge-
netic stimulation. In addition, we computed the power spectrum
of LFP activity during the 1-s-long stimulation epoch and for 2 s
of the spontaneous epoch (Fig. 3Av). The stimulation LFP power
spectrum revealed a significant increase in power (� 2 test, p �
0.01).

Longer pulse durations generated longer duration changes in
firing rate (Fig. 3Bi) and longer periods of excitation and inhibi-
tion in the LFP activity (Fig. 3Bii,Biii). The driven SFC was sig-
nificantly above the theoretical noise floor (Jackknife test, p �
0.01) for 0 –158 Hz for the 5 ms pulse condition (Fig. 3Aiv) and
0 –94 Hz for the 20 ms pulse condition (Fig. 3Biv). Likewise, the
power of the LFP activity was significantly increased (� 2 test, p �
0.01) above baseline for 4 –163 Hz for the 5 ms pulse condition
(Fig. 3Av) and 5–144 Hz for the 20 ms pulse condition (Fig. 3Bv).
Therefore, at the example site longer pulse durations drive more
frequency selective increases in SFC and the LFP power spectrum.
This shows that, stimulation sequences with different pulse du-
rations can be used to selectively generate coherent neuronal dy-
namics, consistent with changing the E/I response duration.
Thus, the E/I response model predicted the relationship between
the temporal properties of the E/I response and the frequency
content of the stimulation-evoked coherent neuronal dynamics.

Optogenetic stimulation generates pulse duration-
dependent responses
We computed the SFC for the population of recording sites with
driven spiking activity in response to stimulation using Poisson

pulse trains with 5, 10, 15, and 20 ms duration pulses. For each
recording condition, we fit the parameters of the E/I response as
in Figure 3, A and B, and used the E/I response model to generate
simulated SFC. For all recordings, the simulated SFC closely
matched the empirical SFC (Fig. 3C). In addition, for both the
empirical and simulated data, the frequency of the driven SFC
varied with pulse duration (Fig. 3D), consistent with the example
site and predictions from the E/I response model. Importantly
the center frequency did not depend on the mean pulse rate for
Poisson stimulation (Fig. 3E). The decoupling of frequency from
pulse rate means that the center frequency of the driven coher-
ence can be controlled without increasing the number of stimu-
lation pulses. Together, these results show that optogenetic
stimulation can generate driven coherent neuronal dynamics
without the need for an oscillatory or other periodic generator.

Previous work suggests that controlling activity in a single
cell type is necessary for driving coherence (Cardin et al., 2009;
Sohal et al., 2009; Adesnik and Scanziani, 2010; Lu et al., 2015).
However, cell-type-specific stimulation recruits synaptically-
mediated responses from other strongly connected neurons in
the network (Phillips and Hasenstaub, 2016). The frequency con-
tent of coherent neuronal dynamics is shaped by the recruited
neuronal ensemble (Kato et al., 2017). This suggests that neuro-
nal coherence evoked by cell-type-specific optogenetic stimula-
tion may also drive an effective E/I response. Our empirical
results show that pan-neuronal optogenetic stimulation gener-
ates E/I responses that drive coherent neuronal dynamics.
Whether the E/I response model is as effective in predicting the
impact of cell-type-specific manipulations that target either E or
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sequences with a 10 ms pulse duration across all recording sites. Differences between means that are not significant are indicated with n.s.
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I cells alone is an open question and will
likely depend on the strength of recurrent
connectivity in the network.

Model-based investigation of excitatory
and inhibitory dynamics
Because we did not have direct experi-
mental access to excitatory and inhibitory
currents, we developed a spiking neural
network model to study how the fre-
quency content of the driven coherent
neuronal dynamics depended on the tim-
ing of the E and I activity. Our objective
was to construct a model that exhibited
driven SFC with frequency content that
was dependent on the stimulation pulse
duration in a manner consistent with the
empirical data. To do this, we imple-
mented a computational model that con-
sisted of a randomly-connected network
of leaky integrate-and-fire excitatory and
inhibitory neurons that captures LFP re-
sponses to sensory stimulation (Mazzoni
et al., 2008). A subset of neurons also ex-
pressed ChR2 ion channels (Witt et al.,
2013; Fig. 4A,B).

The model generated spiking activity
and subthreshold potentials in response
to optogenetic stimulation (Fig. 4C,D).
To test whether the model responses de-
pended on stimulation pulse duration, we
simulated data with the same pulse pa-
rameters as in Figure 3 (5–20 ms pulse
durations; 20 pulse/s Poisson). The model
exhibits pulse duration-dependent E/I re-
sponses (Fig. 4E) and frequency selectivity
that varies with pulse duration (Fig. 4F).
Consistent with the empirical results, lon-
ger pulse durations resulted in a decrease
in the center frequency of the driven co-
herent neuronal dynamics (Fig. 4F).
Therefore, the spiking model captures the
key features of the empirically observed
optogenetically-driven coherent neuronal
dynamics. As with the empirical data and
E/I response model, the frequency selec-
tivity of the driven SFC is pulse duration-
dependent.

To examine relationship between syn-
aptically mediated E/I responses and co-
herent neuronal dynamics, we defined
LFP activity as the sum of postsynaptic
currents on excitatory neurons. However,
the ChR2 currents are directly linked to
stimulation pulse duration and exhibit
similar pulse duration-dependent vari-
ance as the postsynaptic-based LFP (Fig.
4G). Therefore, currents through the
ChR2 channels in directly stimulated neu-
rons may also contribute to the driven co-
herent neuronal dynamics. Using the
ChR2 currents alone in the definition of
LFP activity can result in simulated SFC in
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the beta band (Fig. 4H, squares). Thus, direct stimulation re-
sponses may contribute in part to the empirically observed driven
dynamics. However, the center frequency of the ChR2-only SFC
does not vary with the pulse duration (Fig. 4H, squares). Further-
more, adding ChR2 currents to the postsynaptic currents on ex-
citatory neurons in the LFP definition eliminates the pulse-
duration dependence for the SFC (Fig. 4H, diamonds). Pulse-
duration dependence is present when only considering synaptic
currents, suggesting that variation in the driven coherent neuro-
nal dynamics depends on postsynaptic E/I responses and is not
simply a direct consequence of the simultaneous stimulation ex-
citatory and inhibitory neurons.

The spiking model responses depended on both channel and
connectivity parameters. The closing time constant of the ChR2
channel, 
OFF, governed the duration of the response. For longer

OFF, as by Witt et al. (2013), the duration of the evoked spiking
and LFP responses in our spiking network model extended well
beyond the end of the light pulse. This was because the ChR2
channels slowly closed after the light turned off, allowing excit-
atory currents to continue for an extended period of time. To
account for the differences in ChR2 and ChR2(H134R) (Lin et al.,
2009) channel kinetics and their temperature dependence (Feld-
bauer et al., 2009) we fit an exponential model to temperature-
dependent channel closing times and computed the in vivo
closing time constant for ChR2(H134R) as �3 ms (Fig. 4I). Set-
ting 
OFF to 3 ms generated a response that did not have responses
that extended well beyond the offset of the light pulse (Fig. 4C–E).

Driven coherent neuronal dynamics depend on timing of
excitatory and inhibitory responses
The spiking model allows us to study the dynamics of intracellu-
lar currents during stimulation. We estimated the mean driven
excitatory and inhibitory currents in the neurons in the model by

taking the stimulation pulse triggered av-
erage of AMPA-mediated currents, IA

�
VACm


m
and GABA-mediated currents,

IG �
VGCm


m
, respectively (Fig. 5A).

Driven excitatory currents are greater
than inhibitory currents. As the stimula-
tion pulse duration increases, the driven
excitatory and inhibitory currents persist
for a longer period of time (Fig. 5A), and
the relative timing of the onset and offset
of the excitatory and inhibitory currents
remains the same, with excitatory cur-
rents leading inhibitory currents (Figs.
5B,C). The peak E current is larger in
magnitude than the I current, likely be-
cause of the fact that excitatory neurons
outnumber inhibitory neurons 4:1 in the
network. The E current dominated the E/I
response, resulting in a stimulation-
driven increase in spiking probability. In
addition, the duration of time during
which E current dominated the E/I re-
sponse, varied with pulse duration. Thus
the frequency content of the driven coher-
ent neuronal dynamics depends on the
duration of the E and I responses.

Previous work has suggested that bal-
anced inhibition is responsible for the

temporal precision of spiking in response to sensory stimulation
(Wehr and Zador, 2003). In our spiking network model, E/I bal-
ance arises from correlations between excitatory synaptic cur-
rents and inhibitory synaptic currents during both spontaneous
activity and optogenetic stimulation and is thus an intrinsic
property of the circuit (Figs. 6A–C). Consistent with previous
experimental results, we find that inhibition lags excitation in the
spiking model. Interestingly, the lag decreases during optogenetic
stimulation (2.6 ms during spontaneous activity and 1.8 ms dur-
ing stimulation; Fig. 6B) and coherence between E and I activity
increases (Fig. 6D) so that the inhibitory activity more closely
tracks the excitatory activity.

The spiking model shows that optogenetic stimulation drives
both excitatory and IPSCs in neurons. The excitatory currents
precede the inhibitory currents and increase the probability of
spiking. However, the network tightly couples E and I activity,
resulting in E/I balance. Because of this network property, the
excitatory currents are followed closely in time by IPSCs. The
inhibitory currents counter the initial excitatory response and
suppress the previously increased tendency to fire. Because the
E/I coupling increases during stimulation, the network property
that governs E/I balance may be responsible for the temporal
precision of the driven spiking and thus may be a mechanism
for stimulation-driven frequency selective coherent neuronal
dynamics.

Discussion
Here, we investigate the mechanisms by which optogenetic stimula-
tion of NHP cortical neurons evokes coherent neuronal dynamics.
We show that optogenetically-driven neuronal dynamics arise from
how extrinsic inputs recruit excitatory and inhibitory responses, the
E/I response, which follow intrinsic circuit properties and influ-
ence spike timing. We developed a phenomenological model to
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predict how the frequency of optogenetic-
stimulation-driven coherence varies para-
metrically with stimulation parameters
according to the timing of excitatory and
inhibitory currents generated by each
stimulation pulse. Experimental results
from optogenetically-stimulating sites in
the posterior parietal and frontal cortex
confirmed the model predictions. Fur-
thermore, we developed a biophysical
spiking network model using parameters
drawn from previous work modeling in-
trinsic neuronal dynamics and observed
stimulation-driven E/I responses with a
pulse-duration dependence that agreed
with the empirical coherent neuronal dy-
namics. These results suggest that neuro-
nal coherence observed under normal
circumstances may not necessarily reflect
the presence of an oscillatory generator
and that intrinsic E/I balance may also
contribute. Overall, our results contribute
to the growing literature on neural coher-
ence by relating stimulation-driven neuronal dynamics to E/I
balance.

Using driven dynamics to study E/I balance in macaques
Intracellular recordings have shown that balanced excitation and
inhibition plays a key role in controlling neuronal activity and
computation in rodent species (Shu et al., 2003; Haider et al.,
2006). However, because of technical challenges of directly re-
cording E and I currents in primate neurons (Tan et al., 2014),
direct evidence of E/I balance remains elusive. Extracellular re-
cordings in primates have shown that activity in excitatory neu-
rons is balanced by activity in inhibitory neurons at the network
level (Dehghani et al., 2016), which may suggest that E/I balance
at the neuronal level affects computation in primate brains. By
using a pan-neuronal viral vector we are able to directly recruit
varying amounts of E and I activity. Using both experimental data
and computational simulations, we show that this pan-neuronal
stimulation results in a structured E/I response that follows the
inherent network properties that govern E/I balance. The driven
coherent neuronal dynamics depend on the temporal properties
of the E/I response, which can be controlled by setting the
stimulation pulse duration. Together, these results provide con-
verging evidence that E/I balance plays a role in neuronal com-
putation in the primate brain.

E/I response mechanisms of driven coherence
Neurons fire spikes more often during periods of excitatory and
inhibitory imbalance, called integration windows. Synchronous
excitatory synaptic inputs depolarize cellular membrane poten-
tials and drive spiking activity. Inhibition dominates cortical
responses to stimulation (Haider et al., 2013) and regulates
the temporal properties of integration windows through tempo-
rally lagged responses, which balance excitatory inputs and repo-
larize membrane potentials (Gabernet et al., 2005). Spontaneous
excitatory and inhibitory activity are correlated, with inhibition
lagging excitation, suggesting that E/I balance may arise from the
properties of the neural circuit (Okun and Lampl, 2008). There-
fore, both time-lagged, correlated excitatory and inhibitory re-
sponses may play a key role in spike timing precision in response

to optogenetic stimulation, thus generating coherent neuronal
dynamics.

The E/I response model describes how excitatory and inhibi-
tory activity affect spike timing and driven coherent neuronal
dynamics. To gain further mechanistic insight into the conse-
quences of imbalances in excitatory and inhibitory activity, we
developed a biophysical spiking network model. Experimental
agreement with the model predictions reinforces the idea that
driven coherent neuronal dynamics depends on a mechanism of
spike timing precision involving a temporary increase in excit-
atory activity that leads to an increase in spiking. This increase in
excitation is then followed by an increase in inhibitory activity
that reduces the likelihood of spiking. In this way, optogenetic
stimulation drives E/I responses that influence spike timing and
can contribute to coherent neural activity.

Using a spiking network model with parameters drawn from
the literature and not fit to the stimulation-driven neural re-
sponses, we also observed pulse-duration-dependent E/I re-
sponses that were consistent with the empirical results. This
suggests the E/I response model may also offer a mechanism for
how SFC arises intrinsically, in addition to being driven by ex-
trinsic inputs. Several lines of work point to the role of E/I dy-
namics in SFC observed under normal circumstances. Sensory
stimulation drives E/I responses that govern spike timing (Wehr
and Zador, 2003). Because LFP activity reflects temporally struc-
tured fluctuations of local excitation and inhibition (Csicsvari et
al., 2003; Hasenstaub et al., 2005; Buzsáki et al., 2012), the intrin-
sically generated E/I responses are reflected in LFP activity. Thus,
E/I dynamics may also contribute to coherent neuronal dynamics
observed under normal circumstances.

Alternative cell-type-specific mechanisms for frequency
selectivity of driven coherence
We proposed that longer duration pulses extend the E/I response
and shift coherent dynamics toward lower frequencies following
the same cellular mechanism that generates E/I responses with
shorter pulses. This interpretation is supported by our biophysi-
cal model, which contains homogenous populations of excitatory
and inhibitory neurons. However, the pulse duration-dependent
change in the frequency content of the driven coherent neuronal
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dynamics may be due to a shift in the population of inhibitory
neurons activated in the network. Following stimulation, excita-
tion may recruit interneuron activity across a range of cell types
(Pike et al., 2000; Gloveli et al., 2005; Tukker et al., 2007; Buzsáki
and Wang, 2012), but the somatostatin and PV
 subtypes likely
play a preferential role in suppressing high-frequency activity
(Sohal et al., 2009; Cardin et al., 2010; Pfeffer et al., 2013). In
particular, somatostatin interneurons that inhibit PV
 interneu-
rons could reduce gamma activity and thus shift SFC toward
lower frequencies. If so, we predict that somatostatin interneu-
rons may show an increase in firing rate after stimulation, and
PV
 and excitatory neurons may decrease in firing rate due to
the increased inhibition for longer pulses. Additional work is
needed to test these alternative mechanisms. Recordings from
identified excitatory and inhibitory neurons are necessary to as-
sess the network recruitment of inhibition at a cellular level. Per-
forming this test depends on inhibitory cell-type specificity that
has been unavailable in primates but may be possible using novel
genetic targeting strategies (Stauffer et al., 2016; El-Shamayleh et
al., 2017; Galvan et al., 2017). Alternatively, extensions of our
biophysical model to include large-scale, heterogeneous neural
networks may offer predictions about cell-type-specific contri-
butions to coherent neuronal dynamics.

Poisson stimulation for studying dynamics
Continuous and periodic pulse optogenetic stimulation se-
quences have previously been used generate beta and gamma
activity and study their effects on behavior (Cardin et al., 2009;
Sohal et al., 2009; Adesnik and Scanziani, 2010; Ni et al., 2016).
However, using continuous constant and pulsatile periodic stim-
ulation drives responses at only particular frequencies (Cardin et
al., 2009; Adesnik and Scanziani, 2010; Lu et al., 2015), likely
related to properties of the local network (Buzsáki and Wang,
2012) and thus may vary across brain regions and subjects (Lu et
al., 2015; Ni et al., 2016). Previous work has shown that non-
deterministic pulse sequences can drive gamma activity (Cardin
et al., 2009; Kahn et al., 2013). Our work extends these previous
results, showing that coherent neuronal dynamics in either beta
or gamma frequency bands can be generated by stimulating the
same population of neurons using stimulation pulses of different
durations.

Potential bias in estimates of coherent neuronal dynamics
from LFP activity
Extracellular recordings of LFP activity and spiking may be biased
toward activity in pyramidal neurons. LFP activity preferentially
weights postsynaptic potentials in neurons with separated cur-
rent sources that generate an open-field geometry and spatially
structured synaptic inputs (Pesaran et al., 2018). Neurons that
receive spatially uniform inputs have transmembrane currents
that tend to cancel, resulting in a small extracellular potential.
Neurons with spatially separated synaptic inputs are more likely
to form current dipoles and have greater contributions to the
extracellular membrane potential. Thus, postsynaptic potentials
from neurons with extended dendritic architectures, such as py-
ramidal neurons, are more heavily weighted by LFP activity. Ad-
ditionally, pyramidal neurons typically have larger cell bodies
than other cortical neurons and thus have more easily measurable
action potentials. Therefore, our measurement of both spiking
activity and LFP, and thus SFC, may be biased toward contribu-
tions from postsynaptic potentials in pyramidal neurons. In ad-
dition to LFP activity, alternative decompositions of neural data,
such as projections of population activity onto lower dimensional

subspaces, may be used to estimate coherence. Such estimates
may be more effective at identifying spiking that is coherent with
presynaptic and postsynaptic activity in neuronal ensembles con-
taining both open- and closed-field neurons.

In conclusion, we systematically modeled neuronal responses
to optogenetic stimulation in NHP cortex. Our empirical results
highlight the role of generating specific E/I responses by selecting
stimulation parameters, pulse duration, to selectively perturb
behaviorally-relevant coherent neuronal activity. Our modeling
results show that E/I responses that shape the extrinsic coherence
are an emergent property of the interactions between popula-
tions of neurons and indicate that coherence under normal cir-
cumstances can also arise from intrinsic E/I balance. Therefore,
optogenetic control of neuronal activity can be useful for under-
standing mechanisms of coherent neuronal dynamics and how
they give rise to complex, flexible behaviors.
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