Muller, R.U., J.L. Kubie, and J.B. Ranck, Jr.: Spatial Firing Patterns of Hippocampal Complex-Spike Cells in a Fixed Environment

Muller, R.U., and J.L. Kubie: The Effects of Changes in the Environment on the Spatial Firing of Hippocampal Complex-Spike Cells

Fishell, G., and D. van der Kooy: Pattern Formation in the Striatum: Developmental Changes in the Distribution of Striatonigral Neurons


Yee, W.C., and A. Pestronk: Mechanisms of Postsynaptic Plasticity: Remodeling of the Junctional Acetylcholine Receptor Cluster Induced by Motor Nerve Terminal Outgrowth

Shipley, M.T., J.H. McLean, and M.M. Behbehani: Heterogeneous Distribution of Neurotensin-like Immunoreactive Neurons and Fibers in the Midbrain Periaqueductal Gray of the Rat


Xie, G.-X., and A. Goldstein: Characterization of Big Dynorphins from Rat Brain and Spinal Cord

Cover picture: Distribution of neurotensin (NT) fibers in the midbrain periaqueductual gray (PAG) of the rat. Pseudocolor (upper left) and isodensitometric maps (lower) of the density of immunocytochemically stained NT fibers were created from video images using software (developed by J. Luna and M.T. Shipley, University of Cincinnati College of Medicine) developed for the Magiscan Image Analysis System (Joyce-Loebel/Nikon; Photography by E. Giglio). Using quantitative image analysis methods, it was shown that NT fibers are heterogeneously distributed in PAG (Shipley, et al., this volume, pp. 2025-2034). NT injected in PAG causes long-lasting, naloxone insensitive analgesia. A companion article (Behbehani, et al., pp. 2035-2040) demonstrates that NT causes long-lasting depolarization of PAG neurons in slices even when synaptic transmission is blocked by cobalt, suggesting that NT fibers mediate analgesia by postsynaptic activation of PAG neurons.
Cohen, R.S., H.C. Pant, S. House, and H. Gainer: Biochemical and Immunocytochemical Characterization and Distribution of Phosphorylated and Nonphosphorylated Subunits of Neurofilaments in Squid Giant Axon and Stellate Ganglion

Hussey, M.A., S.E. Hughes, L.L. Morton, and B. Oakley: A Sensitive Period for the Neural Induction of Taste Buds

Nolen, T.G., and R.R. Hoy: Postsynaptic Inhibition Mediates High-Frequency Selectivity in the Cricket Teleogryllus oceanicus: Implications for Flight Phonotaxis Behavior

Huoper, S.L., and E. Marder: Modulation of the Lobster Pyloric Rhythm by the Peptide Proctolin

Harris-Warrick, R.M., and R.E. Flamm: Multiple Mechanisms of Bursting in a Conditional Bursting Neuron

Amalric, M., and G.F. Koob: Depletion of Dopamine in the Caudate Nucleus But Not in Nucleus Accumbens Impairs Reaction-Time Performance in Rats

Chamberlain, S.C., and R.B. Barlow, Jr.: Control of Structural Rhythms in the Lateral Eye of Limulus: Interactions of Natural Lighting and Circadian Efferent Activity

Muschella, M.C., and M. Oustell: Transient and Chronic Neonatal Denervation of Marine Muscle: A Procedure to Modify the Phenotypic Expression of Muscular Dystrophy

Loring, R.H., and R.E. Zigmond: Ultrastructural Distribution of 125I-Toxin F Binding Sites on Chick Ciliary Neurons: Synaptic Localization of a Toxin that Blocks Ganglionic Nicotinic Receptors

Carlone, R., J.K. Kim, and M. Rathbone: Purification of a Chick Brain-Derived Growth Factor by Reversed-Phase High-Performance Liquid Chromatography

Goodwin, A.W., and J.W. Morley: Sinusoidal Movement of a Grating Across the Monkey’s Fingerpad: Representation of Grating and Movement Features in Afferent Fiber Responses

Goodwin, A.W., and J.W. Morley: Sinusoidal Movement of a Grating Across the Monkey’s Fingerpad: Temporal Patterns of Afferent Fiber Responses

Goodwin, A.W., and J.W. Morley: Sinusoidal Movement of a Grating Across the Monkey’s Fingerpad: Effect of Contact Angle and Force of the Grating on Afferent Fiber Responses

Gallo, V., A. Kingsbury, R. Bárázs, and O.S. Jørgensen: The Role of Depolarization in the Survival and Differentiation of Cerebellar Granule Cells in Culture

Aoki, C., T.A. Milner, K.-F. R. Sheu, J.P. Blass, and V.M. Pickel: Regional Distribution of Astrocytes with Intense Immunoreactivity for Glutamate Dehydrogenase in Rat Brain: Implications for Neuron-Glia Interactions in Glutamate Transmission


Parhad, I.M., A.W. Clark, and J.W. Griffin: Effect of Changes in Neurofilament Content on Caliber of Small Axons: The β,β′-iminodipropionitrile Model

Silver, J., M. Poston, and U. Rutishauser: Axon Pathway Boundaries in the Developing Brain. I. Cellular and Molecular Determinants That Separate the Optic and Olfactory Projections

Instructions to Authors appear in the January issue only. Copies of the Instructions can be obtained by writing the Society for Neuroscience, 11 Dupont Circle, N.W., Suite 500, Washington, DC 20036.