1831 Gattass, R., A.P.B. Sousa, and C.G. Gross: Visuotopic Organization and Extent of V3 and V4 of the Macaque

1846 Migheli, A., M. Butler, K. Brown, and M.L. Shelanski: Light and Electron Microscope Localization of the Microtubule-Associated tau Protein in Rat Brain

1852 Gall, C.: Seizures Induce Dramatic and Distinctly Different Changes in Enkephalin, Dynorphin, and CCK Immunoreactivities in Mouse Hippocampal Mossy Fibers

1863 Sutherland, R.J., I.Q. Whishaw, and B. Kolb: Contributions of Cingulate Cortex to Two Forms of Spatial Learning and Memory

1873 Doetsch, G.S., G.P. Standage, K.W. Johnston, and C.-S. Lin: Thalamic Connections of Two Functional Subdivisions of the Somatosensory Forepaw Cerebral Cortex of the Raccoon

1887 Doetsch, G.S., G.P. Standage, K.W. Johnston, and C.-S. Lin: Intracortical Connections of Two Functional Subdivisions of the Somatosensory Forepaw Cerebral Cortex of the Raccoon


1922 Hof, P.R., E. Pascale, and P.J. Magistretti: K⁺ at Concentrations Reached in the Extracellular Space During Neuronal Activity Promotes a Ca²⁺-Dependent Glycogen Hydrolysis in Mouse Cerebral Cortex

Cover picture: Reconstruction of the overall pattern of ocular dominance bands in layer IV of area 17 in cat cerebral cortex (approximately 6×). The ocular dominance pattern was revealed by transneuronal transport of wheat germ agglutinin horseradish peroxidase (WGA-HRP) that was injected into the ipsilateral eye. This montage was constructed from dark-field photographs of 5 tangential sections from a cortical hemisphere that had been unfolded and flattened prior to sectioning. Anterior is to the top and medial is to the left. The solid white line indicates the border of area 17, which is ovate in shape with its narrower aspect oriented anteriorly. The triangular indentation in the medial border of area 17 is a cut made to relieve intrinsic curvature of the cortex during flattening. As revealed by the distribution of WGA-HRP labeling (light areas), the ocular dominance pattern consists of a relatively continuous network of irregularly branching bands. The width of the individual bands tends to fluctuate, giving them a beaded appearance. The large unlabeled region in the most medial part of area 17 indicates the location of the crescent-shaped monocular segment, a portion of striate cortex that only receives input from the contralateral (noninjected) eye. The labeling outside of area 17 lies in extrastriate cortical area 18. Micrograph provided by Patricia A. Anderson, Jaime Olavarria, and Richard C. Van Sluyters from their paper (pp. 2183–2200, this issue).
1929 Thompson, S., and J. Coombs: Spatial Distribution of Ca Currents in Molluscan Neuron Cell Bodies and Regional Differences in the Strength of Inactivation


1951 Caldecott-Hazard, S., J. Mazziotta, and M. Phelps: Cerebral Correlates of Depressed Behavior in Rats, Visualized Using 14C-2-Deoxyglucose Autoradiography


1971 Yool, A.J., V.E. Dionne, and D.L. Gruol: Developmental Changes in K+Selective Channel Activity During Differentiation of the Purkinje Neuron in Culture


2003 Watanabe, Y., Y. Watanabe, and O. Hayaishi: Quantitative Autoradiographic Localization of Prostaglandin E2 Binding Sites in Monkey Diencephalon

2011 Leventhal, A.G., J.D. Schall, S.J. Ault, J.M. Provis, and D.J. Vitek: Class-Specific Cell Death Shapes the Distribution and Pattern of Central Projection of Cat Retinal Ganglion Cells

2028 Leventhal, A.G., J.D. Schall, and S.J. Ault: Extrinsic Determinants of Retinal Ganglion Cell Structure in the Cat

2039 Schall, J.D., S.J. Ault, D.J. Vitek, and A.G. Leventhal: Experimental Induction of an Abnormal Ipsilateral Visual Field Representation in the Geniculocortical Pathway of Normally Pigmented Cats


2062 Schneider, S.P., and E.R. Perl: Comparison of Primary Afferent and Glutamate Excitation of Neurons in the Mammalian Spinal Dorsal Horn

2074 Noga, B.R., J. Kettler, and L.M. Jordan: Locomotion Produced in Mesencephalic Cats by Injections of Putative Transmitter Substances and Antagonists into the Medial Reticular Formation and the Pontomedullary Locomotor Strip


2101 Henley, J.M., and R.E. Oswald: Characterization and Regional Distribution of Glutamatergic and Cholinergic Ligand Binding Sites in Goldfish Brain

2108 Bicker, G., S. Schäfer, O.P. Ottersen, and J. Storm-Mathisen: Glutamate-like Immunoreactivity in Identified Neuronal Populations of Insect Nervous Systems

2123 Chang, Y.-C., and D.I. Gottlieb: Characterization of the Proteins Purified with Monoclonal Antibodies to Glutamic Acid Decarboxylase
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2131</td>
<td>Voltage-Gated Potassium Currents in Cultured Ovine Oligodendrocytes</td>
<td>Soliven, B., S. Szuchet, B.G.W. Arnason, and D.J. Nelson</td>
</tr>
<tr>
<td>2142</td>
<td>Spatial Distribution of Motor Unit Fibers in the Cat Soleus and Tibialis Anterior Muscles: Local Interactions</td>
<td>Bodine, S.C., A. Garfinkel, R.R. Roy, and V.R. Edgerton</td>
</tr>
<tr>
<td>2153</td>
<td>Vulnerability of Cultured Cortical Neurons to Damage by Excitotoxins: Differential Susceptibility of Neurons Containing NADPH-Diaphorase</td>
<td>Koh, J.-y., and D.W. Choi</td>
</tr>
<tr>
<td>2164</td>
<td>Zinc Alters Excitatory Amino Acid Neurotoxicity on Cortical Neurons</td>
<td>Koh, J.-y., and D.W. Choi</td>
</tr>
<tr>
<td>2172</td>
<td>Identification and Quantification of Calcium-Binding Proteins in Squid Axoplasm</td>
<td>Krinks, M.H., C.B. Klee, H.C. Pant, and H. Gainer</td>
</tr>
<tr>
<td>2183</td>
<td>The Overall Pattern of Ocular Dominance Bands in Cat Visual Cortex</td>
<td>Anderson, P.A., J. Olavarria, and R.C. Van Sluyters</td>
</tr>
<tr>
<td>2201</td>
<td>A Selective Impairment of Motion Perception Following Lesions of the Middle Temporal Visual Area (MT)</td>
<td>Newsome, W.T., and E.B. Paré</td>
</tr>
</tbody>
</table>

Instructions to Authors appear in the January issue only. Copies of the Instructions can be obtained by writing the Society for Neuroscience, 11 Dupont Circle, N.W., Suite 500, Washington, DC 20036.