Muller, R.U., and J.L. Kubie: The Firing of Hippocampal Place Cells Predicts the Future Position of the Freely Moving Rats

Friedman, H.K., C.J. Bruce, and P.S. Goldman-Rakic: Resolution of Metabolic Columns by a Double-Label 2-DG Technique: Interdigitation and Coincidence in Visual Cortical Areas of the Same Monkey


Malhotra, R.K., T.D. Wakade, and A.R. Wakade: Cross-Communication Between Acetylcholine and VIP in Controlling Catecholamine Secretion by Affecting cAMP, Inositol Triphosphate, Protein Kinase C, and Calcium in Rat Adrenal Medulla


Kössl, M., and M. Vater: Noradrenaline Enhances Temporal Auditory Contrast and Neuronal Timing Precision in the Cochlear Nucleus of the Mustached Bat

Reh, T.A., and I.J. Kljavin: Age of Differentiation Determines Rat Retinal Germinal Cell Phenotype: Induction of Differentiation by Dissociation

Streit, J., and H.D. Lux: Distribution of Calcium Currents in Sprouting PC12 Cells


Cover Picture: A digitized autoradiograph of a monkey's left visual cortex (V1) showing the ocular dominance columns of both eyes simultaneously as well as the monocular segment. This autoradiograph was obtained from a double-label 2-deoxyglucose (2-DG) experiment in which 14C-2DG was injected and the left eye was stimulated for 30 min after which 3H-2DG was injected and the right eye was stimulated for 30 min. This magnified (approximately 16 x) portion of a coronal section cuts through dorsolateral V1 and the calcarine sulcus. The image is shown in pseudocolor with green indicating the uptake of 3H-2DG during right eye stimulation and red reflecting the uptake of 14C-2DG during left eye stimulation. Notice that the 2 colors interdigitate in columns across the dorsal surface of V1. However, also note the large red segment in the buried calcarine sulcus that corresponds to the optic disk representation of the right eye. Photograph provided by the authors, H. R. Friedman, C. J. Bruce, and P. S. Goldman-Rakic, from their paper (pp. 4111-4121, this issue).
Hawkins, R.D.: Localization of Potential Serotonergic Facilitator Neurons in *Aplysia* by Glyoxylic Acid Histofluorescence Combined with Retrograde Fluorescent Labeling

Mackey, S.L., E.R. Kandel, and R.D. Hawkins: Identified Serotonergic Neurons LCB1 and RCB1 in the Cerebral Ganglia of *Aplysia* Produce Presynaptic Facilitation of Siphon Sensory Neurons

Hawkins, R.D., and S. Schacher: Identified Facilitator Neurons L29 and L28 Are Excited by Cutaneous Stimuli Used in Dishabituation, Sensitization, and Classical Conditioning of *Aplysia*

Dixon, D., and H.L. Atwood: Adenylate Cyclase System Is Essential for Long-Term Facilitation at the Crayfish Neuromuscular Junction

McCarthy, G., C.C. Wood, P.D. Williamson, and D.D. Spencer: Task-Dependent Field Potentials in Human Hippocampal Formation

Pittman, R.N., J.K. Ivins, and H.M. Buettner: Neuronal Plasminogen Activators: Cell Surface Binding Sites and Involvement in Neurite Outgrowth

Geschwind, D.H., and S. Hockfield: Identification of Proteins That Are Developmentally Regulated During Early Cerebral Corticogenesis in the Rat


Aoki, C., and V.M. Pickel: Neuropeptide Y in the Cerebral Cortex and the Caudate-Putamen Nuclei: Ultrastructural Basis for Interactions with GABAergic and non-GABAergic Neurons

Zola-Morgan, S., L.R. Squire, D.G. Amaral, and W.A. Suzuki: Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment

Guitart, X., and E.J. Nestler: Identification of Morphine- and Cyclic AMP-Regulated Phosphoproteins (MARPPs) in the Locus Coeruleus and Other Regions of Rat Brain: Regulation by Acute and Chronic Morphine

Shumway, C.A.: Multiple Electrosensory Maps in the Medulla of Weakly Electric Gymnotiform Fish. I. Physiological Differences

Shumway, C.A.: Multiple Electrosensory Maps in the Medulla of Weakly Electric Gymnotiform Fish. II. Anatomical Differences

Giulian, D., J. Chen, J.E. Ingeman, J.K. George, and M. Noponen: The Role of Mononuclear Phagocytes in Wound Healing After Traumatic Injury to Adult Mammalian Brain

Bean, A.J., M.J. During, A.Y. Deutch, and R.H. Roth: Effects of Dopamine Depletion on Striatal Neurotensin: Biochemical and Immunohistochemical Studies