Chase, M.H., P.J. Soja, and F.R. Morales: Evidence That Glycine Mediates the Postsynaptic Potentials That Inhibit Lumbar Motoneurons During the Atonia of Active Sleep

Brinton, R.E., and B.S. McEwen: Vasopressin Neuromodulation in the Hippocampus

Tashiro, T., and Y. Komiya: Stable and Dynamic Forms of Cytoskeletal Proteins in Slow Axonal Transport

Norton, W.T., and M. Farooq: Astrocytes Cultured from Mature Brain Derive from Glial Precursor Cells

Merigan, W.H.: Chromatic and Achromatic Vision of Macaques: Role of the P Pathway

Wolszon, L.R., and D.S. Faber: The Effects of Postsynaptic Levels of Cyclic AMP on Excitatory and Inhibitory Responses of an Identified Central Neuron

Westerberg, E., D.T. Monaghan, H. Kalimo, C.W. Cotman, and T.W. Wieloch: Dynamic Changes of Excitatory Amino Acid Receptors in the Rat Hippocampus Following Transient Cerebral Ischemia

Péraldi, S., B. Nguyen Than Dao, Ph. Brabet, V. Homburger, B. Rouot, M. Toutant, Ch. Bouille, I. Assenmacher, J. Bockaert, and J. Gabrion: Apical Localization of the Alpha Subunit of GTP-Binding Protein Gs in Choroidal and Ciliated Ependymocytes

Yang, X.-L., S.M. Wu: Effects of Background Illumination on the Horizontal Cell Responses in the Tiger Salamander Retina

Squire, L.R., F. Haist, and A.P. Shimamura: The Neurology of Memory: Quantitative Assessment of Retrograde Amnesia in Two Groups of Amnesic Patients

Sayer, R.J., S.J. Redman, and P. Andersen: Amplitude Fluctuations in Small EPSPs Recorded from CA1 Pyramidal Cells in the Guinea Pig Hippocampal Slice

Cover Picture: Light micrograph of a pair of frog cardiac ganglion neurons in the interatrial septum photographed using differential interference contrast optics. Within each unipolar neuron can be seen a nucleus, a nucleolus, and numerous cytoplasmic organelles. The axon of the cell on the right can be seen joining a small nerve trunk. Also visible are cardiac muscle fibers, collagen fibrils, and the nuclei of other cells. The cell body of each cardiac ganglion neuron is supplied by several cholinergic synaptic boutons (not usually visible by light microscopy in unstained tissue). As described by P.B. Sargent and D.Z. Pang (pp. 1062-1072), clusters of acetylcholine receptor-like molecules are found preferentially, but not exclusively, at synaptic sites on the ganglion cell surface. The larger of the two neuronal cell bodies is approximately 30 × 25 μm.
Hemmings, H.C., Jr., and P. Greengard: ARPP-21, a Cyclic AMP-Regulated Phosphoprotein Enriched in Dopamine-Innervated Brain Regions. I. Purification and Characterization of the Protein from Bovine Caudate Nucleus

Ouimet, C.C., H.C. Hemmings, Jr., and P. Greengard: ARPP-21, a Cyclic AMP-Regulated Phosphoprotein Enriched in Dopamine-Innervated Brain Regions. II. Immunocytochemical Localization in Rat Brain

Prince, J.T., N. Milona, and W.B. Stallcup: Characterization of a Partial cDNA Clone for the NILE Glycoprotein and Identification of the Encoded Polypeptide Domain

Dani, J.A.: Open Channel Structure and Ion Binding Sites of the Nicotinic Acetylcholine Receptor Channel

Hoffman, P.N.: Expression of GAP-43, a Rapidly Transported Growth-Associated Protein, and Class II Beta Tubulin, a Slowly Transported Cytoskeletal Protein, Are Coordinated in Regenerating Neurons

Zola-Morgan, S., L.R. Squire, and D.G. Amaral: Lesions of the Hippocampal Formation But Not Lesions of the Fornix or the Mammillary Nuclei Produce Long-Lasting Memory Impairment in Monkeys

Verge, V.M.K., R.J. Riopelle, and P.M. Richardson: Nerve Growth Factor Receptors on Normal and Injured Sensory Neurons

Giuliano, R., D.A. Ruggiero, S. Morrison, P. Ernsberger, and D. J. Reis: Cholinergic Regulation of Arterial Pressure by the C1 Area of the Rostral Ventrolateral Medulla


Hisanaga, S.-i., and N. Hirokawa: The Effects of Dephosphorylation on the Structure of the Projections of Neurofilament


Brown, V.J., and T.W. Robbins: Deficits in Response Space Following Unilateral Striatal Dopamine Depletion in the Rat


Hekimi, S., and M. O’Shea: Biosynthesis of Adipokinetic Hormones (AKHs): Further Characterization of Precursors and Identification of Novel Products of Processing

Simkowitz, P., L. Ellis, and K.H. Pfenninger: Membrane Proteins of the Nerve Growth Cone and Their Developmental Regulation

Owens, J.L., and R. Kullberg: In vivo Development of Nicotinic Acetylcholine Receptor Channels in Xenopus Myotomal Muscle

Bell, C.C., and K. Grant: Corollary Discharge Inhibition and Preservation of Temporal Information in a Sensory Nucleus of Mormyrid Electric Fish

Levine, R.B.: Expansion of the Central Arborizations of Persistent Sensory Neurons During Insect Metamorphosis: The Role of the Steroid Hormone, 20-Hydroxyecdysone
Yarowsky, P.J., and B.K. Krueger: Development of Saxitoxin-Sensitive and Insensitive Sodium Channels in Cultured Neonatal Rat Astrocytes

Sargent, P.B., and D.Z. Pang: Acetylcholine Receptor-like Molecules Are Found in Both Synaptic and Extrasynaptic Clusters on the Surface of Neurons in the Frog Cardiac Ganglion


Luther, M.A., R. Schoepfer, P. Whiting, B. Casey, Y. Blatt, M.S. Montal, M. Montal, and J. Lindstrom: A Muscle Acetylcholine Receptor Is Expressed in the Human Cerebellar Medulloblastoma Cell Line TE671

Instructions to Authors appear in the January issue only. Copies of the Instructions can be obtained by writing the Journal of Neuroscience, Washington University School of Medicine, Box 8108, 660 S. Euclid Ave., St. Louis, MO 63110. Inquiries concerning manuscripts can be made directly to Barbara Harris, editorial assistant, at the offices of the Journal (314-362-3663; FAX 314-362-9862).