s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

JNeurosci

'HE JOURNAL OF NEUROSCIENCE

Research Articles: Behavioral/Cognitive

Moment-to-moment BOLD Signal Variability Reflects Regional Changesin Neural
Flexibility Acrossthe Lifespan

Jason S. Nomi?, Taylor S. Bolt?, Chiemeka Ezie, Lucina Q. Uddin®” and Aaron S. Heller®P€

#Department of Psychology, University of Miami, Coral Gables, FL, USA 33124
PNeuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA 33136
‘Department of Psychiatry, University of Miami, Miami, FL, USA 33136

DOI: 10.1523/JINEUROSCI.3408-16.2017
Received: 3 November 2016

Revised: 24 April 2017

Accepted: 26 April 2017

Published: 3 May 2017

Author contributions: J.S.N., L.Q.U., and A.S.H. designed research; J.S.N., T.B., C.E., L.Q.U., and A.S.H.
performed research; J.S.N., T.B., and A.S.H. contributed unpublished reagents/analytic tools; J.S.N., T.B., and
C.E. analyzed data; J.S.N., L.Q.U., and A.S.H. wrote the paper.

This work was supported by award RO1IMH107549 from the National Institute of Mental Health, a NARSAD
Young Investigator Grant, and a University of Miami Convergence Research Grant to LQU.

Corresponding authors: Jason S. Nomi, Ph.D., Department of Psychology, University of Miami, P.O. Box
248185, Coral Gables, FL 33124, USA, Email: jxn131@miami.edu, Fax: +1 305-284-3402, Phone: +1
305-284-3265, Designed research, performed research, analyzed data, wrote the paper Lucina Q. Uddin,
Ph.D., Department of Psychology, University of Miami, P.O. Box 248185, Coral Gables, FL 33124, USA, Email:
l.uddin@miami.edu, Fax: +1 305-284-3402, Phone: +1 305-284-3265, Designed research, performed research,
wrote the paper

Cite as: J. Neurosci ; 10.1523/JINEUROSCI.3408-16.2017

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted
version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading
process.

Copyright © 2017 the authors



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

OCONOUTLH WN -

Moment-to-moment BOLD Signal Variability Reflects Regional Changes in
Neural Flexibility Across the Lifespan

Abbreviated Title:
BOLD Signal Variability Changes Across the Lifespan

*Jason S. Nomi®, Taylor S. Bolt*, Chiemeka Ezie, *Lucina Q. Uddin™”,
& Aaron S. Heller™®*

*Department of Psychology, University of Miami, Coral Gables, FL, USA 33124
"Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL,
USA 33136

¢ Department of Psychiatry, University of Miami, Miami, FL, USA 33136

*Corresponding authors:

Jason S. Nomi, Ph.D.

Department of Psychology

University of Miami

P.O. Box 248185

Coral Gables, FL 33124, USA

Email: jxn131@miami.edu

Fax: +1 305-284-3402, Phone: +1 305-284-3265

Designed research, performed research, analyzed data, wrote the paper

Taylor S. Bolt, M.S.

Department of Psychology

University of Miami

P.O. Box 248185

Coral Gables, FL 33124, USA

Email: tsb46@miami.edu

Fax: +1 305-284-3402, Phone: +1 305-284-3265
Performed research, analyzed data

Chiemeka Ezie, B.S.

Department of Psychology
University of Miami

P.O. Box 248185

Coral Gables, FL 33124

Email: cezie@miami.edu

Phone: +1 305284 9555
Performed research, analyzed data




s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Lucina Q. Uddin, Ph.D.

Department of Psychology

University of Miami

P.O. Box 248185

Coral Gables, FL 33124, USA

Email: Luddin@miami.edu

Fax: +1 305-284-3402, Phone: +1 305-284-3265
Designed research, performed research, wrote the paper

Aaron S. Heller, Ph.D.

Department of Psychology

University of Miami

P.O. Box 248185

Coral Gables, FL 33124

Email: aheller@miami.edu

Phone: +1 305 284 9498

Designed research, performed research, analyzed data, wrote the paper

Acknowledgments: This work was supported by award ROIMH107549 from the
National Institute of Mental Health, a NARSAD Young Investigator Grant, and a
University of Miami Convergence Research Grant to LQU.



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

93
94
95

96

97

98

99

100

101

102

103

104

105

106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Abstract
Variability of neuronal responses is thought to underlie flexible and optimal brain
function. Because previous work investigating BOLD signal variability has been
conducted within task-based fMRI contexts on adults and older individuals, very little is
currently known regarding regional changes in spontaneous BOLD signal variability in
the human brain across the lifespan. The current study utilized resting state fMRI data
from a large sample of male and female human participants covering a wide age range (6-
85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 seconds).
Variability in brain regions including a key node of the salience network (anterior insula)
increased linearly across the lifespan across datasets. In contrast, variability in most other
large-scale networks decreased linearly over the lifespan. These results demonstrate
unique lifespan trajectories of BOLD variability related to specific regions of the brain
and add to a growing literature demonstrating the importance of identifying normative

trajectories of functional brain maturation.
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Significance Statement
Although brain signal variability has traditionally been considered a source of unwanted
noise, recent work demonstrates that variability in brain signals during task performance
is related to brain maturation in old age as well as individual differences in behavioral
performance. The current results demonstrate that intrinsic fluctuations in resting-state
variability exhibit unique maturation trajectories in specific brain regions and systems,
particularly those supporting salience detection. These results have implications for
investigations of brain development and aging, as well as interpretations of brain function

underlying behavioral changes across the lifespan.
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Introduction

Blood oxygenated level-dependent (BOLD) signal variability is often considered
as a source of unwanted noise. This is in contrast to theories proposing that biological
variability is necessary for optimal brain function (Mclntosh et al., 2010; Garrett et al.,
2013; Tognoli and Kelso, 2014). For example, coordination dynamics theory proposes
that networks fluctuate between integration, segregation, and metastable configurations
(Tognoli and Kelso, 2014). Metastability requires a balance between integration and
segregation, where signal variability within a network facilitates shifting between
integration and segregation. That is, networks demonstrating high integration or
segregation without variability cannot flexibly shift between configurations. On the other
hand, networks with high variability can flexibly shift through integrative and segregative
configurations. Another approach highlighting the importance of neural variability is the
“bayes optimal theory” that proposes if neurons fired identically to stimuli over time,
systems would not adapt to that stimulus in different circumstances (Beck et al., 2008).
These perspectives posit that variability in neuronal response is a critical component of
brain function.

Accumulating research has demonstrated differences in BOLD variability
between older adults compared with younger adults in a number of task-based fMRI
contexts. BOLD variability in the majority of brain regions decreases during task-based
fixation periods (i.e., task-absent) in older adults compared with younger adults (Garrett
et al., 2010). Increased BOLD variability has also been linked to younger individuals,
with faster reaction time and more consistent performance in perceptual matching and

attentional cueing tasks (Garrett et al., 2011). Greater BOLD variability during the
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fixation period of a task is also associated with more efficient behavioral performance in
younger adults compared with older adults (Garrett et al., 2012). Such studies generally
demonstrate that BOLD variability decreases across development, with few regions
demonstrating increased variability across development. Nonetheless, both increases and
decreases in variability have been found throughout frontal, parietal, and temporal brain
areas. Additionally, increased left inferior frontal junction variability has been linked to
improved performance on a cognitive flexibility task, but impaired performance on an
inhibition task (Armbruster-Geng et al., 2016). This suggests that the beneficial impact of
regional BOLD variability may be task- and circuit-dependent. Finally, increased
variability in the nucleus accumbens has been associated with greater financial risk-
taking in older age (Samanez-Larkin et al., 2010). Taken together, these studies
demonstrate that greater variability is associated with younger individuals, faster and
more consistent performance, and cognitive flexibility, demonstrating its importance as a
neural signature of optimal task performance.

The aforementioned studies have mainly examined the effects of BOLD
variability within task-based fMRI contexts in younger adults (20-35 years old) and older
adults (65-80 years old). However, no studies to date have characterized resting-state
BOLD variability nor have they examined variability across the entire lifespan. This is
important for two reasons: First, although previous studies analyzed fixation periods
within task-based fMRI paradigms, fixation periods are short in duration and may be
influenced by task based processing demands (Northoff et al., 2010). Resting-state fMRI
offers temporal continuity across the time-series, unaffected by possible task-based

influences that could differentially impact individuals at different ages. Second, exploring
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variability across the lifespan allows for characterization of both linear and quadratic
effects. This is important because such effects are present in lifespan resting-state fMRI
studies charting functional connectivity trajectories (Betzel et al., 2014; Cao et al., 2014).

To explore these questions, the current study utilized two groups of resting state
fMRI data (n=187 and n=191; 6 - 85 years old) to examine lifespan trajectories of BOLD
variability and demonstrate replicability of findings across different multi-band
acquisition parameters. Based on predictions from the previous task-based fMRI
literature examining fixation periods between task blocks (Garrett et al., 2010), we
expected to find that a majority of voxels would demonstrate decreases in variability
across the lifespan, and that a minority of voxels would demonstrate increases in
variability across the lifespan.

Methods

Participants

Two resting state fMRI datasets (fast TR group: n =191, TR = 0.645s; slow TR
group: n = 187, TR = 1.4s), each containing ten minutes of data, were downloaded from
the NKlI-enhanced database (Nooner et al., 2012) (Figure 1). The two groups both
included participants from a wide age range (6 — 85 years of age) and differed principally
in multi-band TR acquisition time. Group one, the “fast TR group” (TR = 0.645 seconds)
included 191 participants (132 female; Mean age = 42.26 years old, SD = 23.60; Mean
Full scale IQ = 104.31, SD = 14.06; Mean framewise displacement (FD) =0.12, SD =
0.04). Handedness was assessed using the Edinburgh Handedness Questionnaire
(EHQ)(Oldfield, 1971) on a scale of -100 to 100; 19 participants had negative scores.

Group two, the “slow TR group” (TR = 1.4 seconds) included 187 participants (131
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female; Mean age = 42.46 years old, SD = 23.30; Mean Full scale IQ = 104.54, SD =
13.75; Mean FD = 0.26, SD = 0.12; 20 participants had negative EHQ scores). We
included both data sets with different TRs in our analyses to ensure the robustness and
reliability of any MSSD effects as a function of age. This procedure mitigates concerns
regarding the unknown influence on the reliability of MSSD results from data acquired
utilizing recently developed multi-band EPI protocols (Smith et al., 2013).

Inclusion criteria for both data sets were the following: subjects had no current or
past DSM diagnosis for psychiatric disorders, and less than 3mm in translational head
movement and/or 3 degrees of rotational head movement. There were 177 subjects that
appeared in both groups. Subjects appeared in one group but not the other because of
increased head motion during one scan, but not the other, or poor/missing functional
scans in one dataset or the other. There were no significant differences in age (#(376) =
0.08, p=0.93) or in IQ (#(376) = 0.16, p = 0.87) in the two TR groups, as most subjects
contributed data to both groups. However, there was a significant difference in FD
(1(376) = 15.46, p = 4.31 x10™*%) between the groups. Larger FD for the slow TR group
was expected: head movement would be naturally smaller for the fast TR group because
there is less time to move between successive volume acquisitions. Because of these
differences in head movement between TR groups, and the stringent employment of head
motion analysis corrections we employed, we reasoned that any MSSD effects that
replicated across both groups would ameliorate concerns that head movement influenced
the results.

Imaging was performed on a Siemens Trio 3.0 T scanner that collected a T'1

anatomical image and multiband (factor of 4) EPI sequenced resting state images (Low
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TR group: 3 x 3 x 3 mm, 40 interleaved slices, TE = 30 ms, flip angle = 60 degrees, field
of view = 222 mm, 900 volumes; High TR group: 2 x 2 x 2 mm, 64 interleaved slices, TE
= 30 ms, flip angle = 65 degrees, field of view = 224 mm, 404 volumes). Participants
were instructed to keep their eyes open and fixate on a central cross in the middle of the
screen (http://fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html).
Image Preprocessing

Resting state scans were preprocessed using FSL, AFNI, and SPM 8 functions

through DPARSF-A (http://rfmri.org/DPARSF). The first five volumes were removed to

allow the data to reach T1 equilibrium. Several steps were undertaken to remove motion
artifacts and other sources of noise from the data prior to analysis. Resting state data were
realigned (FSL) and smoothed (FSL: 6mm) before individual independent component
analyses (ICA) were conducted for all data sets using automatic dimensionality
estimation (FSL’s MELODIC). Noise components were then classified for 20 subjects in
the fast TR group and 20 subjects in the slow TR group (random sampling by choosing
subjects separated by approximately 5 years of age) by transforming independent
component maps into MNI space (3mm for the fast TR group and 2mm for the slow TR
group to match their respective acquisition parameters). The resulting component
classifications were then fed into FMIRB’s ICA-FIX classification algorithm (Griffanti et
al., 2014). ICA-FIX to classify noise and non-noise components from both groups before
conducting nuisance regression of classified noise components from the resting state
scans in subject space. The ICA-FIX cleaned data was then normalized into MNI space
(DPARSF-A) using an EPI template from SPM (3 mm for the low TR group and 2 mm

for the high TR group to match each group’s respective acquisition parameters). The data
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were then despiked using AFNI’s 3dDespike algorithm, subjected to nuisance covariance
regression (Friston 24 motion parameters, WM, CSF), linear detrended, and band-pass
filtered (0.01 - 0.10 Hz) to isolate low frequency fluctuations that characterize resting-
state BOLD signals (Damoiseaux et al., 2006).

Experimental Design and Statistical Analysis

The current study examined the relationship between bold variability and age
using a voxel-wise within-subjects measure called mean square successive difference
(MSSD). MSSD was calculated on a voxel-wise basis for all subjects using custom
Matlab scripts. For more details, see the methods section, “BOLD Signal Variability”.

The voxel-wise relationship between MSSD and age was tested using an ordinary
least squares (OLS) regression model in FSL using a repeated measures design with
linear age, quadratic age as regressors of interest, and handedness, FD, IQ as nuisance
regressors. In order to account for multiple voxel-wise comparisons, spatial maps from
the OLS analysis were subjected to a voxel-wise threshold of p < 0.002 (uncorrected) and
a cluster-wise threshold of p < 0.5 (corrected using Gaussian Random Field Theory;
GRF). For more details on the OLS analysis, see the methods section, “BOLD Signal
Variability”.

Post-hoc testing of significant cluster corrected effects using a linear regression
analysis in SPSS 24 was conducted in order to further examine linear and quadratic
effects identified from the OLS analysis. This was done to ensure that significant effects
identified from the voxel-wise analysis remained significant when averaging MSSD

across a number of voxels, and to account for possible influences of gray matter

10
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probability and gender. For more details, see the methods section, “Post-hoc Analysis of
Gray Matter Probability, Gender, Linear, and Quadratic Effects”.

Additional post-hoc testing consisted of examining the relationship between
MSSD values for only the 177 subjects present in both TR groups. Spearman’s rank order
correlations were conducted in SPSS 24 on the effects examined in the previously
described post-hoc regression analyses. For more details, see the results section, “Linear
relationship between MSSD values for subjects in both TR groups”.
BOLD Signal Variability Analysis

Preprocessed time series were converted to z statistics (zero mean, unit standard
deviation) before calculating MSSD scores for each voxel (Von Neumann et al., 1941).
MSSD was utilized in the current study because of the temporal continuity afforded by
resting state data and because it avoids the influence of auto-correlation that is
exacerbated by multi-band EPI acquisition parameters (Smith et al., 2013), on measures
such as the standard deviation (Arbabshirani et al., 2014). MSSD was calculated by
subtracting time point t from time point t + 1, squaring the result, then averaging all

resulting values acquired from the entire voxel time course.

s 2 (e — x)?

8 n—1

Associations between MSSD and age were calculated in FSL using ordinary least
squares regression (OLS). Age regressors included the linear (mean centered) and
quadratic age (squared mean centered age). Full-scale IQ, EHQ handedness scores, and
FD were included as nuisance regressors. The resulting t-maps were first examined using

a liberal voxel-wise correction (uncorrected p < 0.40) without cluster size correction.

11
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These more general results demonstrated the reliability of the effects across the two
different acquisition times (see Figure 1).

T-maps were then examined by employing stricter voxel wise (uncorrected at p <
0.002 for linear effects and at p < 0.05 for quadratic effects; see results for additional
details) and cluster size (corrected at p < 0.05) correction to identify results less
susceptible to type 1 errors (Eklund et al., 2016). Spatial maps identifying brain arcas
with significant overlapping effects across both TR groups were produced to further
isolate replicable effects. Overlapping effects across TR groups were identified by
resampling the slow TR group results to have the same voxel resolution as the fast TR
group results (down-sampling the slow TR group cluster-corrected spatial t-maps to
3mm?*). We then overlaid the fast TR group cluster-corrected results on corresponding
cluster-corrected maps for the slow TR group to identify cluster-corrected effects present
in both TR groups. MSSD values from each TR group for overlapping significant cluster
corrected voxels were then extracted and converted to z statistics to create scatterplots for
visualization of lifespan trajectories.
Post-hoc Analysis of Gray Matter Probability, Gender, Linear, and Quadratic Effects

Three regression analyses were run in order to rule out the influence of gray
matter probability (GMP) and gender and also to further explore linear and quadratic
voxel-wise effects. The primary goal of these follow-up tests was to account for
differences in gray matter and gender, and to confirm that voxel-wise effects persisted
when averaging MSSD across a group of voxels. Following previous work accounting for
changes in gray matter (Damoiseaux et al., 2008), we used ROIs of the overlapping

cluster-corrected results from the previous voxel-wise analysis to calculate individual

12
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subject estimates of GMP. GMP and gender were then used in subsequent analyses as
nuisance regressors. GMP was assessed by segmenting the T1 structural images into gray
matter, white matter, and cerebral spinal fluid probability maps in SPM and taking the
mean GMP in the ROI. A secondary goal of further exploring linear and quadratic effects
was also carried out through these three post-hoc regression analyses.

Three post-hoc regression models were run. The first post-hoc regression model
tested whether the MSSD linear effects indeed extend across the lifespan without the
quadratic predictor in the model, and to confirm that these linear effects persisted when
accounting for GMP and gender. As with previous regression tests, this model utilized
linear age (mean centered) as a regressor of interest along with handedness, 1Q, FD,
GMP, and gender as nuisance covariates. This model was run on ROIs representing
significant group-overlapping linear effects from the cluster-corrected voxel-wise
analysis.

A second post-hoc regression model was used to test whether a quadratic effect
better explained the MSSD trajectory than the linear effect from the first regression
model. This model utilized linear age (mean centered) and quadratic age (squared mean
centered age) as regressors of interest along with handedness, 1Q, FD, GMP, and gender
as nuisance covariates. As with the first model, this model was run solely on ROIs
representing significant group-overlapping linear effects from the cluster-corrected voxel-
wise analysis. We determined that a quadratic model was a better fit compared to the
linear model if the quadratic term was statistically significant (p < 0.05).

Finally, a third post-hoc regression model was used to confirm that voxel-wise

quadratic effects persisted when controlling for GMP and gender. This model utilized

13
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linear age (mean centered) and quadratic age (squared mean centered age) as regressors
of interest along with handedness, 1Q, FD, GMP, and gender as nuisance covariates. This
model was run on ROIs representing group-overlapping quadratic effects from the voxel-
wise analysis.

Results
Associations between MSSD and Linear Effects of Age

The average whole-brain MSSD value across all subjects was 0.0451 (SD =
0.004, range across subjects: 0.0336 — 0.0561) for the fast TR group and 0.2063 (SD =
0.0175, range across subjects: 0.1625 — 0.2485) for the slow TR group indicating
significantly smaller MSSD for the fast TR group (#(376) = 124.17, p = 2.7035 x 10°"").
This mirrored differences in head motion metrics across TR groups and was also
expected, as there should be less difference between the BOLD signal for consecutive
volumes when they are acquired closer together in time. Thus, any effects replicating
across both TR groups should not be due to the absolute size of MSSD, but rather are due
to the contrasts of interest.

Previous research has demonstrated that MSSD and standard deviation (SD) are
strongly correlated (#’s > 0.97) within the context of a task-based fMRI study (Garrett et
al., 2011). In order to examine how MSSD and SD are related in the context of a resting-
state fMRI study, voxel-wise estimates of SD were calculated on non-normalized time-
courses for all gray-matter voxels. Average correlations between MSSD and SD for gray
matter voxels across the whole-brain were then calculated across all subjects in each TR

group. Strong positive correlations were present for both the fast (mean » = 0.73, SD =

14
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0.037) and slow (mean » = 0.72, SD = 0.046) TR groups replicating previous findings of
strong correspondence between MSSD and SD.

General linear age MSSD effects revealed both increases and decreases in
functionally distinct cortical and subcortical brain areas. Spatial maps for each TR group
with a liberal voxel-wise criteria (p < 0.40) and no cluster size correction (Figure 2)
demonstrate that MSSD increases linearly across the lifespan in salience network (SN)
nodes (bilateral anterior insula) and bilateral ventral temporal cortices. Linear decreases
in MSSD as a function of age appear in the thalamus and basal ganglia and brain
networks representing visual, sensorimotor, central executive network (CEN), and nodes
of the default mode network (DMN). These results demonstrate that an intrinsic brain
pattern of BOLD variability related to maturation across the lifespan is characterized by
an increase in SN and ventral temporal cortex (VTC) variability and a decrease in
variability for most every other brain area including nodes in the CEN, and DMN along
with brain areas in visual, sensorimotor, and subcortical areas. These general results were
replicated across both TRs, providing evidence for the robustness of the observed effects.

Spatial maps (Figure 3) and scatter plots (Figure 4) are presented from brain
regions where there was a significant cluster-corrected association with age in both TR
groups. This included a linear MSSD increase across the lifespan in the right dorsal
anterior insula (dAI) and left VTC. This also included a linear MSSD decrease across the
lifespan in bilateral visual and sensorimotor networks, as well as bilateral thalamus and
basal ganglia regions.

Associations between MSSD and Nonlinear Effects of Age
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There were no quadratic effects of age that survived cluster correction at the
stringent criterion of voxel-wise (p < 0.002, Fast TR group df = 189, Slow TR group df =
185) and cluster wise (p < 0.05). There were two quadratic effects that survived a more
liberal correction of voxel-wise (p < 0.05 and cluster wise (p < 0.05). Although these
effects in isolation are more susceptible to Type I errors (Eklund et al., 2016), the overlap
across two different TR acquisitions provides some evidence for the reliability of these
effects. There was a positive quadratic effect for the thalamus in the slow TR group and
a negative quadratic effect for the right lateral ventral temporal cortex in both TR groups.
The positive quadratic cluster corrected effect in the slow TR group did overlap with a
positive quadratic effect in the fast TR group that was not cluster corrected (voxel-wise p
< 0.05; Figure 5). This demonstrates that an area of the thalamus had high MSSD in
young and old age but low MSSD in middle age. The positive quadratic overlapping TR
group effect was in a more dorsal-anterior portion of the thalamus compared to the linear
MSSD decrease effect that was in a more ventral posterior portion of the thalamus. The
negative quadratic effect in both groups was in the right lateral ventral temporal cortex
(Figure 5). This demonstrates that an area in the right ventral temporal cortex had low
MSSD in young and old age but high MSSD in middle age.

Post-hoc Analysis of Gray Matter Probability, Gender, Linear, and Quadratic Effects

To examine the specificity of the voxel-wise effects, we performed three follow-
up post-hoc tests to examine whether these relationships could be accounted for by age-
related changes in GMP or gender and to further explore linear and quadratic effects. The
first post-hoc regression model used linear age, handedness, 1Q, FD, gray matter

probability, and gender. This test produced significant post-hoc effects for linear age for
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all overlapping ROIs across both TRs except for the sensorimotor ROI in the slow TR
group, which produced a marginally significant effect (Table 1). This demonstrates that
significant linear effects persisted across the lifespan after accounting for gray matter
probability and gender in the absence of a quadratic regressor.

The second post-hoc regression model added quadratic age as a factor of interest
back into to the first post-hoc regression model and produced a significant positive
quadratic effect for the ventral temporal cortex in the slow TR group, a marginally
significant positive quadratic effect of the basal ganglia in the fast TR group, a
marginally significant positive quadratic effect for the sensorimotor ROI in the fast TR
group, and marginally significant positive quadratic effects for the thalamus in both the
fast TR and slow TR groups (Table 1). All other quadratic effects were not significant.
This confirms that a model including a quadratic factor outperforms a model including
the linear factor only for most linear effects (except for the VTC in the slow TR group)
after accounting for gray matter and gender. This also demonstrates a U-shaped influence
on the sensorimotor ROI for the fast TR group, and U-shaped influences on the thalamus
for both TR groups.

The third post-hoc regression model showed that the positive voxel-wise
quadratic effect in the thalamus remained significant in both the fast TR group and the
slow TR group (Table 1). One outlier from the fast TR group and one outlier from the
slow TR group were removed for the quadratic thalamus effect (SD > 4). The negative
voxel-wise quadratic effect in the right ventral temporal cortex also remained significant
in both the fast TR group and slow TR group. This demonstrates that voxel-wise

quadratic effects still persist after accounting for gray matter probability and gender.
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Linear relationship between MSSD values for subjects in both TR groups

In order to determine the consistency of MSSD values for subjects present in both
TR groups, Spearman’s rank-order correlations were calculated for MSSD values from
the 177 subjects common to both TR groups for all post-hoc analyses. Significant
positive correlations were present for all effects tested in a post-hoc manner (left VTC
linear increase: rho(175) = 0.324, p = 0.000011; right dorsal anterior insula linear
increase: rho(175) = 0.473, p=2.89 x 10™"'; sensorimotor linear decrease: rho(175) =
0.638, p = 1.39 x 10”*"; visual linear decrease: rho(175) = 0.694, p = 8.41 x 107;
thalamus linear decrease: rho(175) = 0.601, p = 9.40 x 10™"; basal ganglia linear
decrease: rho(175) = 0.462, p = 9.67 x 10™""; thalamus positive quadratic for 175 subjects
(2 outliers removed for SD > 4): rho(173) = 0.492, p = 9.40 x 10™'; right VTC negative
quadratic: rho(175) = 0.484, p = 4.74 x 10'?). This demonstrates that MSSD values were
similar in both the fast and slow TR analyses for each subject that was present in both TR
groups.
Age-FD and Age-Sample Size Relationships

One possible concern with the current study is related to how the association
between age and FD may impact measures of MSSD across the lifespan. In order to
further investigate the relationship between age and head motion (e.g., FD), linear
regression models were run using age (mean centered) and age squared (squared mean
center age) as regressors in a step-wise model. In the fast TR group, we observed a
positive quadratic relationship between age and FD (F(2,188) = 3.99, p = 0.02, R* =
0.04; Binw=0.092, p = 0.209; B qusrasc = 0.164, p = 0.025) while the slow TR group we

observerd a positive linear relationship between age and FD (F(1, 185)=25.22,p =
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model for the slow TR group failed to produce a significant change in the F statistic (F ..
=0.756). Scatterplots visualizing the age-FD relationship for both TR groups can be
found at the bottom of Figure 1. Despite the significant relationships between age and
FD, the voxel-wise and post-hoc regression analyses used FD as a nuisance regressor that
accounted for such relationships while still demonstrating significant effects across both
analyses.

Another possible concern related to the current study could be that there was an
unequal age distribution of participants: this dataset includes more subjects in early and
old age compared with middle age. In order to investigate if this unequal distribution led
to over-fitting for young and older individuals compared with middle age individuals, we
examined whether there was a relationship between age and the unstandardized residuals
for each post-hoc regression analysis. Visual inspection of these scatterplots
demonstrated that residuals were evenly distributed across the entire age range,
suggesting that analysis did not systematically over-fit the regression line at young and
old age.

Discussion

Brain signal variability has been linked to optimal neural function (Garrett et al.,
2013) and has been hypothesized to help facilitate shifts between integrative and
segregative brain networks (Tognoli and Kelso, 2014). Previous studies have focused on
identifying differences in BOLD variability between younger and older adults within the
context of task-based fMRI paradigms (Garrett et al., 2010, 2011, 2012). The current

study examines resting-state BOLD variability across the lifespan for the first time. We
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find linear and quadratic changes in lifespan BOLD variability trajectories in distinct
brain areas similar to lifespan changes in resting-state functional connectivity (Betzel et
al., 2014) and task-related univariate activity (Kennedy et al., 2015). The current study
also complements research demonstrating developmental maturation of structural brain
properties such as total cerebral volume, and white/gray matter maturation (Giedd et al.,
1999).

Overall, we find that variability increases linearly in SN nodes (anterior insula)
and the VTC across the lifespan. In contrast, brain signal variability decreases across the
lifespan in most every other brain area including subcortical, visual, sensorimotor, default
mode, and central executive regions. Cluster corrected results across two TRs
demonstrated BOLD signal variability linearly increased across age in the right dAI and
left VTC, whereas linear decreases were localized bilaterally in visual, sensorimotor,
thalamic, and basal ganglia areas. Lastly, we demonstrate preliminary support for a
positive quadratic thalamus effect that was spatially distinct from the linear decrease
thalamus effect, and a negative right VTC quadratic effect.

Brain Variability across the Lifespan

The current results align with research demonstrating that BOLD variability
mostly decreases in old age; less brain regions show increased variability with old age
(Garrett et al., 2010, 2011). However, the current results do not align with previous
evidence for a general cortical-subcortical dichotomy, where subcortical areas increase in
variability across age compared with cortical areas (Garrett et al., 2013). Instead, the
current study found different MSSD trajectories based on functional systems (e.g., SN vs.

the rest of the brain) rather than a subcortical-cortical dichotomy. These data also conflict
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with previous results showing both increases and decreases in BOLD variability across
age in frontal, temporal, and parietal areas (Garrett et al., 2010; Garrett et al., 2013). The
current study also conflicts with previous EEG results (Mclntosh et al., 2008) and BOLD
variability studies (Garrett et al., 2011) that led researchers to propose an inverted U-
shaped trajectory where brain variability is low in children and older adults, but high in
middle-age (Garrett et al., 2013).

One explanation for the divergent findings is that we used resting state data,
whereas previous studies focused on fixation and task-periods within the context of task
performance. Previous research indicates that completing task-based fMRI affects resting
state BOLD fMRI (Northoff et al., 2010). Thus, preceding task trials in task-based fMRI
may affect variability analyzed during fixation periods. Furthermore, it is typical to
isolate low frequency fluctuations in resting state data through bandpass filtering (0.01 —
0.10 Hz), something typically not done in task-based fMRI BOLD variability analyses.
Finally, the current study used multi-band acquisition data whereas previous studies did
not. Additional research should explore how interspersed task blocks affect BOLD
variability during fixation periods compared to rest, how BOLD variability may differ
when isolating specific frequency bands, and the influence of multi-band acquisition
parameters on BOLD variability.

Functional Connectivity across the Lifespan

Two previous studies using the NKI-database (7-85 years old, TR = 2.5)
demonstrate that modularity (how well major networks are partitioned into smaller
integrative and segregative communities [e.g., SN, DMN]) generally shows a linear

decrease across the lifespan, indicating reduced functional sub-network autonomy (Betzel
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et al., 2014; Cao et al., 2014). Betzel et al., (2014) also demonstrated general within-
network node functional connectivity decreases alongside general between-network node
functional connectivity increases for the DMN, CEN, visual, and sensorimotor networks.
In the current study, general decreases in MSSD across the lifespan for most networks
(except the SN) may be related to decreased modularity as increased variability is thought
to enhance functional specificity by facilitating flexibly switching between integrative
and segregative states (Tognoli and Kelso, 2014).

Additionally, Betzel et al. (2014) found that salience/ventral attention network
nodes (including the right dAI) demonstrated positive quadratic trajectories for within-
network node comparisons. They also found increased lifespan between-node
connectivity involving the dorsal attention network, DMN, and CEN. Thus, the dAI
demonstrated functional connections in different directions from the general decreased
connectivity found between most other brain areas. Cao et al. (2014) conducted ROI-to-
whole-brain functional connectivity analyses and demonstrated linear decreases of
whole-brain functional connectivity metrics for nodes within salience (including the right
dAl), default, attention, visual, and subcortical regions; positive quadratic effects were
found for the parahippocampus and thalamus while negative quadratic effects were found
in frontal, temporal, and parietal areas.

The current results demonstrating differential variability patterns in the right dAI
compared with other brain areas are in accord with Betzel et al., where the right dAI
showed differential patterns of functional connectivity across the lifespan compared with
the rest of the cortex. The positive thalamic quadratic effect and the negative quadratic

effect for the VTC in the current study align with Cao et al., who found a positive
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thalamic quadratic effect and negative temporal quadratic effect for functional
connectivity. Other work indicates that dorsal-anterior portions of the thalamus
strengthen their functional connections to frontal areas while ventral-posterior portions of
the thalamus weaken their functional connections to temporal areas from childhood to
adulthood (Fair et al., 2010). These dissociations in thalamic connectivity mirror the
spatially distinct thalamic variability results in the current study where a dorsal-anterior
thalamic area demonstrates a positive quadratic effect and a ventral-posterior thalamic
area demonstrates a negative linear effect. These studies, in conjunction with the current
study, suggest that the right dAI, thalamus, and temporal cortex present with unique types
of variability and functional connectivity lifespan trajectories compared to other brain
areas. Future work is needed to explore the relationship between BOLD variability and
functional connectivity across the lifespan.
Behavioral Relevance of MSSD Lifespan Trajectories

On a systems level, different brain networks interacting with varying degrees of
variability may reflect the inverted u-curve trajectories (Figure 6) for various behavioral
measures (Cepeda et al., 2001; Hommel et al., 2004; Li et al., 2004; De Luca and
Leventer, 2008; Tran and Formann, 2008). The right dAI within the SN in particular has
been identified as a “hub” that participates in a myriad of cognitive processes including
network switching, salience detection (Menon and Uddin, 2010), and integrating sensory
networks (Nomi et al., 2016). Thus, increased variability in the right dAT is notable
because of its dynamic interaction with almost every brain system and its involvement in
nearly every cognitive process (Uddin, 2015). Speculatively, it is possible that large

differences in variability between SN nodes and other brain areas/systems could produce
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the sub-optimal behavioral performance seen in early childhood and old age. In middle-
age, variability between different brain areas/systems may reach more of an equilibrium,
resulting in optimal behavioral performance - an idea consistent with theories proposing a
balance between excitation and inhibitory neuronal processes facilitates optimal brain
function (Shew et al., 2011). Additional studies that characterize the relationship between
resting-state and task-based fMRI BOLD variability across the lifespan are crucial for
understanding the behavioral significance of the current findings.
Physiological Influences on the BOLD Signal across the Lifespan

A concern in lifespan neuroimaging studies is neuro-vascular coupling — i.e., how
neural activity interacts with brain vasculature across age to artificially influence the
BOLD signal (D'Esposito et al., 2003). Although it is difficult to completely rule out
physiological confounds, previous work suggests that vascular changes are not
responsible for the BOLD variability trajectories observed in the current study. First,
previous developmental BOLD variability research argued that global uni-directional
vascular-coupling age effects cannot explain multi-directional BOLD variability
trajectories (Garrett et al., 2010). Second, while early studies demonstrated an influence
of vascular coupling on BOLD signal activity in aging research (D'Esposito et al., 1999),
recent studies claim that these effects were driven by the inclusion of voxels biased
towards younger subjects’ task-activation in statistical analyses (Aizenstein et al., 2004)
and by using task-designs that produce attentional and motor differences in older
individuals compared with younger individuals (Grinband et al., 2017). Because the
current study found multi-directional trajectories of BOLD variability (increases,

decreases, and quadratic effects), avoided analyzing voxels biased towards any age range
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by focusing analyses on only voxels with significant age trajectories, and used resting-
state fMRI data that were not influenced by task design, vascular coupling influences
across age should be minimized.
Summary

The current study identified general lifespan trajectories of resting-state BOLD
variability that complements previous research showing structural and functional lifespan
changes within the brain. We demonstrate that variability in SN nodes increase linearly
across the lifespan, whereas variability from most other large-scale networks decreases
linearly over the lifespan. We also demonstrate positive quadratic thalamic effect and a
negative quadratic right VTC effect. These findings add to a growing literature

demonstrating the contributions of neural variability to flexible cognition.
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Table 1: Regression results from three post-hoc models. Model 1 examined if linear
effects persisted across the lifespan in the absence of a quadratic regressor when
averaging MSSD across a group of voxels and accounting for gray matter probability and
gender. Model 2 ruled out that a quadratic effect better explained the linear effect from
model 1 when averaging MSSD across a group of voxels and accounting for gray matter
probability and gender. Model 3 examined if quadratic effects persisted across the
lifespan when averaging MSSD across a group of voxels and accounting for gray matter
probability and gender. VTC = ventral temporal cortex. Beta coefficients are reported in
standardized form.
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Figure 1: Age (top row) and gender distribution (middle row) in the fast and slow TR
groups. Scatterplots for each TR group that represent the relationship between age and
framewise displacement are pictured in the bottom row.

Figure 2: Liberal voxel-wise corrected (p < 0.40 uncorrected) ~-maps without cluster
correction. Blue represents the fast TR group while red represents the slow TR group.
General linear MSSD increases can be seen in salience network nodes such as the
bilateral anterior insula and anterior cingulate cortex, and also in the ventral temporal
cortex. General linear MSSD decreases can be seen in subcortical, visual, sensorimotor,
default mode (posterior cingulate and medial pre-frontal cortex), and central executive
(supramarginal gyrus and dorsal-lateral pre-frontal cortex) brain areas. Colorbars
represent t-values.

Figure 3: T-maps showing brain areas surviving voxel-wise (p < 0.002 uncorrected) and
cluster size (p < 0.05 corrected) associations between MSSD and age. Red = slow TR
group (1.4 secs), Blue = fast TR group (0.645 secs), Violet = voxel overlap between fast
and slow TR groups, neuroscientific convention. Significant cluster-corrected voxels
overlapping across both TR groups demonstrate linear increases in the right anterior
cingulate and left ventral temporal cortex and linear decreases in thalamus, sensorimotor
cortex, and in the primary visual cortex. Brain slices are the same as those in Figure 2.

Figure 4: Scatter plots depicting linear MSSD effects across the lifespan. ROIs were
taken from areas of cluster-corrected TR group overlap (violet colors) in Figure 3. Blue
circles = male, red circles = female.

Figure 5: Top: Spatially distinct voxels showing linear decrease and positive quadratic
effects in the thalamus. Blue = voxels overlapping across both TR groups showing a
linear MSSD decrease. Red = voxels overlapping across both TR groups for a positive
quadratic MSSD effect. Scatter plots show MSSD values for the fast TR group effect
(voxel-wise at p < 0.05) and slow TR group effect (voxel-wise at p < 0.05 and cluster
corrected at p < 0.05). Bottom: Negative quadratic effect overlap for both TR groups
with scatter plots showing MSSD effects (voxel-wise at p < 0.05 and cluster corrected at
p <0.05 for both TR groups). Blue circles = male, red circles = female.

Figure 6: Speculative model describing the proposed relationship between linear
increases and decreases in BOLD variability across the lifespan and the inverted U-
shaped curve of lifespan behavioral performance characterizing many behavioral tasks.
The yellow arrow indicates linear increases in BOLD variability for salience network
nodes, while the blue arrow indicates linear decreases in BOLD variability for central
executive (CEN), default mode (DMN), sensorimotor (SM), and visual areas. In early-
and old-age, large differences in variability between brain networks leads to sub-optimal
behavioral performance. The red arrows indicate that optimal behavioral performance
may come from the intrinsic balance between high and low variability between different
brain networks in middle-age.
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Positive Quadratic vs. Linear Decrease: Thalamus
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Table 1: Results from post-hoc regression analyses.

# Fast TR group (0.645 seconds) Slow TR group (1.4 seconds)

- — 2 B tincar B quadratic 2 B tincar B quadratic
Y R @nF (p value) (p value) R @k (p value) (p value)
O Left VIC | M1 0.188 (6, 184) 7.09 0379 - Ml 0202 (6, 180)7.61 0.349 -

Linear (4.8548 x 107 (0.00001)
w Increase
M2 0.195 (7,183)632 0.394 -0.090 M2 0210 (7.179)6.81 0.361 -0.097
3 (2.5402x 107 (0.215) (0.000005) (0.178)
C Right Insula | M1~ 0.158 (6, 184)5.78 0.283 - Ml 0.122 (6, 180)4.17 0.271
Linear (0.0006) (0.0028) -
Increase
M2 0.159 (7, 183)4.94 0.288 -0.022 M2 0150 (7,179)4.51 0.310 0.183
: (0.0007) (0.771) (0.00068) (0.016)
Sensorimotor | M1 0.175 (6, 184) 6.49 -0.327 i Ml 0.132 (6, 180)4.56 -0.210 -
Linear (0.004) (0.0776)
U Decrease
M2 0.188  (7,183)6.06 -0.368 0.126 M2 0132 (7,179)3.89 0.214 0.012
q) (0.0015) (0.084) (0.0779) (0.871)

) Visual Linear | M1~ 0211 (6, 184) 9.49 0424 - Ml 0171  (6,180)6.21 -0.383 -

Q Decrease (4.1261 x 107) (0.00002)
M2 0210 (7,183)823 -0.434 0.061 M2 0176  (7,179)545 -0.393 0.071
q) (3.005 x 107) (0.382) (0.000015) (0.333)
c ) Thalamus | M1 0.151 (6, 184) 6.61 -0.428 - Ml 0.103 (6, 180)3.44 -0.300 -
Linear (3.2781 x 107 (0.00105)
o Decrease
M2 0162 (7,183)623 0424 0.139 M2 0119 (7,179)3.44 ((-)0(5%371) (géiz)
< (3.5265 x 107 (0.065) : :
Basla Ml 0.110 (6, 184)4.90 -0.409 - Ml 0.084 (6,180)2.75 0.216 )
Y Ganglia (0.0004) (0.0117)
Linear
o Decrease | M2 0.120  (7,183)4.71 -0.484 0.140 M2 0.085 (7,179)2.37 -0.223 0.037
m (0.0008) (0.075) (0.0105) (0.639)
O T;‘gi‘:}’fl‘zs M3 0.097 (6,183)3.26 0.264 0.206 M3 0102 (6,179)3.38 -0.240 0.205
X Quadratic (0.00054) (0.011) (0.003) (0.008)
Rﬁi};x;c M3 0.184  (7,183)5.89 -0.202 -0.169 M3 0111  (7,179)3.18 -0.095 0.252
q) Quadratic (0.030) (0.021) (0.342) (0.0011)




