
Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading
process.

Copyright © 2018 Lueckmann et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which
permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Research Articles: Systems/Circuits

Can serial dependencies in choices and neural activity explain choice
probabilities?

Jan-Matthis Lueckmann1, Jakob H. Macke1,2 and Hendrikje Nienborg3

1Research center caesar, An associate of the Max-Planck Society, Ludwig-Erhard-Allee 253175 Bonn, Germany
2Centre for Cognitive Science, Technische Universität Darmstadt, Alexanderstr. 10, 64289 Darmstadt
3Werner Reichardt Centre for Integrative Neuroscience, Otfried-Müller-Str. 25, 72076 Tübingen, Germany

DOI: 10.1523/JNEUROSCI.2225-17.2018

Received: 6 August 2017

Revised: 19 December 2017

Accepted: 6 January 2018

Published: 12 February 2018

Author contributions: J.-M.L., J.M., and H.N. designed research; J.-M.L., J.M., and H.N. analyzed data; J.-
M.L., J.M., and H.N. wrote the paper.

Conflict of Interest: The authors declare no competing financial interests.

This work was supported by the German Federal Ministry of Education and Research (BMBF; FKZ:
01GQ1002, Bernstein Center Tuebingen, JHM), by a grant of the Deutsche Forschungsgemeinschaft (SFB
CRC 1233 Robust Vision, University of Tuebingen) to JHM and HN, the caesar foundation (JHM), and by
a Starting Independent Researcher grant to HN from the European Research Council (project acronym:
NEUROOPTOGEN).

Correspondence should be addressed to corresponding author: hendrikje.nienborg@cin.uni-tuebingen.de

Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2225-17.2018

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted
version of this article is published.



 

1 
 

Can serial dependencies in choices and neural activity explain choice probabilities? 1 

 2 

Jan-Matthis Lueckmann1, Jakob H. Macke1,2*, Hendrikje Nienborg3*+ 3 

 4 

1) research center caesar 5 
An associate of the Max-Planck Society 6 
Ludwig-Erhard-Allee 2 7 
53175 Bonn, Germany  8 

2) Centre for Cognitive Science 9 
Technische Universität Darmstadt 10 
Alexanderstr. 10 11 
64289 Darmstadt 12 

3) Werner Reichardt Centre for Integrative Neuroscience 13 
 Otfried-Müller-Str. 25 14 
 72076 Tübingen, Germany 15 

 16 
 17 

 18 
*equal contribution 19 
+corresponding author: hendrikje.nienborg@cin.uni-tuebingen.de  20 



 

2 
 

Abstract 21 

During perceptual decisions the activity of sensory neurons co-varies with choice, a co-variation often 22 
quantified as “choice-probability”. Moreover, choices are influenced by a subject’s previous choice 23 
(serial dependence) and neuronal activity often shows temporal correlations on long (seconds) 24 
timescales. Here, we test whether these findings are linked. Using generalized linear models we analyze 25 
simultaneous measurements of behavior and V2 neural activity in macaques performing a visual 26 
discrimination task. Both, decisions and spiking activity show substantial temporal correlations and 27 
cross-correlations but seem to reflect two mostly separate processes. Indeed, removing history effects 28 
using semi-partial correlation analysis leaves choice probabilities largely unchanged. The serial 29 
dependencies in choices and neural activity therefore cannot explain the observed choice probability. 30 
Rather, serial dependencies in choices and spiking activity reflect two predominantly separate but 31 
parallel processes, which are coupled on each trial by co-variations between choices and activity. These 32 
findings provide important constraints for computational models of perceptual decision-making that 33 
include feedback signals.  34 

 35 

Significance Statement 36 

Correlations, unexplained by the sensory input, between the activity of sensory neurons and an animal’s 37 
perceptual choice (“choice probabilities”) have received attention from both a systems and 38 
computational neuroscience perspective. Conversely, while temporal correlations for both spiking 39 
activity (“non-stationarities”) and for a subject’s choices in perceptual tasks (“serial dependencies”) have 40 
long been established, they have typically been ignored when measuring choice probabilities. Some 41 
accounts of choice probabilities incorporating feedback predict that these observations are linked. Here, 42 
we explore the extent to which this is the case. We find that, contrasting with these predictions, choice 43 
probabilities are largely independent of serial dependencies, which adds new constraints to accounts of 44 
choice probabilities that include feedback.   45 

Introduction 46 
During perceptual decisions humans and animals rely on the sensory evidence but also leverage the 47 
behavioral context, including their previous decisions (Akaishi et al., 2014; Busse et al., 2011; Fischer and 48 
Whitney, 2014; Frund et al., 2014; Gold et al., 2008; Seidemann, 1998; Senders and Sowards, 1952; 49 
Verplanck et al., 1952; Abrahamyan et al., 2016; Pape and Siegel, 2016). Such serial dependence of a 50 
subject’s choices persists with extensive behavioral training (e.g. Frund et al., 2014; Gold et al., 2008; 51 
Seidemann, 1998), is tuned to the sensory context (Fischer and Whitney, 2014), and is adaptable 52 
(Abrahamyan et al., 2016). It may therefore reflect the effect of prior knowledge of statistical 53 
regularities in the environment on the perceptual inference process (St John-Saaltink et al., 2016; 54 
Helmholtz, 1867; Gregory, 1980; Lee and Mumford, 2003; Yuille and Kersten, 2006).  55 

Conversely, spiking activity of sensory neurons shows fluctuations on slow timescales up to several 56 
seconds. Such slow fluctuations of spiking activity are observed under anesthesia (e.g. Ecker et al., 2014; 57 
Goris et al., 2014; Tolhurst et al., 1983; Tomko and Crapper, 1974), in awake animals (e,g. Ecker et al., 58 
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2014), and during task performance (e.g. Bair et al., 2001; Rabinowitz et al., 2015; Engel et al., 2016). 59 
Rather than noise, these slow fluctuations are increasingly interpreted to also reflect “meaningful 60 
intrinsic signals” (Rabinowitz et al., 2015), and can be linked to an animal’s cognitive state (Rabinowitz et 61 
al., 2015; Engel et al., 2016). It is therefore possible that they, at least partially, represent a signature of 62 
the serial dependencies in behavior. Consider, for example, perceptual decision making viewed as 63 
probabilistic inference involving task-related feedback to sensory neurons (Haefner et al., 2016). If serial 64 
dependencies in behavior reflect prior knowledge in the perceptual inference process (Kok et al., 2014; 65 
St John-Saaltink et al., 2016), such a framework predicts corresponding temporal correlations in the 66 
neural activity. 67 
 68 
Moreover, this view also has important implications for the observation that the activity of sensory 69 
neurons shows correlations with perceptual decisions that are not explained by the sensory stimulus 70 
(Logothetis and Schall, 1989; Britten et al., 1996).  These trial-by-trial correlations between the activity 71 
of sensory neurons and perceptual choices in discrimination tasks are often quantified using ‘choice-72 
probabilities’ (CPs) (Britten et al., 1996; Dodd et al., 2001; Liu and Newsome, 2005; Nienborg and 73 
Cumming, 2014; 2006; Shiozaki et al., 2012; Uka and DeAngelis, 2004).  CPs have been used to gain 74 
insights into decoding strategies (Haefner et al., 2013; Pitkow et al., 2015; Clery et al., 2017), and can 75 
result from both feedforward and feedback mechanisms (Nienborg et al., 2012; Cumming and Nienborg, 76 
2016). Importantly, the decision-related feedback mechanisms that have been invoked to contribute to 77 
CPs (Wimmer et al., 2015; Engel et al., 2015; Haefner et al., 2016; Nienborg and Roelfsema, 2015) 78 
originate directly from the decision variable that determines the decision. Since the decision variable, 79 
which might be implemented in a higher-order decision circuit (Wimmer et al., 2015), is the only 80 
determinant of the decision, the influence of past decisions needs to be reflected at this level. Similarly, 81 
if the sensory neurons receive feedback from this decision variable, the influence of past decisions that 82 
affects the current decision will be reflected at the level of these sensory neurons. In these models this 83 
therefore predicts that in the presence of serial dependencies of behavior, a component of CPs is 84 
explained by past decisions.  85 

Here, we test this prediction in single unit recordings from macaque visual area V2 while two animals 86 
performed a disparity discrimination task. First, we explore the effect of choice history on behavior and 87 
on neural activity using generalized linear models (GLM). Consistent with previous studies (Akaishi et al., 88 
2014; Busse et al., 2011; Fischer and Whitney, 2014; Frund et al., 2014; Gold et al., 2008; Seidemann, 89 
1998; Senders and Sowards, 1952; Verplanck et al., 1952; Abrahamyan et al., 2016; Pape and Siegel, 90 
2016) we find substantial predictive effects of choice history on the animals’ choices, with choice-history 91 
having a higher CP than single neurons in V2. We also identify strong temporal correlations in spiking 92 
activity, as well as a modest predictive effect of choice history on neural spiking activity. We then 93 
investigate which covariates of the previous trial are statistically significant predictors of choices and 94 
spiking in the next trial (Fig. 1a). Finally, we use semi-partial correlation analysis to examine the role of 95 
choice history on choice probabilities. In contrast with the above prediction, we find that the serial 96 
dependencies of choices and spiking activity cannot explain choice probabilities. Rather, they reflect two 97 
largely independent parallel temporal processes. This suggests that the feedback contribution to choice 98 
probabilities is less pronounced or reflects a more complex process than previously thought. 99 
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 100 
Methods 101 
We performed novel analyses of previously published data (Nienborg and Cumming, 2009).  The details 102 
of the stimulus, and the behavioral and neurophysiological procedures have been described in detail 103 
before (Nienborg and Cumming, 2009).  Here, we briefly summarize the experimental methods. 104 
 105 
Electrophysiology:  All procedures were performed in accordance with the US Public Health Service 106 
policy on the humane care and use of laboratory animals, and all protocols were approved by the 107 
National Eye Institute Animal Care and Use Committee.  Extracellular activity from disparity-selective V2 108 
single units was recorded while two male monkeys (macaca mulatta) performed a coarse disparity 109 
discrimination task.  For each session the signal disparities (one ‘near’, one ‘far’) were tailored to the 110 
tuning preference of the simultaneously recorded neuron such that one disparity was close to the 111 
neuron’s preferred disparity and the other at a trough of the neuron’s tuning curve.   112 
 113 
Behavioral task: Once the animals acquired fixation, the stimulus was presented for a fixed duration of 114 
2sec, followed by the presentation of two choice targets 3 degrees above or below the fixation marker.  115 
If the monkeys made a saccade to the correct choice target they received a liquid reward.  116 
 117 
Visual stimuli: The stimuli were circular dynamic random dot patterns consisting of a disparity-varying 118 
center (typically 2-4 degrees in diameter) surrounded by an annulus at zero disparity (1-2 degree wide).  119 
The center disparity changed randomly on each video frame (96Hz frame rate) chosen from an evenly 120 
spaced set of disparity centered around 0 disparity, encompassing the tuning preferences of the 121 
recorded neuron.  For  ‘no-signal trials’ (randomly interleaved) all disparities were drawn from a uniform 122 
distribution of probabilities.  On other trials (‘signal’ trials) we increased the probability of occurrence 123 
(typically by 25%, 12.5% and 6%) of one disparity (the ‘signal disparity’) while for the remaining video 124 
frames the disparities were drawn from the same uniform distribution as used for the no-signal trials.   125 
For each recording session we used two signal disparities, one near disparity and one far disparity, which 126 
approximated the neuron’s preferred and null disparities.  127 
  128 
Analysis: To avoid that neural variability on no-signal trials (i.e. for which disparities occurred with equal 129 
probability) reflected systematic choice dependent stimulus differences, we corrected spike counts on 130 
no-signal trials for stimulus induced variability as described previously (Nienborg and Cumming, 2009).  131 
The analyses here were performed on the same core dataset of n=76 neurons as used in Nienborg and 132 
Cumming (2009), but restricted to trials which were immediately preceded by at least one complete 133 
trial.  This reduced the number of included trials per neuron and we required an additional inclusion 134 
criterion of at least four near and far choices each for the no-signal trials, which 75/76 neurons passed.  135 
These represent the main dataset analyzed here. In all but four sessions only one unit was recorded per 136 
session.  137 
 138 
Choice correlations: We converted choice prediction performance (analogous to choice probability, CP, 139 
computed as the area under a receiver-operating curve, cf. (Britten et al., 1996)) into choice correlations 140 
(Haefner et al., 2013; Pitkow et al., 2015).  141 
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Based on the results in (Haefner et al., 2013) we calculated choice correlations as 142 
. Pitkow et al. (Pitkow et al., 2015) used a linear approximation to  this 143 

quantity. 144 

 145 
Statistical modeling: We fit generalized linear models (GLMs) (Park et al., 2014) to predict neural spiking 146 
and behavioral decisions from experimental covariates via maximum likelihood estimation using 147 
MATLAB (The Mathworks, Inc.) to determine the weights (  for each of the covariates.  Separate fits 148 
were performed for each neuron. For predicting choices, we used a probit-GLM with lasso regularization 149 
(biasing weights towards zero). The value for the regularization hyper-parameter λ was chosen such that 150 
the cross-validated prediction performance across the population was maximized (λ=0.025). To fit 151 
single-trial spike-counts (i.e. total number of spikes in a 2sec trial) from experimental covariates, a 152 
Poisson GLM with exponential nonlinearity was used. For some of the models predicting spike counts, 153 
we included a Gaussian Process (Rabinowitz et al., 2015) to model slow fluctuations in spike counts (Park 154 
et al., 2015; Rasmussen and Williams, 2006). We used a squared exponential kernel for the Gaussian 155 
Process prior, . The value for its hyperparameter τ was chosen such that the cross-156 
validated prediction performance across the population was maximized (τ=35 trials). We did not use a 157 
sparsity penalty when predicting spike counts, since including it did not lead to an improvement in 158 
prediction performance. To ensure that estimates of choice- and spike-prediction performance were 159 
free of bias from over-fitting, we cross-validated the model-fits (Hastie et al., 2009): The models were fit 160 
to all signal trials of a session and tested only on no-signal trials.  For each session, the sign of the 161 
choices was defined by the preferred disparity of the simultaneously recorded neuron.  Choices of the 162 
preferred and null disparity of a neuron were defined as positive and zero, respectively. We typically 163 
evaluated model performance by including parameters cumulatively (see Results) to test different 164 
hypotheses. Since we cross-validated the models, including more parameters does not necessarily 165 
improve performance. In addition, lasso-regularization biases weights on non-predictive covariates to 0, 166 
which means that not all covariates contribute to the prediction.  However, we explored all 167 
permutations of co-variates to verify that there was no combination of co-variates that substantially 168 
exceeded the prediction performance of the model that was fit to all co-variates.   169 
 170 
To predict behavioral choices, we used a generalized linear classification model with a probit function as 171 
link function (Hastie et al., 2009).  This means that a weighted sum of covariates was computed and then 172 
passed through the probit function (i.e. the cumulative distribution function of a Gaussian) in order to 173 
predict the probability of a positive choice (Cn=1): For example, when predicting choice from the current 174 
stimulus Sn and the current choice spike count,   and 175 

 We quantified GLM performance on cross-validated data by fitting the model on signal 176 
trials and computing the area under the receiver-operating curve (ROC) of the output of the GLM on no-177 
signal trials.  The experimental covariates (z-scored prior to fitting) for GLM fits predicting behavior 178 
were: 179 
Cn-1 choice on the preceding trial 180 
Tn-1 target on the preceding trial 181 
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Wn-1 whether the preceding trial was rewarded (win)  182 
In stimulus (image) on the current trial 183 
Sn spike count on the current trial 184 
Sn-1 spike count on the preceding trial (the stimulus induced effect is regressed out) 185 
 186 
We refer to the covariates , Cn-1, Tn-1, Wn-1 together as choice history, abbreviated as Hn-1. We quantified 187 
the decrease in psychophysical performance attributable to choice history using the approximation 188 
derived by (Frund et al., 2014) as , where  is the choice history-induced variance of the behavior. 189 

To control for the effect of the stimulus on the previous trial, In-1, on the previous spike count, Sn-1, we 190 
regressed out the stimulus induced effect. To this end we used the residual spike count obtained after 191 
linearly regressing Sn-1 on In-1 (without a constant intercept term; including one does not affect our 192 
results significantly). 193 
 194 
The performance of the GLM-fits predicting spike counts was evaluated by computing the Pearson 195 
correlation coefficient between the predicted and measured spike counts on no-signal trials. The 196 
covariates for GLM fits predicting spike counts were: 197 
Cn choice on the current trial 198 
Cn-1 choice on the preceding trial 199 
Tn-1 target on the preceding trial 200 
Wn-1 whether the preceding trial was rewarded (win)  201 
In stimulus (image) on the current trial 202 
Sn-1 spike count on the preceding trial (the stimulus induced effect is regressed out) 203 
SF slow fluctuation across multiple trials 204 
In addition, for each unit, we fit a constant intercept term which controls the firing rate of the unit.  205 
 206 
For the Poisson-GLMs predicting time-resolved neural activity additional covariates were used.  To 207 
account for the temporal structure of firing within trials, we introduced peri-stimulus time histogram 208 
(PSTH) basis functions, as well as time-varying features for Cn, Cn-1, Tn-1, and Wn-1. To find PSTH basis 209 
functions we performed PCA on the PSTHs after correcting for response latency, across all units. Two 210 
basis functions were sufficient to describe more than 99% of the variance of the PSTHs of all units across 211 
all stimuli. These two basis functions (minus the mean PSTH of the respective unit) were included in the 212 
GLMs fit for each unit. The covariates for GLM fits predicting time-resolved spike counts were: 213 

Cn   choice on the current trial (four predictors) 214 
Cn-1  choice on the preceding trial (four predictors) 215 
Tn-1   target on the preceding trial (four predictors) 216 
Wn-1   whether the preceding trial was rewarded (four predictors) 217 
Sn-1   spike count on the preceding trial (the stimulus induced effect is regressed out) 218 
In   stimulus (image) on the current trial 219 
PSTH   PSTH basis functions (two predictors) 220 
Intercept term (per unit) 221 
 222 
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Each trial was split into 20 bins of 100ms each (which corresponds to the resolution of the PSTH basis 223 
functions included). For choice and choice history covariates we included 4 predictors each into the 224 
design matrix of the full model: Those four predictors were chosen to distinctly account for effects 225 
between 0-500ms, 500-1000ms, 1000-1500ms and 1500-2000ms of trials. The GLMs were fit on signal 226 
trials and the resulting weights used to predict the time-varying spike counts (100ms resolution) for 227 
each no-signal trial.    228 
 229 
Independent observer model: To verify that the measured behavioral strategies by the animals were not 230 
confounded by the weak inter-trial dependence in stimulus induced by pseudo-randomization, we also 231 
analyzed the responses of a model without choice history (independent observer model). We first fitted 232 
psychometric functions with a cumulative Gaussian to match the model’s performance for the stimulus 233 
on the current trial to the psychophysical performance of the animals. Next, we generated model 234 
responses based on the stimulus on the current trial assuming a binomial distribution defined by the 235 
model parameters of the psychometric functions. Therefore, in this simulation, the stimulus sequence 236 
and the association between current stimulus and response was exactly as in the actual experiment, but 237 
choices were not influenced by experimental history. When we performed our analysis on these data, it 238 
did not identify any significant or systematic components in the behavioral strategies (Fig. 4b). For this 239 
analysis, one session was excluded for having less than 4 near and 4 far choices on no signal trials due to 240 
random sampling. 241 
 242 
Semi-partial correlations: We computed correlations between the residuals of the spike counts obtained 243 
after linearly regressing Sn on Hn-1, and the animals’ choices (for no signal trials). In contrast to the above 244 
GLM-analysis, no cross-validation was used when calculating residuals for the correlation analysis. The 245 
semi-partial correlation is then defined to be the correlation between the choices and the spike-count 246 
residuals.  247 
 248 
The absolute value of a semi-partial correlation constitutes a lower bound(Cohen et al., 2003) on the 249 
absolute values of partial correlations between spike counts and choices, i.e. the correlation one would 250 
obtain after removing the effects of choice history from both. In the case of partial correlations, we 251 
decompose choices  into a predicted part  and a choice residual , such that . Similarly, for 252 
spike counts, . The absolute value of the semi-partial correlation  is a lower bound to 253 
the partial correlation , i.e., : This can be seen to hold true writing 254 
the inequality as  255 

 

 

 

 256 
since  257 
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 258 
Autoregressive models: We performed simulations to test the statistical power of our analyses. 259 
Specifically, we defined two autoregressive models that are compatible and two models that are 260 
incompatible with our conclusions. In the compatible models (CM) choice-probabilities arise from 261 
instantaneous feed-forward (CM 1) or feed-back (CM 2) correlations, while in the incompatible models 262 
(ICM) they result from the effect of preceding choices on current neural activity (ICM 1) or of preceding 263 
neural activity on current choices (ICM 2), respectively:  264 

Compatible Model 1 (CM 1) 265 

 

 

where  and  are Gaussian noise, ct and st the choice and spike count on trial t, respectively. We note 266 
that CM 1 can be easily extended to populations of (potentially) correlated neurons: In that case, the 267 
term  instead consists of the average activity of a population of neurons, and the weights and the 268 
strength of the `decision noise’  would have to be adjusted such that the model remains consistent 269 
with the observable single-neuron statistics. However, as our analyses are based on (temporal) 270 
correlations between single-neuron spiking and choices, our results hold irrespective of the population 271 
size and the size of these noise correlations. 272 

Compatible Model 2 (CM 2) 273 

 

 

Incompatible Model 1 (ICM 1) 274 

 

 

Incompatible Model 2 (ICM 2) 275 

 

 

In analogy to CM 1, ICM 2 can be easily extended such that  is replaced by a population of weakly 276 
correlated neurons, and our results are robust to population size and the size of these noise correlations 277 
within empirical ranges. 278 
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For each of the 75 units from our dataset, we fit models (i.e.  or  respectively) 279 
using empirically observed statistics: Choice probabilities, autocovariance between choices on 280 
subsequent trials, and autocovariance between spike counts on subsequent trials. Models were fit using 281 
the CMA-ES algorithm (evolution strategy utilizing covariance matrix adaptation; Hansen and 282 
Ostermeier, 2001). 283 

After finding model parameters of best fit for each unit, we simulated the same number of trials as there 284 
were no-signal trials for this in our dataset. This was done repeatedly (500 repetitions). For each 285 
repetition we then computed the semi-partial CP (regressing out spike history and choice history) and 286 
performed a one-sample t-test with the null hypothesis that the mean semi-partial CP across the 287 
population of units is equal 0.5. This recapitulates our semi-partial correlation analysis in simulated data. 288 

 289 
Results 290 

We analyzed behavioral and neuronal data from 75 disparity selective single units in V2 recorded from 291 
two monkeys performing a coarse disparity discrimination task as described previously (Nienborg and 292 
Cumming, 2009).  In this task, schematically summarized in Fig. 1b, the fixating monkeys were presented 293 
with a dynamic random dot pattern positioned inside the receptive field of the simultaneously recorded 294 
neurons for a fixed 2 sec duration.  The stimulus was a circular random dot stereogram defining a 295 
central circular disk surrounded by an annulus.  The monkeys’ task was to judge whether they perceived 296 
the central disk as protruding (‘near’) or receding (‘far’) relative to the surround by making a saccade to 297 
one of two choice targets.  Correct choices were rewarded.  The disparity of the stimulus center was 298 
spatially uniform on each video frame but changed probabilistically between frames to control the 299 
difficulty of each trial (see Methods).  On a subset of trials, defined as ‘no-signal’ trials, disparities were 300 
drawn from a uniform distribution centered on 0 degree disparity.  On these trials there was no correct 301 
answer and the monkeys were rewarded randomly on 50% of the trials.  For discrimination tasks, the 302 
dependence of an observer’s choices on the stimulus can be captured by a sigmoidal function 303 
(psychometric function).  For example, for the disparity discrimination task used here, the psychometric 304 
function maps the probability of a ‘far’ choice as a function of the ‘far’ signal in the stimulus (Fig. 1b).  305 
Note that for each session we define the sign of the stimulus based on the tuning preference of the 306 
simultaneously recorded neuron: positive and negative values correspond to signal strength at the 307 
neuron’s preferred and non-preferred disparity, respectively. Typically, the psychometric function 308 
includes a stimulus independent term to account for an observer’s bias.  As shown in (Fig. 1c), this 309 
psychophysical bias differed between trials following a choice to the preferred (positive) and non-310 
preferred (negative) disparity target.  To examine any systematic effect of previous choices on the 311 
decision in the current trial in more detail, we used a statistical model that, in addition to the stimulus, 312 
took into account the influence of previous choices on the animal’s present choice (Fig. 2a).  In this 313 
model, the psychophysical bias-term was different for each trial, and depended linearly on the recent 314 
experimental history (Frund et al., 2014; Gold et al., 2008; Seidemann, 1998). 315 

 316 
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Predictive effect of choice history on choice  317 

Conceptually, the contribution of the previous choices can be viewed as the subject’s bias that changes 318 
from trial to trial depending on the choice history.  We used penalized maximum likelihood estimation 319 
(Hastie et al., 2009) to fit the weights for both the stimulus and the effect of previous choices.  We 320 
characterized the monkeys’ strategy, i.e. how they were influenced by the previous choice and how this 321 
influence depended on whether the previous choice was rewarded, with two covariates, the previous 322 
target (Tn-1) and the previous choice (Cn-1). Different strategies can be identified by plotting the weights 323 
of the model for Cn-1 against those for Tn-1 (Fig. 2c) (Frund et al., 2014; Abrahamyan et al., 2016). The 324 
weight for the previous choice (Cn-1, abscissa) quantifies in which direction, on average, the monkeys are 325 
influenced by the previous choice: positive values indicate that they tend to repeat their previous choice 326 
(a ‘near’ choice following a ‘near’ choice, or ‘far’ following ‘far’), while negative values indicate that they 327 
tend switch their answer (a ‘near’ choice following a ‘far’ choice or vice versa).  In contrast, the weight 328 
for the previous target (Tn-1, ordinate, i.e. the choice that would have been rewarded; note that if the 329 
preceding trial had no signal Tn-1 is defined as the randomly rewarded target) measures how strongly this 330 
overall choice strategy depends on whether the previous choice was rewarded. That is, a ‘win stay, lose 331 
switch’ strategy would be reflected by positive weights for Tn-1 and weights for Cn-1 close to 0, while a 332 
‘win switch, lose stay’ strategy’ would be captured by negative weights for Tn-1, and weights for Cn-1 close 333 
to 0 (see labels along the vertical axis in Fig. 2c). Together, Cn-1 and Tn-1 therefore quantify the behavioral 334 
strategies (‘lose switch’, ‘win switch’, ‘lose stay’, ‘win stay’, see diagonals in Fig. 2c). We examined the 335 
weights for Tn-1 and Cn-1 for individual sessions in the two monkeys and found that both monkeys were 336 
more likely to switch their choices, i.e. that weights for Cn-1 were negative (monkey 1: mean Cn-1=-0.371, 337 
p<10-5, n=41; monkey 2: mean Cn-1=-0.159, p<10-4, n=34; average across monkeys: mean Cn-1=-0.275, 338 
n=75; p<10-9; Wilcoxon signed-rank tests). This tendency was slightly stronger after errors, 339 
corresponding to positive weights for Tn-1 (mean Tn-1=0.054, p<0.01, n=75; monkey 1: mean Tn-1=0.071, 340 
p=0.017, n=41; monkey 2: mean Tn-1=0.032, p=0.012, n=34),.  Intriguingly, the monkeys’ highly 341 
consistent behavioral strategy to switch their choices between consecutive trials likely reflects a learned 342 
strategy to adapt to the statistics of the task. Indeed, because we presented a fixed number of stimulus 343 
presentations in a random sequence, alternating trial types were slightly more likely (about 52% rather 344 
than 50%.  Note that this did not affect the 50% probability with which no-signal trials were rewarded. In 345 
Fig. 3a probabilities for stimulus sign alternations (left) and choice alternations (middle) across all 346 
sessions are shown. For monkey 2 the choice alternation rate (solid black line) closely matched that of 347 
the stimulus while monkey 1 overshot (dashed black line). For monkey 2 the strategy was therefore 348 
beneficial on (weak) signal trials. Across sessions, there was no systematic relationship between the 349 
animals’ choice alternation rate and that for the stimulus sign (Fig. 3a, right). We note that the monkeys’ 350 
switching strategy contrasts with the finding in human subjects that perceptual judgments are biased 351 
towards the preceding stimulus (Fischer and Whitney, 2014). This suggests that this effect is malleable 352 
by learning depending on the task or stimulus statistics.  353 

In control analyses using a model observer that is not influenced by trial history, we verified that our 354 
results here could not be explained by the statistics of the trial sequence (Fig. 3b-c).  For such an 355 
observer the weights in Figure 2b would not exhibit a systematic pattern, exactly as found in our control 356 
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analysis.  In a subset of n=50 sessions for which we had a sufficient number of segments with at least 357 
three consecutive successfully completed trials, we also explored the effect of trials going further back 358 
to trial n-2.  We found that the additional effect was small and not significantly larger than that of choice 359 
history only including trial n-1 (Fig. 3d).  We therefore restrict our analysis presented here to the effect 360 
of trial n-1. 361 

 362 

Predictive effect of spiking activity on choice 363 

We next compared the predictive effect of choice history with that of other experimental covariates.  364 
First, we compared it to the choice-predictive effect of the spike counts of single disparity selective 365 
neurons (Nienborg and Cumming, 2009; 2006; 2007).  Choice predictive effects of sensory neurons, 366 
frequently quantified as ‘choice-probabilities’ (Britten et al., 1996), have been observed in a substantial 367 
number of studies, are typically modest but consistent across studies and highly statistically significant 368 
(Britten et al., 1996; Dodd et al., 2001; Nienborg and Cumming, 2014; 2006; Shiozaki et al., 2012; Uka 369 
and DeAngelis, 2004).  For this comparison, we fit models incorporating different sets of parameters to 370 
all signal trials.  Using the output of the models, we then predicted the monkeys’ choices on no-signal 371 
trials and quantified the choice prediction performance (CPP) for the different models as the area under 372 
the receiver-operating characteristic (ROC) curve (see Methods). 373 

Fig. 2b compares choice prediction performance for five models. For the spike count alone, the mean 374 
choice prediction performance was 0.56 (significantly exceeding chance performance, p<10-7, n=75; 375 
monkey 1: 0.565, p<0.001, n=41; monkey 2: 0.563, p<10-4, n=34; Wilcoxon signed-rank tests), very 376 
similar to the values obtained when quantifying neuron-behavior correlations as choice-probability 377 
(Britten et al., 1996) directly from the spike count as done in previous studies (Nienborg and Cumming, 378 
2009).  This effect exceeds that of the previous target (mean CPP for Tn-1=0.525, p<0.001; monkey 1: 379 
0.519, p=0.046; monkey 2: 0.533, p<0.01) but is smaller than that of the previous choice (mean CPP for 380 
Cn-1=0.609, p<10-8; monkey 1: 0.645, p<10-5; monkey 2: 0.566, p<10-4).  This indicates that on no-signal 381 
trials, choice history explains a substantially larger proportion of the monkeys’ choices than the single-382 
neuron spike-count on the current trial alone.  Indeed, when measuring the cumulative contribution of 383 
different covariates (the previous choice, Cn-1, the previous target Tn-1, whether the previous trial was 384 
rewarded, “win” Wn-1, the spike count on the previous, Sn-1, and current trial, Sn) to choice prediction 385 
performance, choice history had the largest contribution to choice-prediction (Fig. 2d).  For this 386 
comparison, we converted choice prediction performance into Pearson correlation coefficients and 387 
termed these “choice correlations” (Haefner et al., 2013; Pitkow et al., 2015). In this analysis, we 388 
incorporated covariates cumulatively in the model fits to account for correlations, and thus redundant 389 
information, between covariates (compare, for instance, the choice correlation of the spike count Sn, 390 
when fit alone (red dashed line in Fig. 2d), versus the gain in choice correlation when it is included as a 391 
last covariate). We note that since we cross-validated the model (fitting on signal trials, evaluating on 392 
no-signal trials), including more parameters does not necessarily improve performance (see also 393 
Methods).   394 
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 395 

Predictive effect of spiking history on spike counts in the current trial 396 

Spiking activity of sensory neurons is known to fluctuate on long timescales independently of the 397 
stimulus (Ecker et al., 2014; Goris et al., 2014; Tolhurst et al., 1983; Tomko and Crapper, 1974; Bair et al., 398 
2001; Rabinowitz et al., 2015; Engel et al., 2016). Given the serial dependencies of the animals’ behavior, 399 
we wanted to investigate the relationships between temporal correlations in spiking activity and 400 
behavior, as well as their impact on trial-by-trial correlations between neuronal activity and an animal’s 401 
choices. We therefore first quantified the degree to which neuronal activity could be predicted by the 402 
activity on the preceding trial, in order to compare it to the predictive effect of choice history using 403 
GLMs (Fig. 4a). To additionally explore the effect of slow fluctuations (SF) across multiple trials, we also 404 
used a Gaussian Process latent modulator (compare (Ecker et al., 2014; Rabinowitz et al., 2015)) within 405 
the GLM (Fig. 4a). We quantified prediction performance as the correlation coefficient between the 406 
predicted and measured spike count on all no-signal trials (see Fig. 4c for one example unit). When fit as 407 
the only covariate, the preceding spike count had a substantial predictive effect (cc=0.372, p<10-10; 408 
cc=0.417, p<10-6 and cc=0.317, p<10-6 for monkey 1 and 2, respectively), as expected for known non-409 
stationarities in neuronal spiking activity. Indeed, for slow fluctuations across several trials the 410 
prediction performance improved further (SF alone: mean cc=0.461, p<10-10; cc=0.477, p<10-7 and 411 
cc=0.442, p<10-6 for monkey 1 and 2, respectively). These substantial temporal correlations of spiking 412 
activity combined with the serial dependencies of the animals’ choices during this task may therefore 413 
contribute to the trial-by-trial correlations between the animal’s choices and spiking activity.  414 

 415 

Testing for interactions between serial dependencies in choices and spiking activity  416 

Before more directly investigating whether decision-related activity during this task results from the 417 
serial dependencies in choices and spiking activity, we examined the predictive effect of behavioral 418 
covariates on spiking activity. Specifically, we explored the effect of the animal’s preceding choice (Cn-1), 419 
the preceding target (Tn-1), whether the preceding trial was rewarded, i.e. a “win” (Wn-1) and the current 420 
choice (Cn) using a GLM predicting the spike counts (Sn). 421 

Choice history had a small but significant predictive effect (the values were cc=0.072, p<10-4 for Cn-1, 422 
cc=0.046, p<0.01 for Tn-1, cc=0.142, p<10-8 for Wn-1, respectively, and cc=0.159, p<10-9 for the covariates 423 
reflecting choice history, Cn-1, Tn-1, Wn-1 together). When including covariates cumulatively (Fig. 4d) we 424 
found that only Wn-1, but not Tn-1, yielded an improvement in prediction that was independent of Cn-1 425 
(note the non-significant change when adding Tn-1 as a predictor, but the improvement when 426 
additionally including Wn-1, p<10-5). Conversely, Cn-1, did not improve prediction performance over Wn-1 427 
(p=0.09, data not shown). Indeed, choice history excluding past wins (Cn-1, Tn-1) was less predictive of the 428 
spike count than the choice on the current trial. Conversely, when including past wins (Cn-1, Tn-1, Wn-1), it 429 
was more predictive of the spike count than the choice on the current trial. The predictive effect of 430 
choice history was therefore of sufficiently large magnitude to fully account for the effect of choice in 431 
principle. However, we find that a component of the predictive contribution of Cn was statistically 432 
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independent of choice and spiking history: Even when included as the last predictor it provided a small 433 
but significant improvement in prediction performance (Fig. 4d; p<0.01; p=0.026 for monkey 1, p=0.045 434 
for monkey 2; Wilcoxon signed-rank tests).  435 

Note also the substantial component in variability that can be predicted by slow fluctuations alone (Fig. 436 
4d). Interestingly, this effect is comparable to the combined predictive information in spiking-activity 437 
and behavior on the previous trial (Hn-1, S n-1, compare Fig. 4d). This is consistent with the view that these 438 
slow fluctuations reflect meaningful signals, such as those related to choice history, as previously 439 
proposed (Rabinowitz et al., 2015). We also examined the dynamics of how these covariates predicted 440 
the neural activity during a trial. To do so, we fitted GLMs to predict the time-varying spiking activity of 441 
each neuron, and quantified the prediction performance during four non-overlapping 500ms wide time 442 
bins (Fig. 5). We find that prediction performance of choice history (Cn-1, Tn-1, Wn-1) is most pronounced 443 
at the beginning of each trial, while the other predictors show little variation in prediction performance 444 
throughout the trial.  445 

We systematically varied the order with which we included covariates in GLMs predicting choices or 446 
spike counts (Fig 6), in order to investigate which statistical interactions are necessary to explain the 447 
statistics of the data. In this visualization, potential interactions that have not been statistically 448 
evaluated are depicted by a dashed line. We then define a statistical interaction (solid connection) 449 
between a covariate and a prediction target (i.e. Cn or Sn) to be necessary if the predictive effect of the 450 
covariate cannot be explained by alternative covariates. For interactions that are not needed (i.e. 451 
including the covariate does not yield a significant improvement over alternative covariates) we remove 452 
the dashed connection. Note that this analysis, while related, differs from that of causal interactions in 453 
directed graphical models (see Discussion). 454 

The substantial improvement (cc=0.358 versus 0.143, p<10-9) in prediction when including choice history 455 
after the preceding and current spike count (Sn-1, Sn) supports a significant statistical interaction 456 
between choice history and choice, independent of Sn-1 and Sn (Fig. 6a). Similarly, adding the covariate Sn-457 
1 to a model that includes choice history and the current choice (Cn) substantially improves the 458 
prediction of the spike count on the current trial (Sn, data not shown), establishing an interaction 459 
between Sn-1 and Sn, independent of choice history and Cn. Additionally, the statistically significant 460 
interaction between Sn and Cn (and by analogy Hn-1 and Sn-1, Fig. 6a-c) can be inferred from the results in 461 
Fig. 2d and Fig. 4d: Adding Sn or Cn, respectively, to the model that includes choice history and Sn-1, 462 
improved the prediction of Cn (Fig. 2d) and Sn (Fig. 4d), respectively. (We note that for a model predicting 463 
spike counts without SF, as in Fig.6c, the gain due to Cn is only marginally significant: p=0.036 for both 464 
animals and p=0.121, p=0.096 for monkey 1 and 2 respectively, Wilcoxon signed-rank tests, and non-465 
significant for paired t-tests.)  466 

In contrast, prediction performance is not significantly increased when including the preceding spike 467 
count (Sn-1) after choice history and the current spike count (Fig 6b). The interaction between Sn-1 and Cn 468 
independent of choice history and Sn therefore lacks statistical support. Moreover, choice history 469 
provides an improvement in predicting Sn, independent of Sn-1 and Cn resulting in a significant statistical 470 
interaction between choice history and Sn (Fig. 6c). We note however that the incremental improvement 471 
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in prediction is small and only owed to the predictive effect of Cn-1 and Wn-1. Interestingly, our time-472 
resolved analysis reveals that this weak improvement in prediction is only present early in the trial (Fig. 473 
5b). While weak, such an effect over time is compatible with a framework of perceptual inference, (e.g. 474 
Haefner et al., 2016) in which a top-down belief (or expectation) based on choice history influences the 475 
neuronal response, and is most pronounced at trial onset. Moreover, the weak increment in prediction 476 
performance resulting from Wn-1 remains statistically significant even when incorporating the 477 
contribution of slow fluctuations, which substantially improve prediction performance (note the 478 
increased prediction performance to 0.53 of the full model in Fig. 6d compared to 0.44 in Fig. 6c). The 479 
predictive effect of Wn-1 may therefore reflect a transient boost in arousal following a reward, leading to 480 
a modulation of the neuronal response independent of Sn-1 and Cn. Nonetheless, this effect is small — 481 
while statistically significant, the statistical interactions along the diagonal are therefore weak (Fig 6c, d). 482 
This suggests that the serial dependencies in choices and spiking activity result from two largely 483 
separate processes. This should imply that trial-by-trial correlations between choices and neural activity 484 
are largely unaffected by these serial dependencies: Choice-probabilities are a consequence of 485 
interactions on the single trial, rather than a consequence of correlations that are carried over from 486 
previous trials. 487 

Effect of choice and spiking history on choice-probabilities 488 

To test the prediction that choice-probabilities are largely independent of serial dependencies directly, 489 
we measured the residual choice-probabilities after removing the component of the spike count that 490 
could be explained by history. As choices are binary, computing and interpreting ‘choice residuals’ by 491 
regressing out history effects is difficult—however, we circumvent these difficulties by only regressing 492 
out experimental history from spike-counts. As a result, we obtain semi-partial correlation between 493 
spike counts and choice, rather than partial correlation coefficients. We found that the residual choice-494 
probabilities were largely unchanged compared to the raw choice-probabilities (Fig. 7; r=0.837, p<10-10). 495 
Since semi-partial correlations mathematically provide a lower bound to the absolute value of the 496 
partial correlations (Cohen et al., 2003), this supports the view that the contribution of choice history to 497 
choice probabilities was at most very small. Additionally, we found that the size of the change in 498 
behavioral performance that was attributable to choice history (see Methods) was uncorrelated with 499 
choice probability (Spearman’s rank r=0.023, p=0.848).   500 

Given that choice probabilities are overall small one might wonder whether our inability to identify an 501 
appreciable contribution of serial dependencies merely results from a lack of statistical power of our 502 
analysis. In order to determine the sensitivity of our analysis in our dataset, we therefore repeated the 503 
semi-partial correlation analysis on models that are compatible (Fig. 8a-b) or incompatible (Fig. 8c-d) 504 
with our conclusions. In the compatible models choice probabilities reflect instantaneous, i.e. trial-by-505 
trial, feed-forward (CM 1, Fig. 8a) or feedback (CM 2, Fig. 8b) correlations between choices and spike 506 
counts. Conversely, in the incompatible models, choice probabilities result from influences of preceding 507 
choices on current spiking activity (ICM 1, Fig. 8c) or of preceding spiking activity on the current choice 508 
(ICM 2, Fig. 8c). We fit each model to the data from each unit while matching the number of no-signal 509 
trials to those in our dataset (see Methods). Based on these model fits we then generated artificial 510 
model responses for no-signal trials and computed the semi-partial choice probabilities (regressing out 511 
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choice history and spiking history). For the compatible models, the comparison of these semi-partial 512 
choice probabilities with the empirical choice probabilities mirrors the animals’ data (compare Fig. 7b 513 
and Fig. 8e-f). Indeed, as in our data, choice probabilities and semi-partial CPs are highly significantly 514 
correlated (average r across repetitions: r=0.78 for CM 1; r=0.68 for CM 2; p<0.01 for all 500 repetitions 515 
for both). In contrast, for the incompatible models, choice probability is largely explained by history (Fig. 516 
8g-h). As a consequence, choice probabilities and semi-partial CPs when removing history are not 517 
correlated (average r across 500 repetitions: r=0.024 for ICM 1; r=0.009 for ICM 2; p≥0.05 in 93% and 518 
88% of repetitions for ICM 1 and ICM 2, respectively). Moreover, semi-partial CPs when removing 519 
history are 0.5 on average (Fig. 8k-l). In contrast, in compatible models we reject the null hypothesis that 520 
semi-partial CPs when removing history are 0.5 in close to all cases (Fig. 8i-j). This is similar to our 521 
empirical results for which this hypothesis is rejected with p<10-6 (t-tests).  522 

Together, these analyses support the conclusion that, despite the fact that serial dependencies in 523 
choices and spiking activity are both strong, they do not have a strong impact on choice-probabilities. 524 

 525 

Discussion 526 

Here, we explored the effect of serial dependencies in behavior and spiking activity on decision-related 527 
activity, quantified as choice probability, of visual neurons in V2. Although the serial dependencies of 528 
both choices and spiking activity were substantial, and past choices and neural firing were correlated 529 
with both choices and spiking activity, these reflected two largely separate processes in our data: There 530 
was no statistical support for a direct interaction between the preceding spike count and the current 531 
choice, while the interaction between choice history and the current spike count was weak. This latter 532 
interaction resulted largely from “wins”, i.e. whether or not the preceding trial was successful and thus 533 
yielded a reward, compatible with a transient reward dependent boost in arousal that modulated 534 
spiking activity, as well as with fluctuations in arousal that affect both firing rates and the probability of 535 
success. Importantly, when removing the effect of choice history, choice probabilities remained 536 
essentially unchanged. The serial dependencies of choices and spiking activity therefore reflect two 537 
largely parallel processes that are correlated through instantaneous co-variations between choices and 538 
spiking activity. 539 

Our analysis based on using GLMs in order to determine which statistical interactions are necessary to 540 
account for the structure of the data is reminiscent of the analysis of (statistically) causal interactions in 541 
directed graphical models (Pearl, 2003). Note however that our analyses here are based on limited data 542 
such that we may not have been able to detect weak statistical interactions. In contrast, causality 543 
analyses are typically based on a “faithfulness” assumption, which states that there are no (conditional) 544 
independences other than those in the underlying graph, i.e. which interprets absence of evidence as 545 
evidence for absence. However, given limited data as in this study, such interpretation is not justified. In 546 
addition, while conditional dependence-tests (as typically employed in causality analysis) and increases 547 
in prediction performance in GLMs (as we used here) are conceptually related, they are not equivalent.  548 
In particular, our method relies on cross-validation to account for model complexity. Thus, the absence 549 
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of a connection in the schematic models indicates that adding the respective covariate does not lead to 550 
a significant increase in prediction performance beyond what we can obtain by those predictors that 551 
share a direct connection. 552 

That choice probability is independent of choice history is surprising for several reasons:  First, it seems 553 
to contrast with a recent study using fMRI in humans performing a visual task that identified a signature 554 
of past choices in BOLD signals from V1 (St John-Saaltink et al., 2016). However, apart from the different 555 
signals between studies, St John-Saltink et al. (2016) did not explore the effect of choice history 556 
independent of the current choice, which may account for this seeming discrepancy.   557 

Second, if choice probabilities reflect only the effect of correlated noise in the sensory representation 558 
(feed-forward account), it suggests that the effect of this noise on choice is independent from trial to 559 
trial. This is interesting given the substantial slow fluctuations of the neuronal activity across trials. 560 
However, if, for example, the decision variable is computed as a difference between two pools with 561 
similar temporal correlations, then the temporal correlations could cancel when computing the decision 562 
variable, reducing or abolishing temporal correlations in the decision variable. If this is the case, it is 563 
surprising that the brain removes temporal correlations at the level of the read-out of the relevant 564 
sensory information, but not temporal correlations at the decision stage. 565 

Finally, contrasting with this pure feed-forward account, choice probabilities are increasingly thought to 566 
reflect, in part, a feedback component (Nienborg and Cumming, 2009; Wimmer et al., 2015; Haefner et 567 
al., 2016): i.e. a signal that is correlated with the animal’s perceptual decision and influences the activity 568 
of the sensory neurons and thereby introduces a component of this neuron-behavior correlation. 569 
Indeed, recent work in an analogous task as the one used here supports the view that this feedback 570 
component accounts for nearly all of choice probability (Bondy and Cumming, 2016). A number of 571 
computational accounts have modeled such feedback as a signal arising from the decision variable or 572 
circuit (Wimmer et al., 2015; Haefner et al., 2016). In these models, any influence on the decision 573 
variable, such as choice history, should therefore also be fed back to sensory neurons and thus 574 
contribute to choice probability. The fact that we are unable to identify an appreciable component of 575 
choice history on choice probability therefore could imply that the feedback component to choice 576 
probability is negligible, in contrast with other findings. Alternatively, it suggests that choice history 577 
affects the decision independent of the decision-related signal that generates the feedback to the 578 
sensory neurons. Indeed, it may be that rather than relying on a single decision-variable or integrator 579 
the decision process is able to keep some influences independent. For example, the decision formation 580 
could reflect a multi-stage process in which a lower stage integrates the sensory evidence to form a 581 
decision variable and provide feedback to sensory neurons, and a later stage additionally incorporates 582 
the influence of choice history. Indeed, previous work identified a signature of choice history on 583 
neuronal spiking activity in the motor and frontal cortex (Marcos et al., 2013; Pouget et al., 2011), 584 
contrasting with our results for sensory cortex. It is compatible with the notion of a multi-stage process 585 
in which choice history affects neuronal activity only downstream of the sensory stage and of the 586 
decision circuits providing feed-back to the sensory neurons. Regardless of the neuronal 587 
implementation, these results suggest that even for simple perceptual decisions models incorporating 588 
decision-related feedback require a more complex decision-formation process than current decision 589 
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variables.  Scrutinizing the temporal structure in neural population activity and behavior promises to 590 
provide insights into the mechanisms and computations underlying these processes. 591 

  592 
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 599 
Figure legends 600 

Figure 1 Conceptual framework, task and psychophysical performance. a) Schematic showing all 601 
possible statistical dependencies between choices and spike counts on the preceding and current trial. 602 
b) After the monkey acquired fixation on a central fixation point the stimulus was presented for a fixed 603 
duration of 2sec, followed by two choice targets above and below the fixation point.  After a saccade to 604 
the correct choice target the monkey was rewarded with a liquid reward. c) The average psychophysical 605 
performance of both monkeys across all sessions (n=75) is shown (black).  For each session, a positive 606 
and negative choice was defined as a choice towards the neuron’s preferred or null disparity (‘near’ or 607 
‘far’), respectively.  Note the horizontal shift of the psychophysical curves with respect to each other 608 
when they were computed separately for trials preceded by a positive choice (yellow) or negative choice 609 
(blue), indicating a systematic bias introduced by the choice on the preceding trial. Datapoints are 610 
binned averages across sessions. Errorbars are standard errors.  Solid lines represent the mean fits 611 
(cumulative Gaussians) across sessions. 612 

Figure 2 Choice history is systematically associated with the monkeys’ current behavior. a) We use a 613 
generalized linear model (GLM) to analyze the statistical effect of different covariates on the monkeys’ 614 
choices for n=75 sessions (n=41 for monkey 1; n=34 for monkey 2). b) The choice prediction 615 
performance (aROC, see Methods) evaluated only for no-signal trials for different covariates: the choice 616 
on the previous trial (Cn-1, mean CPP 0.609, p<10-8); target on the previous trial (Tn-1, mean CPP 0.525, 617 
p<0.001); whether the preceding trial was rewarded (win, Wn-1, mean CPP 0.522, p<0.01), the spike 618 
count on the current trial (Sn, mean CPP 0.564, p<10-7); the spike count on the previous trial (Sn-1, mean 619 
CPP 0.504, p=0.378).  For the full model, CPP is 0.666, p<10-10. The p-values indicate whether CPPs were 620 
significantly different from chance performance (0.5) using Wilcoxon signed-rank tests. c) The weights 621 
for the target on the previous trial (Tn-1) are plotted against those of the previous choice (Cn-1) for all 622 
n=75 sessions (circles: monkey 1, n=41; squares: monkey 2, n=34).  Green symbols represent means 623 
across all sessions for each monkey.  d) The mean choice prediction performance converted to 624 
correlation coefficients (“choice correlation”, see Methods) are plotted for models incorporating the 625 
variables on the x-axis cumulatively.  From left to right the variables used are: (Cn-1); (Cn-1, Tn-1); (Cn-1, Tn-1, 626 
Wn-1); (Cn-1, Tn-1, Wn-1, Sn-1); (Cn-1, Tn-1, Wn-1, Sn-1, Sn). The height of each bar reflects the incremental 627 
improvement of the model prediction caused by the variable plotted on the x-axis.  Significant 628 
increments are caused by Cn-1 (p<10-8), Tn-1 (p<10-5), Wn-1 (p=0.046), Sn (p<10-4), but not additionally by Sn-629 
1 (p=0.954), Wilcoxon signed-rank tests for all.  The horizontal dashed line marks the value for a model 630 
incorporating only Sn.  Errorbars are ±1 standard error, colors as in (b).  631 

 632 
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Figure 3 Controls. a) Stimulus statistics and choice alternation rate. Left: We plot the probabilities of 633 
alternation of the stimulus sign for each session as a function of session duration (in number of trials) 634 
across all sessions (red line: running mean alternation rate across all sessions). To explore whether the 635 
animals’ strategy depended on the duration of the session we also plot the animal’s choice-alternation 636 
rate as a function of session duration (middle panel), and stimulus sign alternation rate (right panel) and 637 
do not observe a systematic relationship. b) The weights of the analysis of the independent observer 638 
model for the preceding choice (Cn−1) are plotted against those for the preceding target (Tn−1) for n=74 639 
sessions. For both co-variates the weights do not significantly differ from 0 (Cn−1: mean=0.000, p=1.0; 640 
Tn−1: 0.006, p=0.297; Wilcoxon signed-rank tests). c, d) We compared the choice prediction performance 641 
(in choice correlation) as in Fig. 2d: The height of the bars corresponds to the incremental improvement 642 
by the corresponding covariates on the x-axis. c) The ability to predict choices based on Cn−1, Tn−1, Wn−1, 643 
or Sn−1 is at 50% chance level, corresponding to 0 choice correlation (covariates vs. 0: all p>0.05; 644 
Wilcoxon signed-rank tests). Format and colors in b as in Fig. 2c, in c as in Fig. 2d. d) The effect of choice 645 
history beyond the preceding trial is small. For this analysis, we included only 50 sessions (30 for monkey 646 
1; 20 for monkey 2), which met our inclusion criteria: At least 4 near and 4 far choices on no signal trials, 647 
and selecting only those segments with at least 3 consecutive trials completed. The baseline model 648 
includes the covariates pertaining to the preceding trial (Cn−1, Tn−1, Wn−1, Sn−1). Adding the choice on trial 649 
n-2 (Cn−2), yields a non-significant increase (p=0.405; monkey 1: p=0.501; monkey 2: p=0.583; Wilcoxon 650 
signed-rank tests). Similarly, the covariates Tn−2, Wn−2, Sn−2 do not increase the choice correlation. 651 

 652 

Figure 4 Predicting the spike count on the current trial. a) Schematic showing the generalized linear 653 
model used for the analysis. b) The correlation coefficients between predicted and measured spike 654 
counts on no-signal trials for models incorporating different variables across all n=75 neurons.  The 655 
mean values, and p-values (Wilcoxon signed-rank tests) for significant deviation from 0 were: 0.072 656 
(p<10-4) for the choice on the previous trial (Cn-1); 0.046 (p<0.01) for the target on the previous trial (Tn-657 
1); 0.142 (p<10-8) for whether the previous trial was rewarded (Wn-1); 0.372 (p<10-10) for the spike count 658 
on the previous trial (Sn-1); 0.461 (p<10-10) for slow fluctuations across several trials (SF); 0.126 (p<10-8) 659 
for the choice on the current trial (Cn); and 0.529 (p<10-10) for the full model incorporating all these 660 
covariates. c) Evaluating the model performance for one cell.  The models were fit on signal trials and 661 
evaluated only on no-signal trials.  Only no-signal trials are shown. The predicted (colored) and the 662 
measured (gray) spike counts are superimposed for each model.  The performance was quantified as the 663 
Pearson’s correlation coefficient (cc) between the measured and predicted spike count, colors as in (b). 664 
d) The mean correlation coefficients are plotted for models cumulatively incorporating the variables on 665 
the x-axis.  From left to right these variables are: (Cn-1); (Cn-1, Tn-1); (Cn-1, Tn-1, Wn-1); (Cn-1, Tn-1, Wn-1, Sn-1); 666 
(Cn-1, Tn-1, Wn-1, Sn-1, SF); (Cn-1, Tn-1, Wn-1, Sn-1, SF, Sn).  The height of each bar reflects the incremental 667 
improvement of the model prediction caused by the variable plotted on the x-axis.  P-values (Wilcoxon 668 
signed-rank tests) for the increments were p<10-4 for Cn-1, p<10-5 for Wn-1, p<10-10 for Sn-1, p<10-7 for SF 669 
and p<0.01 for Cn, while not significant (p=0.123) for Tn-1. Errorbars are ±1 standard error, colors as in 670 
(b). 671 
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Figure 5 Dynamics of spike count prediction throughout the trial. For the GLM predicting time-resolved 672 
neural activity additional covariates were included: To account for the temporal structure of firing within 673 
trials, we introduced peri-stimulus time histogram (PSTH) basis functions, as well as time-varying 674 
features for choice history (previous choice, previous target, previous win) and choice on current trial 675 
(see Methods). a) Prediction performance across 75 units when cumulatively adding predictors for the 676 
four quartiles of the trial. The gain due to choice history decreases throughout the trial, while the gain 677 
due to choice (same trial) increases, as seen in b). The grand mean prediction performance of the time-678 
resolved model is 0.442, very similar to the prediction performance of a model that does not include 679 
additional covariates for time-resolved prediction. b) Alternative order of covariates, with choice (same 680 
trial) included in the first model. 681 

Figure 6 Statistical interactions between past and present choices and spike counts. Left column: Co-682 
variates are represented by the circles: spike count on the previous trial (Sn-1), spike count on the current 683 
trial (Sn), choice history (Hn-1) and the choice on the current trial (Cn).  Potential (dashed lines) and 684 
statistically significant (black lines) interactions between the co-variates are depicted.  Right column: a)  685 
A model that includes choice history (Hn-1) in addition to the previous and current spike count (Sn-1, Sn) 686 
predicts choices significantly better (p<10-9), supporting a significant direct interaction between choice 687 
history and the current choice. b) A model including Sn-1 in addition to Cn-1, Tn-1, Wn-1 and Sn does not 688 
improve choice prediction performance (p=0.976; Wilcoxon signed-rank test). The direct interaction 689 
between Sn-1 and Cn is therefore not statistically supported. c) The model incorporating choice history 690 
(Cn-1, Tn-1, Wn-1) in addition to the previous spike count (Sn-1) and current choice (Cn) predicts the current 691 
spike count weakly but significantly better (p<10-5). d) The predictive effect of choice history remains 692 
significant when including slow fluctuations (average cc=0.506 versus 0.529; p<10-4; Wilcoxon signed-693 
rank test).  694 

Figure 7 Choice probability is largely unaffected by choice history. a, b We computed the residuals of 695 
the spike counts by subtracting from each measured spike count that predicted by a regression that 696 
included the current choice (Cn, a) or that included choice history (Hn-1, b) as covariates. In a second step 697 
we then computed the “semi-partial choice probabilities” from these residual spike counts and the 698 
monkeys’ choices on the current trial.  a) To verify the validity of this approach we first removed the 699 
component predicted by choice. As expected, this removes choice probabilities deviating from 0.5. b) 700 
Semi-partial choice probabilities for the residual spike counts after the contribution predicted by choice 701 
history was removed and the animals’ choices, are plotted against the raw choice probabilities (circles: 702 
monkey 1, n=41; squares: monkey 2, n=34). The values changed little and are highly correlated, 703 
supporting the view that choice probability are largely unaffected by choice history.  704 

 705 

Figure 8 Sensitivity of semi-partial correlation analysis in simulated data a-d) CM 1 and CM 2 are two 706 
models that are compatible with our results, while ICM 1 and ICM 2 are incompatible with our 707 
conclusion. We fit these models to statistics of our dataset and for each unit repeatedly simulated as 708 
many trials as no-signal trials were recorded for this unit (9522 trials across all units). e-h) Semi-partial 709 
CPs are plotted against empirical CPs but for simulated data (see Methods) for a single repetition. The 710 
data-points are scattered along the identity line for the compatible models, similar to the empirical 711 
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results (cf. Fig. 7b). In contrast, semi-partial CPs are reduced to about 0.5 on average for incompatible 712 
models. i-l) For each of 500 repetitions, we performed one-sample t-tests with the null hypothesis (H0) 713 
that the mean semi-partial CP is equal 0.5. For nearly all of the simulations the null hypothesis is 714 
rejected for the compatible models (i, j). As expected, we observe the opposite for incompatible models 715 
(k, l). 716 

717 
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