JNeuroscience

Progressions

Adult hippocampal neurogenesis: a coming-of-age story

H. Georg Kuhn^{1,2}, Tomohisa Toda^{3,4} and Fred H. Gage³

¹University of Gothenburg, Institute for Neuroscience and Physiology, Section for Clinical Neuroscience, 40530 Gothenburg, Sweden

²Center for Stroke Research Berlin and Neurocure Cluster of Excellence, Charité— Universitätsmedizin Berlin, 10117 Berlin, Germany

³Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

⁴Paul F. Glenn Center for Biology of Aging Research at the Salk Institute, La Jolla, CA 92037, USA

https://doi.org/10.1523/JNEUROSCI.2144-18.2018

Received: 21 August 2018

Revised: 21 October 2018

Accepted: 23 October 2018

Published: 29 October 2018

Conflict of Interest: The authors declare no competing financial interests.

We thank M. L. Gage for comments on the manuscript, V. Mertens for the illustration and Drs. Sara B. Linker and Sarah Parylak for discussion. This work was supported by NIH R01 MH095741, NIH U01 MH106882, The G. Harold and Leila Y. Mathers Charitable Foundation, The Leona M. and Harry B. Helmsley Charitable Trust (grant #2012-PG-MED00), Annette C. Merle-Smith, JPB Foundation and The McKnight Foundation, the Swedish Research Council (Vetenskapsrådet - K2015-63X -20117-I0-4), Swedish Childhood Cancer foundation (Barncancerfonden - MT2017-0013) and Swedish governmental support under the LUA/ALF agreement (ALFGBG-72654). T.T. was supported by JSPS, the Kanae Foundation and Paul F. Glenn Center for Biology of Aging Research.

Corresponding author: Fred. H. Gage, Laboratory of Genetics LOG-G, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, Email: gage@salk.edu

Cite as: J. Neurosci 2018; 10.1523/JNEUROSCI.2144-18.2018

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 the authors

JNeurosci Accepted Manuscript

1

2	
3	H. Georg Kuhn, ^{1,2,5} Tomohisa Toda, ^{3,4,5} and Fred H. Gage ³
4	
4	
5	¹ University of Gothenburg, Institute for Neuroscience and Physiology, Section for Clinical
6	Neuroscience, 40530 Gothenburg, Sweden
7	² Center for Stroke Research Berlin and Neurocure Cluster of Excellence, Charité –
8	Universitätsmedizin Berlin, 10117 Berlin, Germany
9	³ Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, US
10	⁴ Paul F. Glenn Center for Biology of Aging Research at the Salk Institute, La Jolla, CA
11	92037, USA
12	⁵ These authors contributed equally to this work.
13	
14	Corresponding author:
15	Fred. H. Gage
16	Laboratory of Genetics LOG-G
17	The Salk Institute for Biological Studies
18	10010 N. Torrey Pines Rd.
19	La Jolla, CA 92037
20	Email: gage@salk.edu
21	
22	Number of pages: 34
23	Number of figures: 1
24	Number of words:
25	Abstract: 190
26	Main text: 5059
27	
28	Conflict of Interest:
29	The authors declare no competing financial interests.

Adult hippocampal neurogenesis: a coming-of-age story

92037, USA

30 Acknowledgments

- 31 We thank M. L. Gage for comments on the manuscript, V. Mertens for the illustration and
- 32 Drs. Sara B. Linker and Sarah Parylak for discussion. This work was supported by NIH R01
- 33 MH095741, NIH U01 MH106882, The G. Harold and Leila Y. Mathers Charitable
- 34 Foundation, The Leona M. and Harry B. Helmsley Charitable Trust (grant #2012-PG-
- 35 MED00), Annette C. Merle-Smith, JPB Foundation and The McKnight Foundation, the
- 36 Swedish Research Council (Vetenskapsrådet K2015-63X -20117-I0-4), Swedish Childhood
- 37 Cancer foundation (Barncancerfonden MT2017-0013) and Swedish governmental support
- 38 under the LUA/ALF agreement (ALFGBG-72654). T.T. was supported by JSPS, the Kanae
- 39 Foundation and Paul F. Glenn Center for Biology of Aging Research.

40 Abstract

41	What has become standard textbook knowledge over the last decade was a hotly debated
42	matter a decade earlier: the proposition that new neurons are generated in the adult
43	mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable
44	to criticism due to the lack of technical strategies for unequivocal demonstration,
45	quantification and physiological analysis of newly generated neurons in adult brain tissue.
46	After several technological advancements had been made in the field, we published a paper in
47	1996 describing the generation of new neurons in the adult rat brain and the decline of
48	hippocampal neurogenesis during aging. The paper coincided with the publication of several
49	other studies that together established neurogenesis as a cellular mechanism in the adult
50	mammalian brain. In this Progressions articles, which is by no means a comprehensive
51	review, we recount our personal view of the initial setting that led to our study and we discuss
52	some of its implications and developments that followed. We also address questions that
53	remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in
54	particular the existence of neurogenesis in the adult human brain.
55	

57

58 Introduction

59 Over the last two decades, numerous studies have demonstrated that a large majority of mammalian species retain the capacity for neurogenesis in the hippocampus into 60 adult life. Our paper published in March 1996 (Kuhn et al., 1996), together with other 61 62 concurrent studies, indicated the establishment of adult neurogenesis as a new research area, 63 even though these studies were rediscoveries of a phenomenon described more than 30 years 64 earlier by Altman, Bayer, Kaplan and others (Altman and Das, 1965; Kaplan and Hinds, 65 1977; Bayer, 1983). Significant skepticism about the observation made in the early studies 66 that new neurons are generated in the adult brain prevailed for decades. The main conceptual 67 argument against the finding was that established neuronal networks would require stable 68 neuronal elements and the addition of new elements would disturb network stability and thus 69 cognition, a criticism that was later defused by computational network modeling (for review 70 see Deng et al., 2010) and behavioral studies (Dupret et al., 2008; Imayoshi et al., 2008; Deng et al., 2009; Arruda-Carvalho et al., 2011). Methodologically, the earliest studies were 71 hampered by the limitations of ³H-thymidine labeling and a scarcity of specific neuronal 72 73 markers, since immunohistochemistry was still under development. Conceptual and 74 technological advances were thus key factors that ultimately established adult mammalian 75 neurogenesis as a biological concept and generated several thousand publications in the years 76 that followed. 77 In the early 1990s, we and others discovered that neural stem/progenitor cells 78 (NSPCs) could be isolated from embryonic brain tissue and propagated in vitro using defined 79 cell culture media containing FGF-2 (Ray et al., 1993; Ray and Gage, 1994) or EGF

80 (Reynolds et al., 1992). This was soon followed by *in vitro* propagation of neural stem cells

- 81 from adult brain tissue (Reynolds and Weiss, 1992; Palmer et al., 1995) and provided a
- 82 tangible foundation for the idea that new neurons are continually generated in the adult brain

83 from endogenous NSPCs. High-efficiency isolation of neural stem cells from brain regions 84 such as the dentate gyrus (DG) (Palmer et al., 1997) and the subventricular zone (Morshead et al., 1994) indicated to us that NSPCs had to exist in the adult rodent brain. Our group was 85 also able to demonstrate that most brain areas seem to harbor progenitor cells that are capable 86 87 of generating neurons and glial cells in vitro (Palmer et al., 1995; Palmer et al., 1999), 88 suggesting that brain regions with ongoing neurogenesis might retain not only NSPCs but also 89 the proper molecular environment for neurogenesis, also referred to as the stem cell niche 90 (Lim et al., 2000; Palmer et al., 2000).

91 The early in vitro studies were paralleled by investigations that not only replicated 92 the observations by Altman and colleagues, but were first indications that adult neurogenesis 93 was regulated *in vivo* by molecular cues. In a series of studies using 3H-thymidine labeling, 94 Gould and Cameron studied the role of glucocorticoids and excitatory input to the dentate 95 gyrus and gave first indications of the importance of stress and the hypothalamic-pituitary-96 adrenal-axis for hippocampal neurogenesis (Gould et al., 1992; Cameron et al., 1993; Gould 97 et al., 1994; Cameron et al., 1995). The study of adult neurogenesis intensified even more 98 when novel histological labeling techniques, such as immunofluorescence against halogenated 99 thymidine analogs in combination with cell-type specific markers, confocal microscopy and 100 stereology, became available (for review see Kuhn et al., 2016). Bromodeoxyuridine (BrdU) 101 integrates into the DNA during the S-phase of the cell cycle, thereby permanently labeling 102 cells that have undergone cell division during BrdU administration. The immunofluorescence 103 detection of BrdU in conjunction with neuron-specific markers, such as NeuN, allowed high-104 resolution colocalization within individual cells with confocal microscopy and quickly 105 became the gold standard for birthdating newly generated neurons in adult brain tissue (Kuhn 106 and Cooper-Kuhn, 2007). Critique of this prevailing technique, which allows labeling of large 107 cohorts of cells by systemic injection of BrdU, came from studies focusing on the possibility

of false-positive labeling of cells undergoing DNA repair or aberrant cell division attempts
under high stress load (Herrup and Yang, 2007). However, although it is conceivable that
BrdU incorporation could lead to false-positive labeling, by taking appropriate precautions
during BrdU labeling (Kuhn et al., 2016) and by applying additional detection methods, such
as retroviral labeling, the generation of new neurons in the adult brain was unequivocally
established.

114 Neurogenesis, whether observed in the embryonic or adult brain, comprises a 115 cascade of cellular events leading to the generation of mature neurons. Lineage tracing to 116 follow and dissect the individual steps has therefore been a crucial component of adult 117 neurogenesis research. In vivo retroviral labeling is particularly informative, since it requires 118 nuclear membrane breakdown for stable integration of a reporter gene, which only occurs 119 during cell division (Morshead et al., 1998; van Praag et al., 2002). It revealed cellular details, 120 such as dendritic arborization and synaptic elements, that were previously largely missing 121 from conventional immunohistochemical labeling of new neurons. But even more 122 importantly, retrovirally labelled cells could be visualized in live brain slices and studied 123 using electrophysiological methods (van Praag et al., 2002). Furthermore, the use of 124 constitutive transgenic mouse lines with genetically encoded markers, such as Nestin 125 promoter-based green fluorescent protein-expressing mice, accurately represented neural stem 126 and early progenitor cells in the developing and adult nervous system and labeled a large majority of such cells (Yamaguchi et al., 2000; Kempermann et al., 2003; Encinas and 127 128 Enikolopov, 2008). Finally, the development of inducible cre-lox systems permitted lineage 129 tracing as well as lineage manipulations of developing cells in the adult brain (for review see 130 Enikolopov et al., 2015). Taken together these tools have been extremely helpful in 131 establishing the presence of neurogenesis in the adult brain of the numerous mammalian

132 species studied so far, even though its existence had been heavily debated at the time (Gage,

133 1994, 2002).

134

135 Neurogenesis in the aging brain

136 Our initial paper from 1996 focused on the regulation of adult neurogenesis by age 137 and found neurogenesis to be fully present in the six-month-old rat (Kuhn et al., 1996). A 138 drastic decrease in neurogenesis from adult stages towards later time points was observed; 139 however, hippocampal neurogenesis was still detectable in the older rats (up to 27 months of 140 age). The duration of adult neurogenesis was, at the time, acutely debated. Adult neurogenesis 141 was seen by some as a remnant of embryonic development, declining to undetectable levels 142 once development ended; others proposed it might provide a mechanism by which new 143 neurons are continually added to the DG, irrespective of age, to facilitate learning and 144 memory processes. From this perspective, the hippocampus can also be seen as a brain region 145 that never completes development. Although many changes occur in the local 146 microenvironment of the brain during aging, newborn neurons appear to retain the potential to 147 become fully mature and functional granule cells. 148 We observed a progressive decline of precursor cell proliferation during aging, with a 149 decrease of more than 80% occurring between 6 and 12 months of age and stabilizing at a low 150 level thereafter. This finding raised competing hypotheses: (i) the hippocampal stem cell pool 151 exhaust with age, (ii) the aging microenvironment does not provide the molecular cues for 152 further proliferation or (iii) the aging stem/progenitor cells become unresponsive to 153 environmental cues. The first hypothesis would imply that the hippocampal stem cells are 154 depleted with time, a model that was put forward by Encinas and colleagues, who showed that increasing numbers of astrocytes are generated from activation of quiescent neural stem cells 155 156 with age (Encinas et al., 2011). However, Song and colleagues showed that individual neural

157	stem cells are able to undergo activation, return to quiescence and re-activation with limited
158	depletion via astrocytic transformation (Bonaguidi et al., 2011). An increasing number of
159	studies has focused on the second hypothesis and discovered changes in the local
160	microenvironment as well as the systemic milieu with age involving increasing levels of
161	inhibitory molecules or decreasing levels of neurogenesis-promoting factors (for recent
162	reviews see Mosher and Schaffer, 2018; Smith et al., 2018). But importantly, even at late
163	stages of aging, hippocampal neurogenesis can be stimulated by exposing animals to both
164	physically and mentally stimulating environments (Kempermann et al., 1998; Kempermann et
165	al., 2002; van Praag et al., 2005; Kronenberg et al., 2006). Lastly, the intrinsic responsiveness
166	of neural stem cells may also be altered due to epigenetic changes. Epigenetic mechanisms
167	are crucial components of adult neurogenesis (Jobe et al., 2012) and changes have been
168	observed with age (Kuzumaki et al., 2010a; Kuzumaki et al., 2010b; Horvath et al., 2012).
169	Altogether, what began with the observation of neurogenesis decline has led to intensive and
170	still ongoing research of the molecular mechanisms leading to the age-related changes in
171	hippocampal neurogenesis, and while different hypotheses are on the table, it appears highly
172	likely that several signaling pathways are involved.
173	
174	New technologies to address the aging of adult hippocampal neurogenesis

As mentioned earlier, transgenic approaches have been among the most powerful tools to visualize the process of adult neurogenesis and to dissect out the genetic and environmental factors that influence adult hippocampal neurogenesis in rodents. A number of transgenic mouse lines with fluorescent proteins or a Cre recombinase enzyme under the control of cell-type-specific promoters, such as the Nestin, Hes5, hGFAP and Sox2 promoters, have been used to selectively label NSPCs and their progeny or to delete target genes in those populations *in vivo* (Yamaguchi et al., 2000; Lagace et al., 2007; Suh et al.,

182	2007; Imayoshi et al., 2008). Many studies have provided significant insights into the
183	maintenance and aging of adult hippocampal neurogenesis (Suh et al., 2007; Lugert et al.,
184	2010; Bonaguidi et al., 2011; Encinas et al., 2011; Bonaguidi et al., 2012; Kempermann,
185	2015; Toda et al., 2018). However, observations using fixed tissues constrain our view of the
186	dynamic processes of adult neurogenesis to fragmented time-series sampling. To overcome
187	this technical hurdle, recently, we and others developed a novel methodology to image the
188	DG in awake, behaving mice using multi-photon microscopy (Danielson et al., 2016;
189	Goncalves et al., 2016b; Pilz et al., 2016; Danielson et al., 2017; Kirschen et al., 2017). These
190	live-imaging systems enable us to continuously visualize the dynamics of adult neurogenesis,
191	neuronal maturation and neural activity in the DG with less fragmentation. Most recently,
192	Jessberger's group successfully traced the process of adult neurogenesis from a subpopulation
193	of adult NSPCs to neurons over two months in the live adult mouse hippocampus using multi-
194	photon imaging (Pilz et al., 2018). Live-imaging of adult hippocampal neurogenesis
195	uncovered a variable neurogenic competency, survival rate, and fate commitment among cell
196	clones, which have been difficult to estimate with fixed tissue. Similarly, live-imaging
197	developing dendrites of adult-born dentate granule cells (DGCs) revealed an unexpected
198	homeostatic dendritic pruning process in which facilitated dendritic branching by an exposure
199	to enriched environmental is counteracted by earlier and intensive pruning (Goncalves et al.,
200	2016b). Future experiments using long-term live imaging will reveal more precise dynamics
201	of the aging process in adult neurogenesis, including when the development of DG stops and
202	when the aging of adult neurogenesis starts, as well as the heterogeneous nature of adult
203	NSPCS, the effects of environment and genetic factors.
204	In parallel with live imaging, recent progress in single-cell RNA sequencing with
205	antimized next generation sequencing technology provides a higher resolution view of

optimized next generation sequencing technology provides a higher resolution view of 205 206 cellular heterogeneity and better insight into the function of an individual cell (Shin et al.,

207

208 Hochgerner et al., 2018; Jaeger et al., 2018). This technology allows us not only to resolve the 209 heterogeneous nature of the transcriptome but also to capture developmental dynamics, the effects of environmental changes on a specific population and the differences in cellular state 210 211 within the same population. The evolution of single-cell technology is now pushing forward 212 our understanding of the complex nature of adult neurogenesis. 213 In addition to live-imaging and sequencing technology, molecular tools to 214 manipulate the process of adult neurogenesis have been evolving. Viral tools, including 215 retroviral, lentiviral and adeno-associated viral (AAV) tools, have been widely used to label 216 adult-born cells and manipulate genes of interest in these populations (Lie et al., 2005; 217 Tashiro et al., 2006; Zhao et al., 2006; Kirschen et al., 2017). These viral tools can also 218 express optogenetic (channelrhodopsins, halorhodopsins etc.) (Gu et al., 2012; Danielson et 219 al., 2016; Zhuo et al., 2016) and chemogenetic proteins (e.g. the synthetic receptor hMd3 and 220 synthetic ligand clozapine-N-oxide) (Alvarez et al., 2016; Anacker et al., 2018) to selectively 221 manipulate neural activity in a specific population at a specific time. In combination with a 222 retrograde rabies-viral tracing methodology (Wickersham et al., 2007), this research has 223 revealed the dynamic reorganization of circuitry of adult-born neurons during maturation 224 (Vivar et al., 2012; Deshpande et al., 2013; Bergami et al., 2015; Alvarez et al., 2016; 225 McAvoy et al., 2016; Sah et al., 2017). For example, local and long-distance afferents from 226 local interneurons and cortical neurons onto newborn DG neurons were significantly 227 increased with environmental enrichment (Bergami et al., 2015), and optogenetic and 228 chemogenetic tools helped to reveal that disynaptic circuits via local interneurons mediated 229 the effect of environmental enrichment (Temprana et al., 2015; Alvarez et al., 2016). Besides

2015; Habib et al., 2016; Lacar et al., 2016; Artegiani et al., 2017; Yuzwa et al., 2017;

- 230 manipulating neural activity, the evolution of optogenetic tools has enabled us to manipulate
- 231 several biological processes, including protein localization, protein degradation, organelle

232 transport, signaling pathways and gene regulation (Imayoshi et al., 2013; Rost et al., 2017), 233 any of which could be manipulated for the direct regulation of adult neurogenesis. 234 New technology always brings us novel insights. There are more ongoing technological developments in areas such as single-cell proteomics/genomics and 235 236 computational modeling. Implementation of new technologies will surely uncover heretofore 237 unrecognized aspects of adult hippocampal neurogenesis and reveal how aging of the whole 238 organism affects the neurogenesis process (Fig. 1). 239 240 Roles of environment in the aging of adult neurogenesis 241 One prominent feature of adult hippocampal neurogenesis is that an animal's 242 experiences impact the neurogenesis process. Positive experiences such as learning, exposure 243 to enriched environment, and physical activity can partially reverse the age-related decline of

244 neurogenesis (Kempermann et al., 1997; Gould et al., 1999a; van Praag et al., 1999; van

245 Praag et al., 2005; Kempermann, 2015). In addition, other environmental components such as

246 stress, diet, sleep and life events have significant impacts on adult hippocampal neurogenesis

as reported and reviewed by others (Gould et al., 1998; Mirescu et al., 2004; Stangl and

248 Thuret, 2009; Leuner and Gould, 2010; Snyder et al., 2011; Anacker and Hen, 2017). In this

249 review, we focus on aging, which is an unavoidable biological process that gradually

250 compromises brain function and plasticity, including adult neurogenesis-dependent

251 structural/functional plasticity and mood regulation in the hippocampus. Therefore,

understanding how environmental factors can potentiate brain plasticity through the activation

of adult neurogenesis has been a fundamental challenge. The proliferation rate of NSPCs, the

fraction of adult-born cells that differentiate into neurons, and the survival rate of adult-born

- 255 neurons are all significantly decreased with age, presumably due to both cell-intrinsic and
- cell-extrinsic changes (Renault et al., 2009; Lugert et al., 2010; Encinas et al., 2011; Yousef et

257	al., 2015; Leeman et al., 2018). These include changes in metabolic status, transcriptional and
258	epigenetic programs, hormonal regulation, systemic milieu and neurotrophic signaling (Kuhn
259	et al., 1996; Cameron and McKay, 1999; Villeda et al., 2011; Villeda et al., 2014; Kuipers et
260	al., 2015; Moore et al., 2015; Yousef et al., 2015; Corenblum et al., 2016;
261	Beckervordersandforth et al., 2017; Castellano et al., 2017). The reduction of neurogenic
262	capability can be partially reversed by environmental enrichment and physical activity,
263	reducing corticosteroid levels as well as systemic factors transferred from young to old
264	animals (Falkenberg et al., 1992; Kempermann et al., 1998; Cameron and McKay, 1999;
265	Kempermann et al., 2002; Imayoshi et al., 2008; Villeda et al., 2011; Speisman et al., 2013;
266	Villeda et al., 2014; Yousef et al., 2015; Castellano et al., 2017). The exact mechanisms by
267	which environmental enrichment, physical exercise and systemic milieu from young animals
268	potentiate neurogenesis are not clear yet, but presumably they include neurotrophic, Wnt $\!/$
269	FGF, neurotransmitters and MHC signaling (Oliff et al., 1998; Imayoshi et al., 2008; Kobilo
270	et al., 2011; Okamoto et al., 2011; Vivar et al., 2013; Kang and Hebert, 2015; Smith et al.,
271	2015; Fan et al., 2017). A recent report demonstrated that aging also delays the maturation
272	and integration of adult-born neurons (Trinchero et al., 2017), even though the morphological
273	features of new neurons in the aged brain is similar to those generated in the young brain (van
274	Praag et al., 2005). It is not clear if this age-dependent delay is beneficial for the aging brain,
275	but the delayed morphological maturation and synaptic integration can be reversed by
276	enhancing neurotrophic signaling or physical activity (Trinchero et al., 2017). It is likely that
277	other, yet unknown factors involved in aging contribute to this delay. These factors would
278	include not only local environmental changes in the brain, such as decreased synaptic activity,
279	reduced neurotrophic factors, reduced mitochondrial activity and age-dependent
280	inflammation, but also systemic changes induced by a lack of mobility and altered

metabolism in aged animals themselves. Further work will uncover which age-dependentchanges compromise which steps of adult neurogenesis.

283 Interestingly, the mechanisms underlying the maintenance of adult NSPCs and the effect of aging on that process seem to be different across neurogenic niches (Molofsky et al., 284 285 2006; Lim et al., 2009). An increased expression of p16INK4a in neural progenitors of 286 subventricular zone significantly affected neurogenic capability but did not affect neurogenic 287 functions in the DZ (Molofsky et al., 2006). This could be due to an intrinsic difference in 288 adult NSPC populations, distinct environmental changes or both. It would be interesting to 289 examine if differences between neurogenic regions are evolutionally conserved or, even 290 conversely, vary depending on species.

291

292 Adult hippocampal neurogenesis in the human brain

293 The first evidence of adult hippocampal neurogenesis in the human brain was 294 demonstrated by using the gold-standard BrdU labeling of dividing cells with cell-type specific markers, such as NeuN and GFAP, to identify BrdU-positive adult-born neurons by 295 296 confocal microscopy (Eriksson et al., 1998). Since then, using immunohistochemical, carbon¹⁴ birth dating and tissue culture techniques, several independent laboratories have 297 298 found evidence of adult hippocampal neurogenesis in the DG of the human hippocampus 299 (Roy et al., 2000; Palmer et al., 2001; Knoth et al., 2010; Spalding et al., 2013; Dennis et al., 300 2016; Mathews et al., 2017; Boldrini et al., 2018), as well as in non-human primates (Gould et 301 al., 1999b; Kornack and Rakic, 1999; Leuner et al., 2007). In addition, adult hippocampal 302 neurogenesis in the DG is highly conserved across mammalian species with few exceptions 303 (Patzke et al., 2015), implying significant roles for adult hippocampal neurogenesis in brain 304 function. Many studies have shown an exponential reduction of hippocampal neurogenesis 305 along with aging despite the fact that molecular signatures of continuous adult neurogenesis

306 and proliferation have been found (Knoth et al., 2010; Spalding et al., 2013; Dennis et al., 307 2016; Mathews et al., 2017). Given the size of the adult human DG (500-150mm³) and the 308 number of newborn neurons identified per day by a carbon dating method (~700 cells) (Spalding et al., 2013; Dillon et al., 2017), one can assume that adult neurogenesis in the 309 310 human DG is sparse. The decline of adult hippocampal neurogenesis with age could attenuate 311 forms of structural and functional plasticity, and the level of adult hippocampal neurogenesis 312 has been linked to cognitive abilities both in rodents and non-human primates (Aizawa et al., 313 2009). Hippocampus-dependent cognitive abilities also decline with age in humans (Yassa et 314 al., 2011), but it is not clear yet if the levels of adult neurogenesis correlate with cognitive 315 abilities in humans.

316 Recently, using an unbiased stereology method with several common markers of 317 neurogenesis, Boldrini et al, showed that healthy human brains maintained similar levels of 318 neurogenesis from 14 to 79 years of age, raising the possibility of higher neural plasticity in 319 the human DG than was expected from previous studies (Boldrini et al., 2018). However, in 320 contrast, Sorrells et al. used the same markers (DCX, PSA-NCAM) but reached a different 321 conclusion, suggesting that neurogenesis in the human DG quickly decreased after birth and 322 became undetectable before adulthood (Sorrells et al., 2018). Where does this contradiction 323 come from?

One possible explanation is technical differences between the studies, including the duration of postmortem delay, fixation and sample preservation methods, and staining protocols. These factors are critical to reliably detect markers of adult-born neurons. The duration of postmortem delay in particular is crucial not only for the detection of DCX, but also the morphology of DCX signals (Boekhoorn et al., 2006). Sorrells et al. used brains with longer post-mortem delays (up to 48 hours) compared with other studies (Eriksson et al., 1998; Boldrini et al., 2018), which could be a critical factor in underestimating the number of adult-born neurons. Another major difference was the use of stereology (Boldrini et al.,
2018), a method for unbiased quantification in the three-dimensional tissues from the serial
sections. The method provides accurate estimation in terms of the number of adult-born
neurons compared with a method counting cells from a few sections of tissues, and it has been
adapted to study adult neurogenesis in rodents (Kuhn et al., 1996; Kempermann et al., 1997).
Usage of stereology should be encouraged to obtain an accurate picture of adult neurogenesis
in the human brain.

338 In addition, the criteria used for defining adult-born neurons in the human brain were 339 different in the two studies. Sorrells et al. defined only DCX⁺PSA-NCAM⁺ cells as adult-born 340 neurons; they did not count DCX⁻PSA-NCAM⁺ cells, claiming that the latter exhibited more 341 mature morphological features based on their criteria. However, the developmental time 342 course of adult-born neurons in the human DG has not been clearly characterized, and 343 neurons in higher mammals take at least six months to fully mature (Kohler et al., 2011). 344 Furthermore, our knowledge of the markers of adult-born neurons has been derived from 345 studies using rodent models; therefore, we do not know the exact expression time course of 346 neuronal markers in adult-born neurons in the human DG. In addition, adult-born DG neurons 347 show slower kinetics of maturation/survival and different patterns of genetic programs/marker 348 expression compared with perinatally born DG neurons in rodents (Dayer et al., 2003; Shi et 349 al., 2004; Overstreet-Wadiche et al., 2006; Jessberger et al., 2008; Andersen et al., 2014; 350 Urban and Guillemot, 2014; Cahill et al., 2017). Based on these technical limitations, many 351 researchers in the field including us questioned the strong conclusion from Sorrells et 352 al.(Kempermann et al., 2018). The discrepancies between these studies underscore that we 353 need to clearly determine the expression time course of neurogenesis markers in the human 354 DG. Importantly, there are sill many open questions as discussed below. We believe that this

standard to move the research of human adult hippocampal neurogenesis forward.

357

358 The future comes with more questions

Since the discovery of adult hippocampal neurogenesis, remarkable progress has been made in understanding the molecular mechanisms and functional contributions of adult neurogenesis. However, we still have fundamental questions that need to be resolved. Here we summarize and discuss some of these questions.

363 First, although adult neurogenesis declines with age, it is still not clear how the 364 dynamics of adult neurogenesis are affected by aging. Such dynamics include the activation 365 of quiescent adult NSPCs as well as the differentiation, maturation and integration of adult-366 born cells. Since adult NSPCs seem to be a heterogeneous population (Jhaveri et al., 2015; 367 Pilz et al., 2018), a distinct subpopulation may be differently affected by aging. Using multiphoton imaging, long-term live imaging of adult hippocampal neurogenesis throughout the 368 369 entire life of animals (both in rodents and non-human primates) would reveal the nature of 370 adult hippocampal neurogenesis in aging. Along the same line, we need to understand the 371 heterogeneous nature of adult NSPCs and their progeny. It would be intriguing to examine 372 whether distinct populations of adult NSPCs generate different subtypes of DGCs, whether 373 they differentially respond to environmental stimuli, how genetic and epigenetic regulations 374 differ between subtypes, and whether the heterogeneity of adult hippocampal neurogenesis is 375 preserved during evolution. Single cell technologies, including single cell RNA-seq, single 376 cell epigenetic methods, and single cell proteomics, will be promising approaches to address 377 these questions. The same approaches can be applied to pathological conditions as well to 378 reveal the effect of pathology for each individual cell type.

379	Second, the developmental time course of adult-born neurons in the human brain
380	needs to be determined. In the case of non-human primates, it takes at least several months to
381	express mature neuron markers (Kohler et al., 2011), which means that it could take longer
382	than several months for them to be fully mature. Given that humans have longer
383	developmental time courses and lifetimes, it is reasonable to speculate that the maturation
384	process of adult-born neurons in the human hippocampus should take longer. Characterizing
385	the maturation process along with the expression of molecular markers is critical since most
386	studies in the human brain rely on using the postmortem brain. However, as we discussed
387	above, we do not know exactly which markers correspond to which developmental time
388	points in human adult-born neurons. Furthermore, since the duration of the highly plastic
389	maturation period in adult-born neurons could impact the entire neural network of the
390	hippocampus through feed-forward and feedback mechanisms (Toda et al., 2018), it is critical
391	to determine the duration of the maturation period to estimate the role of adult-born neurons
392	in the human hippocampus. Although it is difficult to conduct these experiments using human
393	brains, combining recently developed hippocampal organoids with a transplant strategy may
394	allow us to address this issue (Sakaguchi et al., 2015; Mansour et al., 2018). An alternative
395	approach will be non-invasive in vivo imaging of neurogenesis using nuclear magnetic
396	resonance spectroscopy (NMR) or positron emission tomography (PET) (Manganas et al.,
397	2007; Rueger et al., 2010; Tamura et al., 2016). These technologies are still under
398	development and the methodology needs to be refined to increase the spatial resolution and
399	specificity of detection. Stem cell technology can help to identify specific markers of adult
400	neural stem cells and adult-born neurons that could be used for non-invasive in vivo imaging.
401	Advances in these technologies will also allow us to identify cognitive metrics relating to
402	adult hippocampal neurogenesis in humans. In addition, this line of study has the potential to

identify biomarkers for the reduction of adult neurogenesis, which could be beneficial forclinical screening.

405 Third, we need to identify the roles of adult hippocampal neurogenesis in humans in both physiological and pathological conditions. Accumulating evidence using animal models 406 407 has uncovered significant roles for adult-born neurons in cognitive function and mood 408 regulation (Shors et al., 2001; Kropff et al., 2015; Aimone, 2016; Anacker and Hen, 2017; 409 Toda and Gage, 2017). In contrast, evidence linking adult hippocampal neurogenesis to 410 cognitive function in humans is still limited and indirect (Toda et al., 2018). Although it is 411 hard to manipulate the levels of adult neurogenesis in the human brain, the development of 412 non-invasive in vivo functional imaging at cellular resolution would help to monitor neural 413 activity of adult-born neurons and their contribution in cognitive function and mood 414 regulation. Further technical development is desperately needed to advance our 415 understanding.

416 Fourth, the mechanisms underlying the development and maintenance of the 417 neurogenic niche in the SGZ of the DG are still unclear. Although past achievements in the 418 field have revealed a number of essential factors in the maintenance of neurogenic capability, 419 it is still totally unclear why specific regions of the brain such as the SGZ can possess and 420 maintain neurogenic properties. What are the cellular and molecular components necessary 421 for the development and maintenance of neurogenic regions in the adult brain? Since recent 422 evidence suggests that systemic factors in serum contribute to the regulation of adult 423 neurogenesis, the neurogenic niche may be involved not only in local cellular/tissue 424 components within the DG, but also in other organs; even the microbiota of the gut may 425 contribute as remote components of the neurogenic niche (Ogbonnaya et al., 2015). It would 426 be intriguing to examine how other organs contribute to the maintenance of the neurogenic 427 niche in the DG and how aging affects these communications.

428	Fifth, the cell autonomous mechanisms underlying the long-term maintenance of
429	multi-potency/quiescence of adult neural stem cells need to be determined. The importance of
430	cell cycle regulators as well as transcriptional/epigenetic factors has been investigated
431	(Goncalves et al., 2016a; Toda et al., 2018). However, most adult neural stem cells maintain a
432	quiescent state despite the fact that a variety of stimuli in the niche can activate them;
433	therefore, one can assume that there are very robust cell autonomous mechanisms underlying
434	the maintenance of the quiescent state. Intriguingly, some of nuclear proteins were identified
435	as long-lived proteins including histones, nuclear lamins and nucleoporins (Savas et al., 2012;
436	Toyama et al., 2013). These proteins interact with chromatins and work as a structural
437	foundation for cell-type-specific gene regulation (Ibarra and Hetzer, 2015; Jacinto et al., 2015;
438	Ibarra et al., 2016; Toda et al., 2017). Since these proteins accumulate damages with age
439	presumably due to their low turnover rates (D'Angelo et al., 2009), it may lead to age-
440	dependent deterioration of gene regulation. These mechanisms could be fundamental in
441	maintaining not only adult NSPCs but also the plasticity that is observed to some extent in
442	any somatic stem cells throughout our lifetime.
443	

444 Concluding remarks

445 What started in the early 1990s as an expedition to probe the possible existence of 446 somatic stem cells within the adult brain led to the establishment of a new area of 447 neuroscience research. For adult neurogenesis to receive significant (even though not always 448 undisputed) recognition, the development of novel tools was essential, and they made 449 possible the firm establishment of the phenomenon already described by Altman and 450 colleagues in the 1960s. We were immediately aware that a central dogma of neurobiology, 451 declared by Ramón y Cajal in 1928, "Everything may die, nothing may be regenerated..." 452 (Ramón y Cajal, 1991) had been repudiated. But even more than 20 years later, the role that

453	adult neurogenesis plays within the context of hippocampal function, neuroplasticity and
454	brain repair brings up many unsolved questions. We therefore call upon the next generation of
455	scientists to embrace the rest of Ramón y Cajal's famous declaration: "It is for the science
456	of the future to change, if possible, this harsh decree." (Ramón y Cajal, 1991).
457	
458	References
459	
460	Aimone JB (2016) Computational Modeling of Adult Neurogenesis. Cold Spring Harb
461	Perspect Biol 8:a018960.
462	Aizawa K, Ageyama N, Yokoyama C, Hisatsune T (2009) Age-dependent alteration in
463	hippocampal neurogenesis correlates with learning performance of macaque monkeys.
464	Exp Anim 58:403-407.
465	Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal
466	hippocampal neurogenesis in rats. J Comp Neurol 124:319-335.
467	Alvarez DD, Giacomini D, Yang SM, Trinchero MF, Temprana SG, Buttner KA, Beltramone
468	N, Schinder AF (2016) A disynaptic feedback network activated by experience
469	promotes the integration of new granule cells. Science 354:459-465.
470	Anacker C, Hen R (2017) Adult hippocampal neurogenesis and cognitive flexibility - linking
471	memory and mood. Nat Rev Neurosci 18:335-346.
472	Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R (2018)
473	Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate

474 gyrus. Nature 559:98-102.

475 Andersen J, Urban N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M,

476 Goritz C, Frisen J, Nakafuku M, Guillemot F (2014) A transcriptional mechanism

477 integrating inputs from extracellular signals to activate hippocampal stem cells.478 Neuron 83:1085-1097.

479 Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011)

480 Posttraining ablation of adult-generated neurons degrades previously acquired
481 memories. J Neurosci 31:15113-15127.

482	Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H (2017) A
483	Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the
484	Hippocampal Neurogenic Niche. Cell Rep 21:3271-3284.
485	Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb.
486	Exp Brain Res 50:329-340.
487	Beckervordersandforth R et al. (2017) Role of Mitochondrial Metabolism in the Control of
488	Early Lineage Progression and Aging Phenotypes in Adult Hippocampal
489	Neurogenesis. Neuron 93:560-573 e566.
490	Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Gobel J, Yang SM,
491	Conzelmann KK, Schinder AF, Gotz M, Berninger B (2015) A critical period for
492	experience-dependent remodeling of adult-born neuron connectivity. Neuron 85:710-
493	717.
494	Boekhoorn K, Joels M, Lucassen PJ (2006) Increased proliferation reflects glial and vascular-
495	associated changes, but not neurogenesis in the presenile Alzheimer hippocampus.
496	Neurobiol Dis 24:1-14.
497	Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB,
498	Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human Hippocampal
499	Neurogenesis Persists throughout Aging. Cell Stem Cell 22:589-599 e585.
500	Bonaguidi MA, Song J, Ming GL, Song H (2012) A unifying hypothesis on mammalian
501	neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22:754-
502	761.
503	Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In
504	vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell
505	characteristics. Cell 145:1142-1155.
506	Cahill SP, Yu RQ, Green D, Todorova EV, Snyder JS (2017) Early survival and delayed
507	death of developmentally-born dentate gyrus neurons. Hippocampus 27:1155-1167.
508	Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age.
509	Nat Neurosci 2:894-897.
510	Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory
511	input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687-4692.
512	Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born
513	neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337-344.
514	Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, Shen JC, Zou B,
515	Xie XS, Tingle M, Hinkson IV, Angst MS, Wyss-Coray T (2017) Human umbilical

516	cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488-
517	492.
518	Corenblum MJ, Ray S, Remley QW, Long M, Harder B, Zhang DD, Barnes CA, Madhavan L
519	(2016) Reduced Nrf2 expression mediates the decline in neural stem cell function
520	during a critical middle-age period. Aging Cell 15:725-736.
521	D'Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of
522	nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell
523	136:284-295.
524	Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A
525	(2017) In Vivo Imaging of Dentate Gyrus Mossy Cells in Behaving Mice. Neuron
526	93:552-559.
527	Danielson NB, Kaifosh P, Zaremba JD, Lovett-Barron M, Tsai J, Denny CA, Balough EM,
528	Goldberg AR, Drew LJ, Hen R, Losonczy A, Kheirbek MA (2016) Distinct
529	Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron
530	90:101-112.
531	Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-
532	term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563-572.
533	Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult
534	hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339-
535	350.
536	Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule
537	cells undergoing maturation modulate learning and memory in the brain. J Neurosci
538	29:13532-13542.
539	Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT (2016) Human adult neurogenesis
540	across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 42:621-
541	638.
542	Deshpande A, Bergami M, Ghanem A, Conzelmann KK, Lepier A, Gotz M, Berninger B
543	(2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto
544	new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A
545	110:E1152-1161.
546	Dillon SE, Tsivos D, Knight M, McCann B, Pennington C, Shiel AI, Conway ME, Newson
547	MA, Kauppinen RA, Coulthard EJ (2017) The impact of ageing reveals distinct roles
548	for human dentate gyrus and CA3 in pattern separation and object recognition
549	memory. Sci Rep 7:14069.

550	Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV
551	(2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS One
552	3:e1959.
553	Encinas JM, Enikolopov G (2008) Identifying and quantitating neural stem and progenitor
554	cells in the adult brain. Methods Cell Biol 85:243-272.
555	Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov
556	A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related
557	depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566-579.
558	Enikolopov G, Overstreet-Wadiche L, Ge S (2015) Viral and transgenic reporters and genetic
559	analysis of adult neurogenesis. Cold Spring Harb Perspect Biol 7:a018804.
560	Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage
561	FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.
562	Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992)
563	Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus
564	is associated with improved spatial memory and enriched environment. Neurosci Lett
565	138:153-156.
566	Fan X, Wheatley EG, Villeda SA (2017) Mechanisms of Hippocampal Aging and the
567	Potential for Rejuvenation. Annu Rev Neurosci 40:251-272.
568	Gage FH (1994) Challenging an old dogma: neurogenesis in the adult hippocampus. J NIH
569	Res 6:53-55.
570	Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612-613.
571	Goncalves JT, Schafer ST, Gage FH (2016a) Adult Neurogenesis in the Hippocampus: From
572	Stem Cells to Behavior. Cell 167:897-914.
573	Goncalves JT, Bloyd CW, Shtrahman M, Johnston ST, Schafer ST, Parylak SL, Tran T,
574	Chang T, Gage FH (2016b) In vivo imaging of dendritic pruning in dentate granule
575	cells. Nat Neurosci 19:788-791.
576	Gould E, Cameron HA, McEwen BS (1994) Blockade of NMDA receptors increases cell
577	death and birth in the developing rat dentate gyrus. J Comp Neurol 340:551-565.
578	Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS (1992) Adrenal hormones
579	suppress cell division in the adult rat dentate gyrus. J Neurosci 12:3642-3650.
580	Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell
581	precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl
582	Acad Sci U S A 95:3168-3171.
583	Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999a) Learning enhances adult

neurogenesis in the hippocampal formation. Nat Neurosci 2:260-265.

585	Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999b) Hippocampal
586	neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96:5263-5267.
587	Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012)
588	Optical controlling reveals time-dependent roles for adult-born dentate granule cells.
589	Nat Neurosci 15:1700-1706.
590	Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C,
591	Zhang F, Regev A (2016) Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare
592	adult newborn neurons. Science 353:925-928.
593	Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new
594	biology? Nature Reviews Neuroscience 8:368.
595	Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S (2018) Conserved properties of dentate
596	gyrus neurogenesis across postnatal development revealed by single-cell RNA
597	sequencing. Nat Neurosci 21:290-299.
598	Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH,
599	Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and
600	blood tissue. Genome Biol 13:R97.
601	Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions.
602	Genes Dev 29:337-349.
603	Ibarra A, Benner C, Tyagi S, Cool J, Hetzer MW (2016) Nucleoporin-mediated regulation of
604	cell identity genes. Genes Dev 30:2253-2258.
605	Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F,
606	Kageyama R (2013) Oscillatory control of factors determining multipotency and fate
607	in mouse neural progenitors. Science 342:1203-1208.
608	Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T,
609	Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and
610	functional integrity of the adult forebrain. Nat Neurosci 11:1153-1161.
611	Jacinto FV, Benner C, Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem
612	cell pluripotency through gene silencing. Genes Dev 29:1224-1238.
613	Jaeger BN, Linker SB, Parylak SL, Barron JJ, Gallina IS, Saavedra CD, Fitzpatrick C, Lim
614	CK, Schafer ST, Lacar B, Jessberger S, Gage FH (2018) A novel environment-evoked
615	transcriptional signature predicts reactivity in single dentate granule neurons. Nature
616	Communications 9:doi: 10.1038/s41467-41018-05418-41468.
617	Jessberger S, Toni N, Clemenson GD, Jr., Ray J, Gage FH (2008) Directed differentiation of
618	hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11:888-893.

619	Jhaveri DJ, O'Keeffe I, Robinson GJ, Zhao QY, Zhang ZH, Nink V, Narayanan RK, Osborne
620	GW, Wray NR, Bartlett PF (2015) Purification of neural precursor cells reveals the
621	presence of distinct, stimulus-specific subpopulations of quiescent precursors in the
622	adult mouse hippocampus. J Neurosci 35:8132-8144.
623	Jobe EM, McQuate AL, Zhao X (2012) Crosstalk among Epigenetic Pathways Regulates
624	Neurogenesis. Front Neurosci 6:59.
625	Kang W, Hebert JM (2015) FGF Signaling Is Necessary for Neurogenesis in Young Mice and
626	Sufficient to Reverse Its Decline in Old Mice. J Neurosci 35:10217-10223.
627	Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of
628	light radioautographs. Science 197:1092-1094.
629	Kempermann G (2015) Activity Dependency and Aging in the Regulation of Adult
630	Neurogenesis. Cold Spring Harbor Perspectives in Biology 7:a018929.
631	Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living
632	in an enriched environment. Nature 386:493-495.
633	Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the
634	senescent dentate gyrus. J Neurosci 18:3206-3212.
635	Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold
636	induction of hippocampal neurogenesis by long-term environmental enrichment. Ann
637	Neurol 52:135-143.
638	Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination
639	and long-term persistence of adult-generated new neurons in the hippocampus of
640	mice. Development 130:391-399.
641	Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S,
642	Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF,
643	Zhao X, Lucassen PJ, Frisen J (2018) Human Adult Neurogenesis: Evidence and
644	Remaining Questions. Cell Stem Cell 23:25-30.
645	Kirschen GW, Shen J, Tian M, Schroeder B, Wang J, Man G, Wu S, Ge S (2017) Active
646	Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born
647	Hippocampal Neurons. J Neurosci 37:4661-4678.
648	Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B,
649	Kempermann G (2010) Murine features of neurogenesis in the human hippocampus
650	across the lifespan from 0 to 100 years. PLoS One 5:e8809.
651	Kobilo T, Liu QR, Gandhi K, Mughal M, Shaham Y, van Praag H (2011) Running is the
652	neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem

653 18:605-609.

654	Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of
655	new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months.
656	Proc Natl Acad Sci U S A 108:10326-10331.
657	Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult
658	macaque monkey. Proc Natl Acad Sci U S A 96:5768-5773.
659	Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006)
660	Physical exercise prevents age-related decline in precursor cell activity in the mouse
661	dentate gyrus. Neurobiol Aging 27:1505-1513.
662	Kropff E, Yang SM, Schinder AF (2015) Dynamic role of adult-born dentate granule cells in
663	memory processing. Curr Opin Neurobiol 35:21-26.
664	Kuhn HG, Cooper-Kuhn CM (2007) Bromodeoxyuridine and the detection of neurogenesis.
665	Curr Pharm Biotechnol 8:127-131.
666	Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the
667	adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci
668	16:2027-2033.
669	Kuhn HG, Eisch AJ, Spalding K, Peterson DA (2016) Detection and Phenotypic
670	Characterization of Adult Neurogenesis. Cold Spring Harb Perspect Biol 8:a025981.
671	Kuipers SD, Schroeder JE, Trentani A (2015) Changes in hippocampal neurogenesis
672	throughout early development. Neurobiol Aging 36:365-379.
673	Kuzumaki N, Ikegami D, Imai S, Narita M, Tamura R, Yajima M, Suzuki A, Miyashita K,
674	Niikura K, Takeshima H, Ando T, Ushijima T, Suzuki T, Narita M (2010a) Enhanced
675	IL-1beta production in response to the activation of hippocampal glial cells impairs
676	neurogenesis in aged mice. Synapse 64:721-728.
677	Kuzumaki N, Ikegami D, Tamura R, Sasaki T, Niikura K, Narita M, Miyashita K, Imai S,
678	Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T, Narita M (2010b)
679	Hippocampal epigenetic modification at the doublecortin gene is involved in the
680	impairment of neurogenesis with aging. Synapse 64:611-616.
681	Lacar B, Linker SB, Jaeger BN, Krishnaswami S, Barron J, Kelder M, Parylak S, Paquola A,
682	Venepally P, Novotny M, O'Connor C, Fitzpatrick C, Erwin J, Hsu JY, Husband D,
683	McConnell MJ, Lasken R, Gage FH (2016) Nuclear RNA-seq of single neurons
684	reveals molecular signatures of activation. Nat Commun 7:11022.
685	Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello AA, Donovan
686	MH, Fischer SJ, Farnbauch LA, Beech RD, DiLeone RJ, Greer CA, Mandyam CD,
687	Eisch AJ (2007) Dynamic contribution of nestin-expressing stem cells to adult

688 neurogenesis. J Neurosci 27:12623-12629.

689	Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X,
690	Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegue E, Rando TA, Frydman J,
691	Brunet A (2018) Lysosome activation clears aggregates and enhances quiescent neural
692	stem cell activation during aging. Science 359:1277-1283.
693	Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol
694	61:111-140, C111-113.
695	Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the
696	marmoset brain precedes old age. Proc Natl Acad Sci U S A 104:17169-17173.
697	Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S,
698	Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal
699	neurogenesis. Nature 437:1370-1375.
700	Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A
701	(2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis.
702	Neuron 28:713-726.
703	Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P,
704	Alvarez-Buylla A (2009) Chromatin remodelling factor Mll1 is essential for
705	neurogenesis from postnatal neural stem cells. Nature 458:529-533.
706	Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA, Kempermann G,
707	Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with
708	distinct morphologies respond selectively to physiological and pathological stimuli
709	and aging. Cell Stem Cell 6:445-456.
710	Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, Henn F, Benveniste H,
711	Djuric PM, Enikolopov G, Maletic-Savatic M (2007) Magnetic resonance
712	spectroscopy identifies neural progenitor cells in the live human brain. Science
713	318:980-985.
714	Mansour AA, Goncalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak
715	SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human
716	brain organoids. Nat Biotechnol 36:432-441.
717	Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL (2017)
718	Evidence for reduced neurogenesis in the aging human hippocampus despite stable
719	stem cell markers. Aging Cell 16:1195-1199.
720	McAvoy KM, Scobie KN, Berger S, Russo C, Guo N, Decharatanachart P, Vega-Ramirez H,
721	Miake-Lye S, Whalen M, Nelson M, Bergami M, Bartsch D, Hen R, Berninger B,
722	Sahay A (2016) Modulating Neuronal Competition Dynamics in the Dentate Gyrus to
723	Rejuvenate Aging Memory Circuits. Neuron 91:1356-1373.

	724	Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult
	725	neurogenesis to stress. Nat Neurosci 7:841-846.
	726	Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE,
	727	Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors
Ţ	728	and neurogenesis during ageing. Nature 443:448-452.
	729	Moore DL, Pilz GA, Arauzo-Bravo MJ, Barral Y, Jessberger S (2015) A mechanism for the
<u> </u>	730	segregation of age in mammalian neural stem cells. Science 349:1334-1338.
C	731	Morshead CM, Craig CG, van der Kooy D (1998) In vivo clonal analyses reveal the
S	732	properties of endogenous neural stem cell proliferation in the adult mammalian
	733	forebrain. Development 125:2251-2261.
C	734	Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss
Б	735	S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a
Ň	736	relatively quiescent subpopulation of subependymal cells. Neuron 13:1071-1082.
sci Accepted Manuscript	737	Mosher KI, Schaffer DV (2018) Influence of hippocampal niche signals on neural stem cell
	738	functions during aging. Cell Tissue Res 371:115-124.
O	739	Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O'Leary OF (2015) Adult
Φ	740	Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol Psychiatry 78:e7-9.
Ot	741	Okamoto M, Inoue K, Iwamura H, Terashima K, Soya H, Asashima M, Kuwabara T (2011)
	742	Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis.
W	743	FASEB J 25:3570-3582.
Ö	744	Oliff HS, Berchtold NC, Isackson P, Cotman CW (1998) Exercise-induced regulation of
	745	brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain
	746	Res Mol Brain Res 61:147-153.
	747	Overstreet-Wadiche LS, Bensen AL, Westbrook GL (2006) Delayed development of adult-
O	748	generated granule cells in dentate gyrus. J Neurosci 26:2326-2334.
	749	Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in
0	750	proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474-
	751	486.
	752	Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial
\mathbf{O}	753	neural stem cells. Mol Cell Neurosci 8:389-404.
JNeuro	754	Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal
	755	neurogenesis. J Comp Neurol 425:479-494.
	756	Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH (1999) Fibroblast growth factor-2
	757	activates a latent neurogenic program in neural stem cells from diverse regions of the

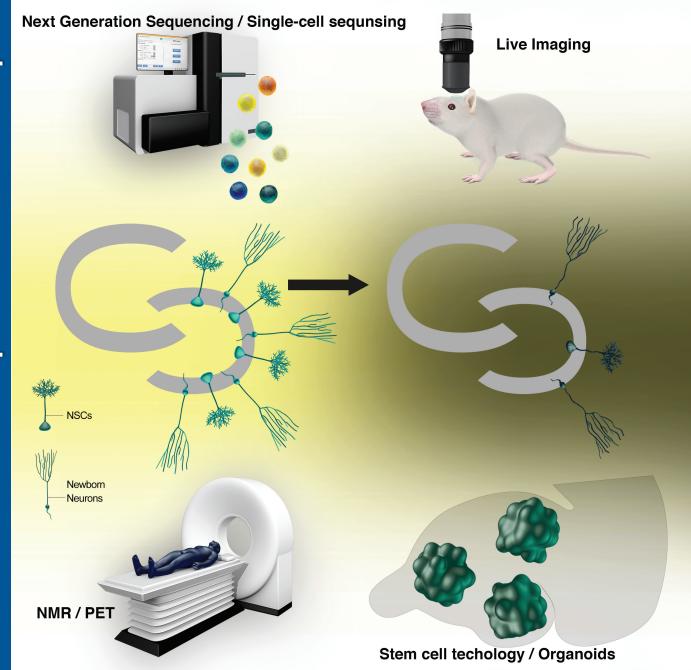
758 adult CNS. J Neurosci 19:8487-8497.

759	Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture.
760	Progenitor cells from human brain after death. Nature 411:42-43.
761	Patzke N, Spocter MA, Karlsson KAE, Bertelsen MF, Haagensen M, Chawana R, Streicher S,
762	Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel
763	JM, Ihunwo AO, Manger PR (2015) In contrast to many other mammals, cetaceans
764	have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct
765	Funct 220:361-383.
766	Pilz GA, Carta S, Stauble A, Ayaz A, Jessberger S, Helmchen F (2016) Functional Imaging
767	of Dentate Granule Cells in the Adult Mouse Hippocampus. J Neurosci 36:7407-7414.
768	Pilz GA, Bottes S, Betizeau M, Jorg DJ, Carta S, Simons BD, Helmchen F, Jessberger S
769	(2018) Live imaging of neurogenesis in the adult mouse hippocampus. Science
770	359:658-662.
771	Ramón y Cajal S (1991) Cajal's degeneration and regeneration of the nervous system. In:
772	History of neuroscience (DeFelipe J, Jones EG, May RM, eds), pp xvi, 769 p. New
773	York: Oxford University Press.
774	Ray J, Gage FH (1994) Spinal cord neuroblasts proliferate in response to basic fibroblast
775	growth factor. J Neurosci 14:3548-3564.
776	Ray J, Peterson DA, Schinstine M, Gage FH (1993) Proliferation, differentiation, and long-
777	term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A 90:3602-
778	3606.
779	Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat
780	PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates
781	neural stem cell homeostasis. Cell Stem Cell 5:527-539.
782	Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the
783	adult mammalian central nervous system. Science 255:1707-1710.
784	Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic
785	progenitor cell produces neurons and astrocytes. J Neurosci 12:4565-4574.
786	Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic Tools for
787	Subcellular Applications in Neuroscience. Neuron 96:572-603.
788	Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell
789	WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA (2000) In vitro
790	neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat
791	Med 6:271-277.
792	Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, Emig B, Fink GR,
793	Hoehn M, Graf R, Schroeter M (2010) Noninvasive imaging of endogenous neural

794	stem cell mobilization in vivo using positron emission tomography. J Neurosci
795	30:6454-6460.
796	Sah N, Peterson BD, Lubejko ST, Vivar C, van Praag H (2017) Running reorganizes the
797	circuitry of one-week-old adult-born hippocampal neurons. Sci Rep 7:10903.
798	Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M,
799	Sasai Y (2015) Generation of functional hippocampal neurons from self-organizing
800	human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun
801	6:8896.
802	Savas JN, Toyama BH, Xu T, Yates JR, 3rd, Hetzer MW (2012) Extremely long-lived nuclear
803	pore proteins in the rat brain. Science 335:942.
804	Shi Y, Chichung Lie D, Taupin P, Nakashima K, Ray J, Yu RT, Gage FH, Evans RM (2004)
805	Expression and function of orphan nuclear receptor TLX in adult neural stem cells.
806	Nature 427:78-83.
807	Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, Enikolopov G, Nauen DW,
808	Christian KM, Ming GL, Song H (2015) Single-Cell RNA-Seq with Waterfall Reveals
809	Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 17:360-372.
810	Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the
811	adult is involved in the formation of trace memories. Nature 410:372-376.
812	Smith LK, White CW, 3rd, Villeda SA (2018) The systemic environment: at the interface of
813	aging and adult neurogenesis. Cell Tissue Res 371:105-113.
814	Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE,
815	Udeochu J, Wheatley EG, Bouchard J, Eggel A, Narasimha R, Grant JL, Luo J, Wyss-
816	Coray T, Villeda SA (2015) beta2-microglobulin is a systemic pro-aging factor that
817	impairs cognitive function and neurogenesis. Nat Med 21:932-937.
818	Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal
819	neurogenesis buffers stress responses and depressive behaviour. Nature 476:458-461.
820	Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S,
821	Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham
822	MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human
823	hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
824	Nature 555:377-381.
825	Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E,
826	Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013)
827	Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219-1227.

	828	Speisman RB, Kumar A, Rani A, Pastoriza JM, Severance JE, Foster TC, Ormerod BK
	829	(2013) Environmental enrichment restores neurogenesis and rapid acquisition in aged
	830	rats. Neurobiol Aging 34:263-274.
	831	Stangl D, Thuret S (2009) Impact of diet on adult hippocampal neurogenesis. Genes Nutr
-	832	4:271-282.
2	833	Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (2007) In vivo fate analysis
	834	reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the
)	835	adult hippocampus. Cell Stem Cell 1:515-528.
0	836	Tamura Y, Takahashi K, Takata K, Eguchi A, Yamato M, Kume S, Nakano M, Watanabe Y,
5	837	Kataoka Y (2016) Noninvasive Evaluation of Cellular Proliferative Activity in Brain
	838	Neurogenic Regions in Rats under Depression and Treatment by Enhanced [18F]FLT-
R	839	PET Imaging. J Neurosci 36:8123-8131.
	840	Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH (2006) NMDA-receptor-mediated, cell-
	841	specific integration of new neurons in adult dentate gyrus. Nature 442:929-933.
	842	Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, Giacomini D,
	843	Beltramone N, Lanuza GM, Schinder AF (2015) Delayed coupling to feedback
)	844	inhibition during a critical period for the integration of adult-born granule cells.
	845	Neuron 85:116-130.
ういろううく	846	Toda T, Gage FH (2017) Review: adult neurogenesis contributes to hippocampal plasticity.
	847	Cell Tissue Res:doi: 10.1007/s00441-00017-02735-00444.
く	848	Toda T, Parylak SL, Linker SB, Gage FH (2018) The role of adult hippocampal neurogenesis
	849	in brain health and disease. Mol Psychiatry:doi: 10.1038/s41380-41018-40036-41382.
	850	Toda T, Hsu JY, Linker SB, Hu L, Schafer ST, Mertens J, Jacinto FV, Hetzer MW, Gage FH
	851	(2017) Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and
50	852	Maintenance of Neural Progenitor Cells. Cell Stem Cell 21:618-634.
	853	Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, 3rd, Hetzer MW (2013)
)	854	Identification of long-lived proteins reveals exceptional stability of essential cellular
	855	structures. Cell 154:971-982.
)	856	Trinchero MF, Buttner KA, Sulkes Cuevas JN, Temprana SG, Fontanet PA, Monzon-Salinas
)	857	MC, Ledda F, Paratcha G, Schinder AF (2017) High Plasticity of New Granule Cells
2	858	in the Aging Hippocampus. Cell Rep 21:1129-1139.
	859	Urban N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same
	860	regulators, different roles. Front Cell Neurosci 8:396.
	861	van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and
	862	neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266-270.

863	van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and
864	hippocampal neurogenesis in aged mice. J Neurosci 25:8680-8685.
865	van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional
866	neurogenesis in the adult hippocampus. Nature 415:1030-1034.
867	Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri
868	G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie
869	XS, Longo FM, Wyss-Coray T (2014) Young blood reverses age-related impairments
870	in cognitive function and synaptic plasticity in mice. Nat Med 20:659-663.
871	Villeda SA et al. (2011) The ageing systemic milieu negatively regulates neurogenesis and
872	cognitive function. Nature 477:90-94.
873	Vivar C, Potter MC, van Praag H (2013) All about running: synaptic plasticity, growth factors
874	and adult hippocampal neurogenesis. Curr Top Behav Neurosci 15:189-210.
875	Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, Gage FH, Suh H, van Praag
876	H (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun
877	3:1107.
878	Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA,
879	Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing from single,
880	genetically targeted neurons. Neuron 53:639-647.
881	Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central
882	nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11:1991-
883	1996.
884	Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CE (2011) Pattern separation
885	deficits associated with increased hippocampal CA3 and dentate gyrus activity in
886	nondemented older adults. Hippocampus 21:968-979.
887	Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy IM, Schaffer DV (2015) Age-
888	Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem
889	Cells 33:1577-1588.
890	Yuzwa SA, Borrett MJ, Innes BT, Voronova A, Ketela T, Kaplan DR, Bader GD, Miller FD
891	(2017) Developmental Emergence of Adult Neural Stem Cells as Revealed by Single-
892	Cell Transcriptional Profiling. Cell Rep 21:3970-3986.
893	Zhao C, Teng EM, Summers RG, Jr., Ming GL, Gage FH (2006) Distinct morphological
894	stages of dentate granule neuron maturation in the adult mouse hippocampus. J
895	Neurosci 26:3-11.
896	Zhuo JM, Tseng HA, Desai M, Bucklin ME, Mohammed AI, Robinson NT, Boyden ES,


Zhuo JM, Tseng HA, Desai M, Bucklin ME, Mohammed AI, Robinson NT, Boyden ES,
Rangel LM, Jasanoff AP, Gritton HJ, Han X (2016) Young adult born neurons

898	enhance hippocampal dependent performance via influences on bilateral networks.
899	eLife 5:doi 10.7554/eLife.22429.
900	
001	

903

904 Figure Legends

905	Figure 1. A schematic view of implementation of emerging technology to study adult
906	hippocampal neurogenesis throughout the life span. Technology that will be implemented to
907	study adult hippocampal neurogenesis is next generation sequencing/single cell sequencing
908	(left upper), live imaging (right upper), non-invasive imaging (e.g. NMR /PET)(left bottom)
909	and stem cell technology/organoids (right bottom), but not limited to these technology.

