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ABSTRACT 1 

Performance-based incentives tend to increase an individual’s motivation, 2 

resulting in enhancements in behavioral output. While much work has focused on 3 

understanding how the brain’s reward circuitry influences incentive motivated 4 

performance, fewer studies have investigated how such reward representations act on 5 

the motor system. Here we measured motor cortical excitability with transcranial 6 

magnetic stimulation (TMS) while female and male human participants performed a 7 

motoric incentive motivation task for prospective monetary gains and losses. We found 8 

that individuals’ performance increased for increasing prospective gains and losses. 9 

While motor cortical excitability appeared insensitive to prospective loss, temporal 10 

features of motor cortical excitability for prospective gains were modulated by an 11 

independent measure of an individual’s subjective preferences for incentive (i.e., loss 12 

aversion). Those individuals that were more loss averse had a greater motor cortical 13 

sensitivity to prospective gain, closer to movement onset. Critically, behavioral 14 

sensitivity to incentive and motor cortical sensitivity to prospective gains were both 15 

predicted by loss aversion. Furthermore, causal modeling indicated that motor cortical 16 

sensitivity to incentive mediated the relationship between subjective preferences for 17 

incentive and behavioral sensitivity to incentive. Together our findings suggest that 18 

motor cortical activity integrates information about the subjective value of reward to 19 

invigorate incentive motivated performance. 20 
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SIGNIFICANCE STATEMENT 21 

Increasing incentives tend to increase motivation and effort. Using a motoric 22 

incentive motivation task and transcranial magnetic stimulation, we studied the motor 23 

cortical mechanisms responsible for incentive motivated motor performance. We 24 

provide experimental evidence that motor cortical sensitivity to incentive mediates the 25 

relationship between subjective preferences for incentive and incentive motivated 26 

performance. These results indicate that, rather than simply being a reflection of motor 27 

output, motor cortical physiology integrates information about reward value to motivate 28 

performance. 29 

INTRODUCTION 30 

We modulate our performance according to the rewards at stake. Larger stakes 31 

tend to increase motivation, which in turn elicits increased behavioral output (i.e., 32 

increased force exertion (Pessiglione et al., 2007; Kurniawan et al., 2010; Schmidt et 33 

al., 2012); and increased success rate during a skilled motor task (Chib et al., 2012, 34 

2014)). Incentive motivation refers to the processes that convert higher reward 35 

expectancies into increased performance (Berridge, 2004). These processes include 36 

forming a subjective representation of prospective reward, which invigorates behavioral 37 

performance. The effects of incentive motivation on effortful exertion has been the topic 38 

of extensive investigation in psychology (Bolles, 1972; Bindra, 1974; Bolles and 39 

Fanselow, 1980), and, in more recent years, the field of cognitive neuroscience has 40 

begun to dissect how the brain’s reward circuity influences motivated 41 

performance (Pessiglione et al., 2007; Talmi et al., 2008; Chib et al., 2012; Schmidt et 42 
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al., 2012). However, motivated performance is not only related to processing the 43 

rewards at stake, but also how these reward representations influence activity in motor 44 

cortex to result in behavioral performance. Despite the neural crosstalk between 45 

motivation and motor processing during incentivized performance (Mogenson et al., 46 

1980; Bray et al., 2008; Talmi et al., 2008; Chib et al., 2014), the understanding of how 47 

motor cortical excitability gives rise to incentive motivated performance is fairly limited. 48 

Transcranial magnetic stimulation (TMS) provides precise timing to study how 49 

motor cortical excitability is influenced by motivating stimuli. Freeman and colleagues 50 

recently used TMS to demonstrate that stimuli predicting an appetitive juice reward (i.e., 51 

conditioned stimulus), paired with an instrumental response in extinction (i.e. 52 

performance was not reward-contingent), served to increase motor cortical excitability 53 

and responding; while stimuli predicting the absence of reward did not invoke increases 54 

in motor excitability (Freeman et al., 2014). In a follow-up study, they found that 55 

presentation of aversive stimuli inhibited motor evoked potentials during trials that did 56 

not require instrumental responding (i.e. no-go trials) (Chiu et al., 2014). Together these 57 

results illustrate that motivational information spills into the motor system, influencing 58 

motor cortical excitability prior to execution. 59 

Studies of binary choice have also used TMS to study the dynamics of motor 60 

excitability prior to action selection. This work has shown that motor cortical activity 61 

builds in the time period before a choice cue is presented and that excitability increases 62 
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as function of the value of the chosen option (Duque and Ivry, 2009; Klein et al., 2012; 63 

Klein-Flügge et al., 2013). From these results it has been suggested that action 64 

selection during choice entails a competition, within motor-related areas, in which motor 65 

cortical excitability integrates reward value to drive a motor response. Furthermore, it 66 

was found that during binary choice of risky options, motor excitability was best 67 

described by chosen and unchosen subjective value (i.e., accounting for prospect 68 

theoretic measures) (Klein-Flügge and Bestmann, 2012). These studies suggest that 69 

the dynamics of motor excitability captures the value of reward during simple choice. 70 

However, it is not known how subjective preferences for incentives might influence 71 

motor cortical excitability to drive incentive motivated performance. 72 

The aim of this study was to investigate the role of motor cortical excitability on 73 

incentive motivation, and how these cortical processes interact with representations of 74 

subjective value to result in motivated performance. We hypothesized that the sensitivity 75 

of motor excitability to incentive would be predictive of an individual’s motivated 76 

performance. This hypothesis has its basis in previous TMS studies that found that 77 

motor cortical excitability, measured prior to instrumental responding, was modulated in 78 

response to conditioned stimuli that previously predicted appetitive and aversive 79 

outcomes (Chiu et al., 2014; Freeman et al., 2014; Freeman and Aron, 2016). We also 80 

hypothesized that motor cortical excitability would be related to an independent 81 

behavioral measure of subjective preferences for incentive. This hypothesis has its 82 

basis in previous TMS studies which found that motor cortical excitability reflected 83 

subjective chosen and unchosen values during binary choice (Klein-Flügge and 84 
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Bestmann, 2012); and neuroimaging studies that found that the functional connectivity 85 

between reward regions and motor cortex, during instrumental responding for reward, 86 

was modulated by behavioral measures of subjective preferences (Chib et al., 2012, 87 

2014). Specifically, our previous behavioral and neuroimaging studies (Chib et al., 2012, 88 

2014) found that incentives associated with successful task performance are initially 89 

encoded as a potential gain; and, when actually performing a task, individuals encode 90 

the potential loss that would arise from failure. Given these findings, we predicted that 91 

subjective feelings of loss, instantiated by a measure of loss aversion, would be 92 

predictive of incentive motivated performance and motor cortical excitability. 93 

MATERIALS AND METHODS 94 

Experimental Design and Statistical Analyses  95 

All participants were right handed and prescreened to exclude those with a prior 96 

history of neurological or psychiatric illness. The Johns Hopkins Medical Institute 97 

Institutional Review Board approved this study, and all participants gave informed 98 

consent. Using an effect size from our previous study examining the relationship 99 

between incentive motivated performance and neural sensitivity to value (100 

) (Chib et al., 2012), a significance of < 0.05 with a power goal of at 101 

least 0.80, a power analysis indicated that we would need at least 13 subjects to 102 

reproduce this effect.  We aimed to collect data from 20 participants, to account for the 103 

possibility of attrition, exclusion due to lack of task compliance, or mis-estimation of the 104 

subjective reward preference data. In the end, nineteen participants (mean age, 20; age 105 

range, 18-23; twelve females, seven males) were recruited and took part in the 106 
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experiment. Each participant performed the motor task and a behavioral choice 107 

paradigm to characterize subjective preferences for incentive (i.e., loss aversion and 108 

risk aversion). One participant was excluded from the final analysis because of atypical 109 

choices during the subjective reward preference task (i.e. rejection of all gambles with 110 

potential losses). 111 

All analyses were conducted in Matlab2018a with the exception of the hierarchal 112 

Bayesian modeling for subjective reward preference analysis (described below). 113 

Hierarchical linear models were implemented to test population-level effects on subject-114 

level estimates, implemented in Matlab using fitglme, with no covariance matrix 115 

restrictions. Analyses that examined population-level exertion report effects of slope on 116 

subject-level z-scored mean force exertion. Analyses that examined the sub-population 117 

motor cortical findings used ANOVAs of hierarchical linear models to evaluate the 2-way 118 

interaction of timing and reward subjectivity. Subject-level parameters were estimated 119 

from general linear models (described below), implemented in Matlab using fitglm. 120 

Correlations were reported with Pearson coefficients and 95% confidence intervals 121 

generated by 10000 iteration bootstrapping. Additionally, standardized regressions were 122 

used for the mediation analysis and the completely standardized indirect effect size was 123 

bootstrapped to measure mediation (Preacher and Kelley, 2011). 124 
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Experimental Setup and Brain Stimulation 125 

Participants sat in a chair and held a force transducer (LMD300, Futek) between 126 

the thumb and forefinger of their right hand. During the experiment, participants rested 127 

their head in a custom-built gantry. The gantry minimized head-movements across trials 128 

and ensured accurate brain stimulator placement. An armrest ensured consistent 129 

positioning of the arm across trials. Visual stimuli were presented using MATLAB 2014a 130 

and Psychtoolbox-3 (Brainard, 1997; Kleiner et al., 2007).  131 

To record motor evoked potentials elicited from TMS, surface electromyographic 132 

electrodes were placed on the first dorsal interosseous (FDI) muscle; and these signals 133 

were recorded, amplified, and filtered (Bortec Biomedical). To elicit motor evoked 134 

potentials, we delivered TMS using a 70mm figure-eight coil (Magstim) to the optimal 135 

scalp position over the left motor cortex. To ensure accurate and precise placement of 136 

the TMS coil throughout the experiment, we used a frameless neuronavigation system 137 

(Brainsight, Rouge Research) and coregistered participants’ heads to a default 138 

Talairach template provided in the Brainsight software suite. The coil was placed 139 

tangentially on the scalp with the handle pointing backward and laterally at a 45 degree 140 

angle away from the midline, perpendicular to the central sulcus.  141 

We first coregistered participants’ heads to a standard magnetic resonance 142 

image in the neuronavigation system. Then we identified the optimal area for eliciting 143 

MEPs in the resting FDI. The optimal M1 location was defined as the site in which we 144 



 

8 
 

could elicit a localized motor response at a minimal intensity. At this location we 145 

determined the resting motor threshold, defined as the minimum TMS intensity that 146 

evoked a motor evoked potential (MEP) of 50 microvolts in 5 of 10 trials in the FDI of 147 

the right hand (Pascual-Leone et al., 1994; Rossini et al., 1994). A deviation of more 148 

than 3 mm or 15 degrees resulted in the experimenter repositioning the coil during the 149 

intertrial interval and trials with sub-threshold MEP magnitude were excluded from 150 

analysis.  151 

The stimulation timings presented in this experiment (50 ms and 150 ms) were 152 

informed by a number of previous studies that examined how motor cortical excitability 153 

evolves in the time period between presentation of a ‘Go’ cue and movement, and were 154 

chosen to probe the early and late stages of motor preparation (Chen and Hallett, 1999; 155 

Leocani et al., 2000; Duque and Ivry, 2009; Klein-Flügge and Bestmann, 2012; 156 

Hortobágyi et al., 2017). Specifically, our stimulation times were meant to capture motor 157 

cortical excitability in the first half of reaction time (since RTs are usually in range of 200 158 

to 300 ms), while minimizing the influence of motor cortical stimulation on performance 159 

(e.g., motor quickening). We focused on two stimulation times to ensure we sampled 160 

enough trials at each incentive level and stimulation time to maximize the possibility of 161 

obtaining behavioral and motor cortical effects. Similar variably timed, single pulse TMS 162 

paradigms have been used to study the neural processing of different types of affective 163 

processes (Pitcher et al., 2007, 2012; Klein-Flügge and Bestmann, 2012; Klein-Flügge 164 

et al., 2013).  165 
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To control between participants and conditions, the stimulus intensity was 166 

calibrated on a per subject basis during the calibration phase. For this procedure, TMS 167 

pulse intensity was adjusted such that pulses delivered 50ms following the ‘Go’ cue 168 

elicited a 1mV MEP. The stimulation intensity was fixed to this value for the remainder 169 

of the experiment (i.e., the same intensity was used on 50ms and 150ms trials during 170 

familiarization and incentivized phases, described below). This procedure was similar to 171 

those previously used to study motor cortical excitability (Stefan et al., 2004; Vallence et 172 

al., 2013). To generate this baseline MEP level, the first 30 trials of the unincentivized 173 

phase (described below) involved only TMS pulses 50ms following the ‘Go’ cue and the 174 

experimenter monitored the elicited MEPs to target 1mV. Additionally, the initial 175 

stimulator intensity was set to 120% of a participant’s resting motor threshold. 176 

Motor Task 177 

Participants first performed a calibration phase to determine their maximum 178 

voluntary contraction (MVC) during an isometric pinch grip. This involved participants 179 

maintaining their maximum pinch exertion for 4 seconds, on 3 consecutive trials, each 180 

separated by a 5 second rest period. MVC was calculated as the maximum pinch force 181 

exerted on the 3 calibration trials. Since we acquired each individual’s MVC, we were 182 

able to standardize difficulty, based on MVC ability, across participants. 183 

The main experiment was divided into two phases: unincentivized and 184 

incentivized (Figure 1). During both phases of the experiment participants performed an 185 
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isometric pinch exertion task. Participants were not instructed to grip on every trial and 186 

were free to respond with grip force at their discretion (i.e., they could forgo exerting 187 

effort if they were so inclined). This task was chosen because pinch grip isolates use of 188 

the FDI muscle, which we targeted in our TMS procedure, to study the relationship 189 

between incentive, motor excitability, and performance. TMS was performed on every 190 

trial of each phase of the experiment. Participants were instructed that they would 191 

receive a show-up fee of $15 dollars at the end of experiment in addition to any 192 

earnings from their performance in the incentivized phase. 193 

The unincentivized phase was comprised of 60 trials. At the beginning of each 194 

trial, participants were presented a blue cursor that moved across the screen in 195 

proportion to the amount of pinch exertion (Figure 1). Squeezing the force transducer 196 

moved the cursor horizontally to the left, while relaxing caused the cursor to move right. 197 

Participants were instructed to place the cursor in the start position ( ) for a random 198 

amount of time (3–6 seconds). This start position corresponded to minimal pinch 199 

exertion while still grasping the force transducer. During the task, a ‘Go’ cue and a 200 

target line registered to 45% of MVC appeared on the screen. To successfully achieve 201 

the task, participants had to exert pinch effort to move the cursor across the target line 202 

within 0.5 seconds. At the end of a trial participants were shown a message indicating 203 

their performance. Following the initial 30 trial TMS calibration epoch (described above), 204 

the remaining 30 trials involved TMS delivered at either 50ms or 150ms after 205 

presentation of the ‘Go’ cue, and visual feedback during exertion was withheld. This trial 206 
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epoch was meant to familiarize participants with the conditions of the main experimental 207 

task. The stimulation times were evenly distributed across trials. 208 

During the incentivized phase participants performed the isometric pinch exertion 209 

task as described above, for varying amounts of monetary gain or loss. We did not 210 

present participants with feedback of their hand cursor, or the effort target, in order to 211 

allow them to reach the target effort level under their own implicit motivation. At the 212 

beginning of the experiment, participants were given an endowment of $20 in cash, 213 

separate from their show-up fee, and were told that at the end of the experiment, one 214 

trial would be selected randomly and a payment made according to their performance 215 

on that trial. Participants were told that their $20 endowment was given to them so that 216 

they could pay any eventual losses at the end of the experiment. This payout 217 

mechanism ensured that trials had significant monetary consequences and that 218 

participants evaluated each trial independently. Participants performed trials for a range 219 

of incentives (i.e.  $0, $10, $20). Each incentive level was presented randomly 30 220 

times for a total of 180 trials, with an equal balance of conditions for TMS pulse timing 221 

(i.e. 50ms TMS pulse; 150ms TMS pulse). Importantly, +$0 and -$0 conditions did not 222 

differ in their objective value, but only their framing (i.e. “Win $0” and “Lose $0”). At the 223 

beginning of each trial, participants were shown a message indicating the amount of 224 

incentive for which they were playing. They then performed the motor task, with the 225 

same success criteria as during the unincentivized phase. At the end of the experiment, 226 

a single trial was selected at random and participants were paid based on their 227 

performance on that trial. 228 
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To summarize, our task had several important features: 1) During the 229 

incentivized performance phase we did not display cursor position to participants so 230 

they could not simply target the necessary effort level. Instead they exerted effort in 231 

accordance with what they remembered the target effort level to be, and since they 232 

were not able to see the target, any extra exertion that they produced captured implicit 233 

incentive motivational spill-over into motor performance. 2) We parametrically 234 

modulated incentive to provide a finer grained assessment of how performance varies 235 

with incentive, unlike previous investigations of motor cortical influences on instrumental 236 

performance, which used appetitive and aversive conditioned stimuli (in extinction) and 237 

were not designed to examine parametric effects of rewards (Chiu et al., 2014; Freeman 238 

et al., 2014; Freeman and Aron, 2016). Furthermore, these studies did not examine how 239 

reward subjectivity influenced motor excitably and performance, rewards were not 240 

contingent on performance, and they did not present data that implicated a mechanistic 241 

framework by which valuation could influence motivated performance through motor 242 

excitability. Notably, the previous TMS studies that did parametrically vary incentive 243 

were designed to study decision-making and not reward-contingent incentive motivated 244 

performance (Klein-Flügge and Bestmann, 2012; Klein-Flügge et al., 2013). 3) To 245 

evaluate the influence of subjective preferences on incentive motivation we had 246 

participants perform a separate prospect theory task that provided a precise 247 

measurement of subjective preferences for incentive (i.e. loss aversion, risk 248 

aversion) (Sokol-Hessner et al., 2009; Chib et al., 2012, 2014). This task generated 249 

measures of subjective preferences for reward that were independent of the incentive 250 
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motivation task, which allowed an unbiased means to examine relationships between 251 

sensitivity to incentive, incentive motivated behavior, and motor cortical excitability. 252 

Subjective Reward Preference Task (Measurement of Loss Aversion and Risk 253 
Aversion) 254 

Participants received an initial endowment of $25 in cash (this amount was 255 

separate from their show-up fee and earnings/endowment from the motor task) and 256 

were told that, at the end of the experiment, one trial would be selected randomly and a 257 

payment made according to their actual decision during the experiment. Participants 258 

were told that their $25 endowment was given to them so that they could pay any 259 

eventual losses at the end of the experiment. Any amount from the endowment that 260 

remained after subtracting a loss was theirs to keep, and similarly any eventual gain 261 

earned in the experiment was added to the initial endowment. During the experiment, 262 

participants made choices among 140 different pairs of monetary gambles. Each pair 263 

contained a certain option involving a payout with 100% probability  and a risky option 264 

involving gain  and loss  with equal probability (Figure 2). Participants had 4 s to 265 

make a choice. The values for gain, loss, and sure options were the same as those 266 

used in previous studies that estimated individuals’ loss aversion (Sokol-Hessner et al., 267 

2009; Frydman et al., 2011). Specifically, gambles involving a potential gain or loss, and 268 

an alternative sure amount of $0 were generated from the comprehensive combination 269 

of  and  in multiplier increments of 0.125. For the 270 

options involving a potential gain for an alternative sure amount, the set was 271 
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272 

 273 

Data Analysis 274 

Behavioral performance analysis 275 

Our main behavioral measure of performance was the mean effort exerted on 276 

each trial, defined as mean force exerted between the time the exertion threshold is met 277 

(i.e., the first recording above 10% of MVC after the ‘Go’ cue) and the end of the trial. 278 

We excluded trials if detected reaction time intersected with MEP onset, participants 279 

were unable to reach the target within the allotted time, or participants failed to move. 280 

We used a general linear model with the magnitude of potential gain and loss 281 

 and valence  as independent variables, and performance (log 282 

transformed mean force to correct for skewness) as the dependent variable. 283 

 

The regression coefficients  and  represent a participant’s 284 

sensitivity in performance to increasing potential gains and losses — larger  285 

parameters correspond to a participant having greater increases in performance as a 286 

function of increasing incentives. The parameters  and  capture the 287 
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performance off-set associated with each valence condition, equivalent to the behavior 288 

at $0 incentivization. 289 

Motor cortical excitability analysis 290 

We assessed cortical excitability by measuring the peak-to-peak amplitudes (in 291 

mV) of the motor evoke potential from the FDI muscle on all stimulation trials. This 292 

measure was defined as the MEP. In a similar fashion to the behavioral analysis, we 293 

used a general linear model to examine the sensitivity of motor cortical excitability to 294 

reward, at 50ms and 150ms following the ‘Go’ cue. In this model the magnitude of 295 

potential gain and loss , valence , and stimulation time , were independent variables; 296 

and MEP was the dependent variable. We z-scored within session and stimulation 297 

condition to account for between session variability in MEP measurements resulting 298 

from factors such as subject movement, repositioning of TMS coil, etc., during rest 299 

periods. 300 
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The coefficient terms ( , , , and ) represent an individual’s 301 

motor cortical sensitivity to incentive at time points following incentive presentation at 50 302 

ms or 150 ms after the ‘Go’ cue. The intercept terms ( , , , and ) 303 

capture the MEP offset associated with each valence condition. 304 

Subjective reward preference analysis 305 

We fit prospect theory-inspired models of the non-linear processes underlying 306 

subjective valuation of reward to participant’s choice data from the subjective reward 307 

preference task, using a hierarchical Bayesian approach. This model was identical to 308 

that used previously (Sokol-Hessner et al., 2009; Chib et al., 2012, 2014), implemented 309 

using Monte-Carlo Markov Chain sampling methods provided by rStan (v2.2.0; (Stan 310 

Development Team, 2017)) in R (v3.0.2; (RDevelopment CORE TEAM, 2008)), using 311 

the methodology described by the hBayesDM package (Ahn et al., 2017). We 312 

expressed participants’ utility function  for monetary values  as follows: 313 

 

This formulation is used to compute the utilities of the risky and certain 314 

alternative. The model’s parameters quantify loss aversion ( , the relative multiplicative 315 

weight placed on losses compared with gains), risk attitudes ( , feelings about chance, 316 

or diminishing marginal sensitivity to value). Assuming participants combine 317 
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probabilities and utilities linearly, the expected utility of a mixed gamble can be written 318 

as  where   and  are the respective gain and loss of 319 

a presented risky option and  is a fixed alternative choice. The probability that a 320 

participant chooses to make a gamble is given by the softmax function: 321 

 

where  is a temperature parameter representing the stochasticity of a participant’s 322 

choice (  = 0 means choices are random). This model was fit to the choice data using 323 

standard hierarchical Bayesian methods, and applied constraints on the fit parameters 324 

such that: , , and . Weakly informative priors were used on 325 

the constrained domain, and a non-centered parametrization was used to facilitate 326 

model convergence (Betancourt and Girolami, 2013). All analyses of loss aversion used 327 

; the logarithm is commonly used because lambda is positively skewed. 328 

Mediation analysis 329 

Mediation analysis is a specific case of structural equation modeling that refers to 330 

a situation that includes three or more variables, such that there is a causal process 331 

between all three variables (Judd and Kenny, 1981). In a mediation relationship, there is 332 

a direct effect between an independent variable and a dependent variable. There are 333 

also indirect effects between an independent variable and a mediator variable and 334 
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between a mediator variable and a dependent variable. This formulation allows for a 335 

test of the strength of the direct effect between the independent and dependent 336 

variables, accounting for connections via a mediating variable. A measure of the direct 337 

effect (after controlling for the mediator) can be obtained using a series of regressions 338 

for all of the causal pathways and estimating a change in the direct effect.  339 

We performed a mediation analysis of our data using standardized linear 340 

regression to test the possibility that the relationships between subjective preferences 341 

for reward (instantiated by loss aversion), and task performance (performance 342 

sensitivity to increasing potential gain) were mediated through motor cortical excitability. 343 

For these analyses, we performed between-participant standardized regressions with 344 

variables for participants’ behavioral loss aversion, the difference in motor cortical 345 

sensitivity to prospective gain between stimulation at 50ms and 150ms ( ), 346 

and the performance sensitivity to increasing potential gain ( ). Our main 347 

mediation hypothesis was that  mediates the relationship between  348 

and performance. To rule out model misspecification, we also tested control models in 349 

which the causal structure of our experiment was preserved (i.e., motor excitability 350 

preceded performance), and alternative relationships were modeled. This included a 351 

model in which  mediated the relationship between  and , and 352 

another model in which  mediates the relationship between  and 353 

. We used bootstrapping (a nonparametric sampling procedure) to test whether 354 
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the specified mediator significantly mediated the relation between the independent and 355 

dependent variables (Preacher and Hayes, 2004). 356 

RESULTS 357 

To test our hypothesis, we developed a task in which participants were instructed 358 

to exert pinch grip beyond a predetermined threshold in order to win or avoid losing 359 

monetary incentives ranging from $0 to $20. We stimulated participants’ motor cortex 360 

with TMS at two time points, between the presentation of incentive and movement 361 

onset, in order to examine how motor cortical sensitivity to incentive was related to 362 

incentive motivation. Participants also performed a separate decision-making task after 363 

performing the motor task, in which they made choices over prospective monetary gains 364 

and losses. This task allowed us to obtain computational parameters that described 365 

each participants’ subjective preferences for incentive (i.e., loss aversion and risk 366 

aversion). 367 

To foreshadow the results, we found that participants exhibited increasing 368 

behavioral performance for increasing incentives, and that these increases in 369 

performance were related to motor cortical sensitivity to incentive in the time period 370 

between incentive presentation and movement. Both performance and motor cortical 371 

sensitivity to incentive were related to measures of participants’ loss aversion, such that 372 

those individuals that were more loss averse (i.e., had a greater sensitivity to incentive) 373 

exhibited larger behavioral and motor cortical sensitivity to incentive. A formal mediation 374 
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analysis revealed that motor cortical sensitivity to incentive mediated the relationship 375 

between subjective preferences for incentive and performance. 376 

Behavioral Performance 377 

As expected, prospective gains and losses led to increases in participants’ 378 

percent success when comparing $0 trials to $10 and $20 trials (Figure 3A; Wilcoxon 379 

signed rank paired test to account for skewed distribution at $10 and $20 and including 380 

otherwise excluded trials, Gain: ; Loss: ). We also 381 

observed robust relationships between participants’ mean exertion as a function of 382 

incentive. We found that participants also exhibited increasing mean exertion, with 383 

increasing incentives, in both the gain and loss conditions (Figure 3B; hierarchical linear 384 

model, Gain; ; Loss; 385 

). Together, these results illustrate that increasing incentives serve to 386 

increase behavioral performance in both the gain and loss domain. 387 

We next examined the relationship between participants’ behavioral sensitivity to 388 

increasing prospective gains and losses in the incentive motivation task (encoded as 389 

the slope between mean force exertion and incentive value), and an independent 390 

measure of participants’ sensitivity to incentive obtained from a separate decision-391 

making task. We reasoned that those individuals that found incentives to be more 392 

subjectively valuable (i.e., have a higher loss aversion) would have increased 393 

behavioral sensitivity to incentive. We found a significant relationship between 394 
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participant-specific loss aversion and behavioral sensitivity in the gain domain 395 

(Figure 3C; Pearson correlation, ), however we 396 

failed to find a significant relationship between these measures in the loss domain 397 

(Figure 3D; Pearson correlation, ). This suggests 398 

that, for prospective gains, processing of the subjective value of incentive serves to 399 

motivate behavioral performance in the incentive motivation task. These results align 400 

with our previous work which found that loss aversion was predictive of increases in 401 

performance for incentives in the range tested in this experiment. In those previous 402 

studies, we found that worries about loss (instantiated by loss aversion) served to 403 

motivate performance for both prospective gains (Chib et al., 2012, 2014) and 404 

losses (Chib et al., 2014). Specifically, measures of loss aversion not only predicted 405 

performance decrements for large incentives, but also the incentive leading to peak 406 

performance for small levels of incentive. 407 

Loss aversion represents a tendency to value losses greater than equal 408 

magnitude gains. Risk aversion, on the other hand, is a more general aversion to 409 

increased variance in potential gains or losses. To ensure a loss aversion-based 410 

hypothesis better accounted for our behavioral data than a general aversion to risk, we 411 

also examined the relationship between risk aversion and behavioral sensitivity in the 412 

gain and loss domains. We did not find a significant correlation between behavioral 413 

sensitivity to incentive and risk preferences (Pearson correlation, Gain: 414 

; Loss: ), 415 

nor choice stochasticity (Pearson correlation, Gain: 416 
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; Loss: ). Furthermore, we failed to find a 417 

significant correlation between maximum likelihood estimated loss aversion and either 418 

risk aversion or choice stochasticity parameters, suggesting that distinct processes 419 

underlie these parameters (correlations with , 420 

). We also ran a model comparison of the separately 421 

estimated choice parameters and found that  provided the best description of the 422 

behavioral sensitivity to incentive in the gain domain ( = -150.72; = -423 

143.46; = -144.06). This provides converging evidence that behavioral 424 

sensitivity to prospective gains is best described by an independent measure of reward 425 

subjectivity characterized by a measure of loss aversion. These results are in keeping 426 

with our previous results showing the loss aversion was predictive of behavioral 427 

performance during a skilled-motor task for incentive (Chib et al., 2012, 2014).  428 

Motor Cortical Excitability in Response to Incentive 429 

We sought to identify how motor cortical sensitivity to incentive, in the context of 430 

the incentive motivation task, was related to subjective preferences for incentive. To this 431 

end we explored parameter estimates from our general linear model of motor cortical 432 

sensitivity to incentive, separated by participants’ behavioral loss aversion (participant 433 

specific medial split) (Figure 4A, 4B). These parameter estimates capture the slope of 434 

the relationship between motor cortical excitability and incentive level. Larger parameter 435 

estimates correspond to a more pronounced change in motor cortical excitability in 436 

response to increasing incentive.  437 
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In the gain domain, we found a significant interaction between stimulation time 438 

and loss aversion, indicating that individuals with higher loss aversion had an increased 439 

motor cortical sensitivity to incentive, closer to movement onset (Figure 4A; mixed 440 

effects ANOVA, ). Moreover, we found that this effect was 441 

driven by individuals with higher loss aversion having an increased motor cortical 442 

sensitivity at the 150ms stimulation time point (Figure 4A, post hoc one-tailed Welch’s t-443 

test, ). In the loss domain, we failed to find a significant 444 

interaction between changes in MEP sensitivity between the 50 and 150 stimulation 445 

time points and behavioral loss aversion (Figure 4B; mixed effects ANOVA, 446 

). 447 

Our paradigm did not elicit correlations between behavioral and motor cortical 448 

sensitivity to value in the loss domain.  It should be noted that this null result is 449 

consistent with a previous study of motor cortical responses to aversive stimuli which 450 

failed to find a significant change in motor evoked potentials, relative to baseline, when 451 

individuals were presented an aversive conditioned stimulus paired with an instrumental 452 

response (Chiu et al., 2014). With this null result in the loss domain in mind, we focused 453 

the remainder of our motor cortical analyses on trials for prospective gain. 454 

To further examine the temporal dynamics of motor cortical sensitivity to 455 

incentive over the continuum of loss aversion, we performed a between participant 456 

regression of loss aversion and difference in sensitivity to incentive between the 50ms 457 
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and 150ms time points . The difference between these metrics is an 458 

indication of the stability of motor cortical excitably to incentive over time. The greater 459 

the difference between these parameter estimates, the more positively correlated to 460 

incentive an individual’s motor cortical excitably is closer to movement onset. We found 461 

that those individuals that were more sensitive to incentive when comparing 50ms and 462 

150ms time points, exhibited increased incentive motivated performance (Figure 4C; 463 

Pearson correlation, ). We also performed a 464 

regression between participant-specific loss aversion and sensitivity to incentive 465 

between the 50ms and 150ms time points and found that individuals with higher loss 466 

aversion exhibited increased changes in motor cortical sensitivity closer to movement 467 

onset (Figure 4D; Pearson correlation, ).  468 

In keeping with our incentive motivation hypotheses of motor cortical activity, 469 

these relationships suggest that in the gain domain, subjective preferences for incentive 470 

(instantiated by an individuals’ loss aversion) could serve to amplify motor cortical 471 

sensitivity to incentive and energize motor performance. 472 

We performed a series of analyses to ensure that the TMS incentive effects that 473 

we observed were not simply the byproduct of confounds between stimulation timing 474 

and movement execution. Pre-movement motor cortical stimulation is known to elicit 475 

movement quickening, in which stimulations delivered closer to movement onset 476 

decrease reaction time. To ensure that our TMS incentive effects were not simply the 477 
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byproduct of a quickening response, we examined the relationship between log reaction 478 

time sensitivity to incentive (i.e., the regression coefficient between log reaction time 479 

and incentive) and motor cortical sensitivity to incentive, at each stimulation time point, 480 

using the measure . We failed to find a significant correlation between 481 

these measures, suggesting that our effects were not simply the results of TMS 482 

quickening movements as a function of incentive (Figure 5A; Pearson correlation, 483 

). 484 

Another possible confounding factor in our motor cortical data could be that 485 

participants initiate their movements based on the auditory cue of TMS pulses, rather 486 

than the ‘Go’ cue. This would result in no segregation between motor cortical activity 487 

between the 50ms and 150ms stimulation conditions, making it difficult to distinguish the 488 

temporal features of motor cortical sensitivity to incentive. To determine if our data was 489 

confounded in this way, we evaluated motor cortical excitability using a model in which 490 

trials were separated based on the eventual time of movement onset (as identified from 491 

participants EMG data using AGLRStep (Staude et al., 2001)), rather than presentation 492 

of the ‘Go’ cue (as in our main experimental results). We found that, although there was 493 

some quickening as a result of TMS (i.e., MEPs were not separated by a full 100ms), 494 

motor evoked potentials occurred at significantly different time points relative to 495 

movement onset (Figure 5B; paired t-test, ). Moreover, we 496 

found that motor evoked potentials were larger in the 150ms stimulation condition 497 

compared to the 50ms condition (Figure 5B; paired t-test, ), 498 
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consistent with previous studies that have shown increasing motor cortical excitability 499 

approaching movement onset (Chen and Hallett, 1999). 500 

To rule out the possibility that our behavioral effects were simply the byproduct of 501 

motor cortical stimulation, we first examined the interaction between incentive and 502 

stimulation time by partitioning trials between the 50 and 150 ms stimulation conditions. 503 

Our behavioral finding of increased performance with increasing incentive was 504 

preserved in both the gain and loss conditions (Figure 5C; hierarchical linear model 505 

interaction term, Gain: ; Loss: 506 

). This suggests that our behavioral effects were not simply the result of 507 

stimulation timing. Second, while we found increasing behavioral performance in both 508 

the loss and gain conditions (Figure 3A,B), we found prospective gains resulted in a 509 

modulation of motor cortical excitability (Figure 4A) while prospective losses did not 510 

(Figure 4B). Together these results suggest that our behavioral and stimulation effects 511 

were specifically the result of the presentation of prospective gains, and not simply the 512 

result of a general influence of brain stimulation on motor performance or motor cortical 513 

excitability. 514 

Causal Influences of Loss Aversion and Motor Cortical Excitability on Incentive 515 
Motivation 516 

Because loss aversion and behavioral sensitivity to incentive are correlated, and 517 

both of these variables are correlated with the temporal evolution of motor cortical 518 

sensitivity to incentive (Figure 6A), we investigated the hypothesis that motor cortical 519 
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sensitivity to incentive has a causal influence on loss aversion-related incentive 520 

motivated exertion. To test this hypothesis, we used mediation analysis, a form of linear 521 

modeling in which correlations observed in the data are explained by assuming that a 522 

specific set of causal influences exist among the variables (Judd and Kenny, 1981). 523 

This analysis alone does not establish causality but identifies if a causal hypothesis is 524 

best fit for the data. We fit a model to the data that followed the logical progression of 525 

our experimental paradigm. In this model we assumed that behavioral loss aversion 526 

influenced incentive motivated exertion and that the temporal dynamics of motor cortical 527 

sensitivity to incentive (the mediating variable) influenced incentive motivated exertion. 528 

In our causal model (Figure 6B), behavioral loss aversion had a significant effect 529 

on the difference in motor cortical sensitivity to incentive between the 50ms and 150ms 530 

time points (standardized linear regression, ). When 531 

behavioral loss aversion and this measure of motor cortical sensitivity to incentive were 532 

simultaneously modeled as predictors of performance, loss aversion no longer 533 

significantly predicted performance (standardized linear regression, 534 

), whereas motor cortical sensitivity to incentive remained significant in the 535 

model (standardized linear regression, ). This reduction 536 

in the direct relationship between loss aversion and incentive motivation was significant 537 

(standardized indirect effect size, , as tested by 538 

a bootstrapping procedure based on 10000 resamples). This model provides causal 539 

support for the idea that manifestations of subjective preferences for incentive motivate 540 

incentivized performance through the influence of the temporal dynamics of motor 541 
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cortical sensitivity on motor performance. Alternative models (Figure 6C, 6D) ruled out 542 

model misspecification and did not find significant mediation effects by loss aversion 543 

(95% confidence interval, ) or performance (95% confidence 544 

interval, ). 545 

We explored additional alternative models to test if the temporal dynamics of 546 

motor cortical sensitivity to incentive partially mediated the relationship between either 547 

risk aversion (Figure 7A) or choice stochasticity (Figure 7B) and incentive motivated 548 

exertion. These alternative models did not contain the significant correlations required to 549 

test if motor cortical sensitivity to incentive mediated the relationship between 550 

performance and other subjective reward valuation parameters. These results lend 551 

further support to the specificity of loss aversion to predict relationships between 552 

behavioral performance and motor cortical activity. 553 

DISCUSSION 554 

In this study we show that incentive motivated performance emerges from the 555 

temporal dynamics of motor cortical sensitivity to incentive, and that this signature of 556 

motor cortical activity reflects an individual’s subjective preferences for incentive and 557 

eventual behavioral performance. Our neural findings are consistent with previous 558 

results in humans showing that appetitive stimuli serve to increase motor cortical 559 

excitability (Chiu et al., 2014; Freeman et al., 2014) and that the dynamics of motor 560 

cortical excitability is sensitive to the value of options presented during simple 561 
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choice (Klein-Flügge and Bestmann, 2012). Furthermore, our results align with non-562 

human primate studies which found that motor cortical activity increased in response to 563 

cues predicting receipt of reward (Marsh et al., 2015; Ramkumar et al., 2016; 564 

Ramakrishnan et al., 2017; Tarigoppula et al., 2018). However, as previous studies 565 

either investigated instrumental responding or value-based choice in separate 566 

paradigms, they did not examine the relationship between the temporal dynamics of 567 

motor cortical sensitivity to incentive, subjective preferences for incentive, and eventual 568 

motor performance. Our results go beyond these studies by separately characterizing 569 

the temporal dynamics of motor cortical sensitivity to incentive and subjective 570 

preferences for incentive, and further, modeling the causal relationship between these 571 

independent measures and behavioral performance. In so doing, we demonstrate a 572 

mechanism by which motor cortical activity mediates the relationship between 573 

subjective preferences for incentive and incentive motivated performance. These results 574 

suggest that an individual’s subjective preferences for incentive modulate the vigor of 575 

the motor system to drive incentive motivated performance. 576 

We previously used functional imaging to show that when performing an 577 

instrumental motor task for incentive, prospective incentives are first encoded as a 578 

potential gain and subsequently, during the task itself, individuals encode the potential 579 

loss that would arise from failure (Chib et al., 2012, 2014). This reframed loss encoding 580 

served to motivate behavioral performance — those individuals that were more loss 581 

averse had a greater behavioral sensitivity to incentive, such that they reached peak 582 

performance at lower incentive levels. Moreover, we found that activity in the ventral 583 
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striatum, a region of the brain thought to serve as the interface between motivation and 584 

motor performance (Mogenson et al., 1980; Bray et al., 2008; Talmi et al., 2008), was 585 

predictive of both performance and loss aversion. Notably, ventral striatal reward 586 

circuitry is widely implicated in motivated performance (Adcock et al., 2006; Pessiglione 587 

et al., 2006; Clithero et al., 2011; Liljeholm and O’Doherty, 2012; Schmidt et al., 2012). 588 

Consistent with our previous results, here we found that behavioral sensitivity to 589 

incentive in the gain domain was related to an individuals’ loss aversion. Those 590 

individuals that were more loss averse had increased behavioral sensitivity to incentive, 591 

suggesting they were more motivated for increasing incentives. The temporal dynamics 592 

of motor cortical sensitivity to incentive also reflected an individual’s behavioral loss 593 

aversion – those individuals that were more loss averse showed an increasing motor 594 

cortical sensitivity to incentive closer to movement onset. These new TMS results take 595 

our previous reframing interpretation further and show that motivational constructs (i.e. 596 

loss aversion), known to be encoded by reward regions of the brain, transfer to motor 597 

areas (as reflected by motor cortical excitability changes), giving rise to motivated 598 

behavioral performance. 599 

The present results provide important new insights into how incentive 600 

motivational processing influences motor cortical activity to give rise to performance. 601 

One possible mechanistic account of our findings relates to the role of the ventral 602 

striatum as a limbic-motor interface, mediating interactions between systems for 603 

Pavlovian valuation and motoric instrumental responding (Mogenson et al., 1980; 604 

Alexander and Crutcher, 1990; Cardinal et al., 2002; Balleine and Ostlund, 2007). 605 
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Whereas previous literature has focused on the role of the ventral striatum in mediating 606 

the effect of reward-predicting cues in increasing or enhancing instrumental 607 

performance for reward, less is known about how such reward processing influences 608 

activity in motor cortex to give rise to behavioral performance. An elegant set of studies 609 

used a Pavlovian instrumental transfer paradigm to study such effects, and showed that 610 

appetitive cues served to increase motor cortical excitability during instrumental 611 

responding in extinction (Chiu et al., 2014; Freeman et al., 2014). In our experiment, it is 612 

possible that during motor performance the prospect of reward (and loss-aversion 613 

induced motivation) elicits participants’ Pavlovian conditioned responses. These 614 

responses could include motor approach and engagement of attentional or orienting 615 

mechanisms towards task performance. Such ventral striatal encoding of Pavlovian 616 

responses could energize the motor cortical commands necessary for successful 617 

execution of instrumental responses, and this motor energization could manifest in the 618 

motor cortical sensitivities to incentive that we observe in our data. Accordingly, there 619 

are strong direct and indirect connections between ventral striatal regions known to 620 

encode such Pavlovian and reward values and motor cortex (Mogenson et al., 1980; 621 

Haber and Knutson, 2010). 622 

Further supporting these ideas about the motor cortex, was a mediation analysis 623 

showing that motor cortical sensitivity to incentive mediated the effects of behavioral 624 

loss aversion on performance. This mediation suggests that the motor cortex is not 625 

merely indirectly correlated with performance through its relationship with loss aversion, 626 

but instead plays a critical role in moderating incentive motivated behavioral 627 
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performance itself. This provides a mechanistic account of how the motor cortex 628 

influences motivated motor performance via its reflection of subjective preferences and 629 

incentive value. 630 

A number of studies have reported that performance-based incentives can lead 631 

to paradoxical effects on behavior (i.e., decreasing motivation (Gneezy and Rustichini, 632 

2000) or performance (Ariely et al., 2009)), yet here we examined the case in which 633 

performance-based incentives lead to increases in motoric output. The effects of reward 634 

undermining and other paradoxical effects on performance have implicated the same 635 

ventral striatal reward circuitry that is responsible for the facilitatory effects of incentives 636 

on performance (Murayama et al., 2010; Chib et al., 2012, 2014). Therefore, it is 637 

plausible that similar motor cortical responses to those identified in this study could be 638 

responsible for mediating other paradoxical responses to incentive. Investigating such a 639 

role of motor cortical excitability on other effects of performance-based incentives will be 640 

an important future direction in dissecting the general motor cortical signals that 641 

influence both facilitatory and deleterious influences of incentives on performance.  642 

Given the likely role of ventral striatal reward processing in the context of our 643 

task, an alternative account of our results is that the motor cortical stimulation in our 644 

experiment could remotely-induce responses in the striatum that cause the incentive 645 

motivational effects we observed. Previous brain stimulation studies have shown that 646 

repetitive TMS of prefrontal cortex (Strafella et al., 2001) and motor cortex (Strafella et 647 



 

33 
 

al., 2003), and transcranial direct current stimulation of prefrontal cortex (Chib et al., 648 

2013), can remotely induce changes in striatal and midbrain activity. However, such an 649 

interpretation of our results seems unlikely given that these studies used montages that 650 

required a sustained stimulation of cortex to alter its resting state, whereas we used a 651 

single pulse paradigm in which pulses are less likely to result in prolonged changes in 652 

motor cortical excitability. 653 

It is important to note that although we found a significant modulation of 654 

behavioral performance for increasing prospective loss, we failed to find such an effect 655 

in motor cortical excitability responses. Notably, a previous study that examined how 656 

aversive conditioned stimuli influenced motor cortical excitability, during instrumental 657 

responding, also failed to find a modulation of motor cortical excitability by aversive 658 

stimuli (Chiu et al., 2014). One interpretation of these null results is that distinct neural 659 

circuits could process the effects of appetitive and aversive stimuli on motivated motor 660 

performance (Pessiglione and Delgado, 2015). Indeed, distinct amygdala nuclei have 661 

been shown to encode appetitive (basolateral amygdala) (Holland et al., 2002) and 662 

aversive (central nuclei) (Petrovich et al., 2009) stimuli during motivated behavior. 663 

These amygdala nuclei are essential components in the circuits that mediate Pavlovian 664 

instrumental transfer and have different circuit pathways that connect to ventral striatum 665 

to influence motivated performance (Cador et al., 1989; Corbit et al., 2001; Lingawi and 666 

Balleine, 2012). However, it is not known if these pathways also have different 667 

connections to the motor cortex. It is possible that such differential TMS effects could be 668 

the result of such distinct pathways for appetitive and aversive stimuli. Resolving this 669 



 

34 
 

possibility is beyond the design of the current study and could be achieved using 670 

functional neuroimaging techniques, combined with noninvasive brain stimulation, to 671 

examine how motor cortical excitability is related to amygdala and ventral striatal 672 

function in the context of motor performance for prospective gains and losses.  673 

Integrating behavioral analysis of motivated performance, modeling of subjective 674 

preferences for incentive, and motor cortical physiology; we provide evidence that the 675 

motor cortex is sensitive to the subjective value of incentive. Our work outlines a 676 

mechanism by which the subjective value of reward serves to invigorate motor cortical 677 

excitability, leading to incentive motivated performance. Far from simply being a 678 

reflection of motor output, it appears that motor cortical physiology integrates cognitive 679 

mechanisms related to reward valuation. These results suggest that incentive motivated 680 

performance is the reflection of an interaction between reward valuation and motor 681 

cortical excitability.  682 
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Figure 1. The incentive motivation motor task.  A) Participants first performed an 683 

unincentivized phase of the experiment to calibrate TMS parameters and familiarize 684 

them with the requirements of behavioral paradigm. At the beginning of each trial, 685 

participants were presented a blue cursor that moved across the screen in proportion to 686 

the amount of pinch exertion. Squeezing the force transducer moved the cursor 687 

horizontally to the left, while relaxing caused the cursor to move to the right. To initiate 688 

the task, participants placed the cursor in the start position ( ) for a random amount of 689 

time (3–6 s). The start position corresponded to minimal exertion while still grasping the 690 

transducer. During the task, a ‘Go’ cue and red target line appeared that was registered 691 

to 45% of MVC. To successfully achieve the task, participants had to move their cursor 692 

across the target line within 0.5 seconds. At the end of the trial they were shown a 693 

message indicating the outcome of their performance. In the case that a participant 694 

successfully moved the cursor across the target line, a positive message was displayed 695 

(“You Won”); otherwise, the participant was informed of the negative outcome (“You 696 

Lost”). B) The timeline of unincentivized trials. Participants first performed 30 calibration 697 

trials in which stimulation occurred 50ms after the onset of the ‘Go’ Cue/motor task 698 

presentation (calibration). After these trials, familiarization trials were performed in 699 

which stimulation was delivered for another 30 trials at either 50ms or 150ms after ‘Go’ 700 

cue/motor task presentation (familiarization). C) Incentivized trials were identical to the 701 

unincentivized trials, except participants were presented with the incentive they were 702 

performing for prior to the motor task screen, and they were not given feedback of their 703 

cursor or the target line. D) The timeline of incentivized trials. There were a total of 180 704 
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incentivized trials and stimulation was delivered at either 50ms or 150ms after ‘Go’ 705 

cue/motor task presentation. 706 

Figure 2. Subjective Preferences Task. After performing the motor task, participants 707 

performed a separate task in which they made a series of forced monetary choices 708 

between a risky option (“Flip” option; equal probability of gain and loss) and a 709 

guaranteed amount (“Sure” option). A blank screen was shown during the intertrial 710 

interval for a duration randomly selected from a uniform distribution ranging from 0.5 – 2 711 

seconds.    712 

Figure 3. Behavioral results. A) Participants exhibited increasing performance (% 713 

success) for increasing prospective gains and losses. B) Participants exerted more 714 

pinch force (mean effort exertion) for increasing prospective gains and losses. Mean 715 

exertion was z-scored to control for inter-participant variability in performance. Plots of 716 

the correlation between participants’ behavioral sensitivity to prospective (C) gains and 717 

(D) losses (i.e., slope of the relationship between un-normalized log mean exertion and 718 

incentive) and loss aversion. Error bars denote SEM. 719 

Figure 4. Motor cortical excitability in response to incentive. Shown are parameter 720 

estimates from our general linear model predicting motor cortical sensitivity to incentive 721 

at the different TMS time points. Positive parameter estimates indicate increasing motor 722 
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excitability with increasing incentive, negative estimates indicate decreasing motor 723 

excitability with increasing incentive, and zero estimates indicate no modulation of motor 724 

cortical excitability with incentive. A, B) We separated trials based on prospective gain 725 

and loss, and grouped participants by the extent of their loss aversion (median split). In 726 

the gain domain, we found that those participants that were more loss averse had 727 

greater increases in motor cortical excitability in response to incentive, closer to 728 

movement onset (150ms). We failed to find significant modulation of motor cortical 729 

excitably for prospective loss. The significance levels shown are for planned 730 

comparisons between conditions (* ). Error bars denote SEM. Plots of the 731 

correlations between difference in motor cortical sensitivity to incentive between the 732 

150ms and 50ms stimulation conditions, in the gain domain, and (C) behavioral 733 

sensitivity to incentive (i.e., slope of the relationship between un-normalized log mean 734 

exertion and incentive) and (D) behavioral loss aversion. 735 

Figure 5. Control TMS analyses.  A) We did not to find a significant relationship 736 

between difference in motor cortical sensitivity to incentive between 50ms and 150ms 737 

and reaction time sensitivity to incentive. B) Motor evoked potentials were segregated in 738 

intensity and time when aligning them to EMG detected movement onset, rather than 739 

the ‘Go’ cue. C) Participants’ z-scored mean exertion was separated by stimulation 740 

timing conditions. The behavioral finding of increased performance with increasing 741 

incentive was preserved across stimulation conditions. 742 
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Figure 6. Mediation analyses. A) The three variables assessed using mediation 743 

analysis: behavioral loss aversion  difference in motor cortical sensitivity to 744 

incentive between the 50ms and 150ms TMS time points , and behavioral 745 

sensitivity to incentive . The numbers next to the double-headed arrows are 746 

coefficients of correlations between the variables. Regression analyses (illustrated in 747 

Figures 3C,4C,4D) established correlations between participants’ behavioral loss 748 

aversion, differences in motor cortical sensitivity to incentive, and behavioral sensitivity 749 

to incentive. B) The causal model illustrates the mediation analysis, and the alternative 750 

models (C, D) illustrate control models that were tested to rule out model 751 

misspecification. Solid arrows represent significant relationships between variables, 752 

dashed arrows are not significant. 753 

Figure 7. Alternative relationships between choice parameters motor excitability 754 

and performance. We also explored the possibility of mediation relationships between 755 

choices parameters, obtained from the subjective reward preference task, related to A) 756 

risk aversion , and B) choice stochasticity . These alternative models did 757 

not contain the significant correlations required to test if motor cortical sensitivity to 758 

incentive mediated the relationship between performance and these other choice 759 

parameters.   760 
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