Supplemental Figure 1. Effect of patch pipette internal solution composition on the reversal potential of GABA-gated conductances in Drosophila antennal lobe neurons.

GABA was iontophoresed onto the somata of LNs recorded in whole-cell mode, and the reversal potential E_{GABA} was determined, along with the spike threshold for that cell. With a KCH$_3$SO$_3$-based internal solution containing 0.5% neurobiotin (N-(2-aminoethyl) biotinamide hydrochloride, from Vector Labs), E_{Cl} should be -52mV, but E_{GABA} was closer to -40mV. Without neurobiotin, E_{GABA} was similarly depolarized, although in this case nominal $[\text{Cl}]_i$ was zero. This suggests that methanesulfonic acid may affect E_{Cl} in Drosophila neurons, at least at the soma. Using a potassium aspartate-based internal, E_{Cl} was much more hyperpolarized. In many cells recorded with this internal, the cell could not be hyperpolarized to E_{GABA}, because antennal lobe neurons cannot be held stably below -75mV. In these cases, an open symbol (○) marks a V_m still depolarized to E_{GABA} that was the most hyperpolarized potential where a cell could be held. Adding 0.5% biocytin hydrazide (Molecular Probes) to this internal did not change E_{GABA}. PN odor tuning was not substantially different with the Kaspartate+biocytin hydrazide internal versus the KCH$_3$SO$_3$+neurobiotin internal (supplemental Fig. 2).

- V_m (mV)
- spike threshold
- mean spike threshold
- E_{GABA}
- mean reversal potential of GABA-gated conductance

![Graph showing the effect of different internal solutions on V_m and E_{GABA}.]