Supplemental Material:
Embedding Multiple Trajectories in Recurrent Neural Networks in a Self-organizing Manner

Jian K. Liu¹
Dean V. Buonomano²*

¹ Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA
² Departments of Neurobiology and Psychology, UCLA, Los Angeles, CA, 90095, USA.

*Correspondence should be addressed to D.V.B. (dbuono@ucla.edu)

Movie: Training with two stimuli produces distinct neural trajectories. (Left) two distinct neural trajectories emerge after training with two stimuli. The red line separates the sub-panels of trajectory A (upper) and trajectory B (lower). Both trajectories can be visualized by sorting the neurons according the spike latency generated by stimulus A. At each time point, different subsets of neurons fire in response to stimulus A and B. (Inset) mean activity across all neurons converges to the target activity (1). (Right) the corresponding weight matrix of network is sorted according to spike latency in response to A.