TY - JOUR T1 - Suppressive control of the crustacean pyloric network by a pair of identified interneurons. I. Modulation of the motor pattern JF - The Journal of Neuroscience JO - J. Neurosci. SP - 448 LP - 457 DO - 10.1523/JNEUROSCI.10-02-00448.1990 VL - 10 IS - 2 AU - JR Cazalets AU - F Nagy AU - M Moulins Y1 - 1990/02/01 UR - http://www.jneurosci.org/content/10/2/448.abstract N2 - A pair of identified neuromodulatory neurons, the pyloric suppressor (PS) neurons, can individually and strongly modify the activity of the pyloric network in the stomatogastric nervous system of the lobster Homarus gammarus. The PS neurons are identified by the location of their somata in the inferior ventricular nerve, their axonal projections, and their effects on pyloric network activity in vitro. Discharge of a PS neuron evokes large EPSPs in the pyloric dilator (PD) neurons and a long-lasting cessation of rhythmic activity in the neurons that control movements of the pyloric filter: PD, lateral pyloric (LP), and pyloric (PY). This cessation of rhythmic activity can outlast by several 10s of seconds a brief discharge of PS lasting only a few seconds. The different neurons of the pyloric filter do not exhibit the same sensitivity to the suppressive effects of PS, with the LP neuron being the most sensitive. Tonic discharge in PS induces graded alterations in the pyloric pattern, depending on its firing frequency. At low (less than 5 Hz) discharge frequencies, PS provokes changes in phase relationships and duration of bursting in pyloric neurons. A slight increase in PS frequency suppresses the rhythmic activity of some pyloric neurons, resulting in a switch from a triphasic to a biphasic pattern. At higher (greater than 10 Hz) PS firing frequencies, rhythmic activity in all the pyloric neurons, including the pacemakers (PD, anterior burster), is abolished, except in cells (ventricular dilator, inferior cardiac) controlling the pyloric valve. We conclude that a central pattern generator is not only subject to activating modulatory control, but may also be the target of suppressive inputs that are themselves able to provoke functional reconfigurations of the network. ER -