RT Journal Article SR Electronic T1 Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 1165 OP 1175 DO 10.1523/JNEUROSCI.10-04-01165.1990 VO 10 IS 4 A1 AM Jensen A1 SY Chiu YR 1990 UL http://www.jneurosci.org/content/10/4/1165.abstract AB Population response of [Ca2+]i in cultured cortical astrocytes to excitatory amino acids was measured at room temperature using the calcium-sensitive dye fura-2. Quisqualic acid (QA), glutamate (Glu), and kainic acid (KA) caused a peak increase in [Ca2+]i in the order QA greater than Glu greater than KA. No response to N-methyl-D-aspartic acid (NMDA) was observed whether or not Mg2+ was present externally. Both QA and Glu (100 microM) frequently elicited a decaying oscillatory [Ca2+]i response during sustained agonist application; the period of oscillations initially was 23.5 sec and increased as the response was damped. Comparatively, the [Ca2+]i response to KA was nonoscillatory. Both responses to Glu and KA were reduced slightly by antagonist gamma- D-glutamylaminomethyl-sulfonic acid (1 mM), but virtually were abolished by kynurenic acid (3 mM). Replacement of external Na+ by choline had no significant effect on the Glu response. Removal of external Ca2+ reduced the peak response to QA, Glu, and KA to 40, 34, and 18%, respectively; and markedly reduced the degree of QA- and Glu- induced [Ca2+]i oscillations. Pretreatment with phorbol esters, a potent activator of protein kinase C, blocked the [Ca2+]i response to Glu but not KA. It is concluded that cortical astrocytes express Glu receptors of the non-NMDA type in culture and that receptor activation leads to Ca2+ influx and release of internal Ca2+. Mobilization of Ca2+ apparently occurs via the known Glu-mediated hydrolysis of inositol lipids, which may come under negative-feed-back control by protein kinase C activation. Oscillatory [Ca2+]i signaling offers the possibility of a dynamic population response in an electrically coupled glial network.