TY - JOUR T1 - The neurotrophic factor concept: a reexamination JF - The Journal of Neuroscience JO - J. Neurosci. SP - 2739 LP - 2748 DO - 10.1523/JNEUROSCI.13-07-02739.1993 VL - 13 IS - 7 AU - S Korsching Y1 - 1993/07/01 UR - http://www.jneurosci.org/content/13/7/2739.abstract N2 - The neurotrophic factor concept in its basic form envisages that innervated tissues produce a signal for the innervating neurons for the selective limitation of neuronal death occurring during development (Purves, 1986; Oppenheim, 1991). This concept arose several decades ago on the basis of the observation that experimental manipulation of the amount of target tissue could modulate the size of neuronal populations. By making the survival of neurons dependent on their target, nature would provide a means to match neuron and target cell populations. NGF, discovered in the 1950s, represents the first known molecular realization of the neurotrophic factor concept. NGF was found to regulate survival, neurite growth, and neurotransmitter production of a particular neuronal type, the sympathetic neurons of the PNS. NGF produced by target cells is specifically bound and internalized by sympathetic neurons, followed by retrograde axonal transport of NGF to the cell soma, where NGF exerts its effects via the cotransported receptor molecule (Levi-Montalcini, 1987; Thoenen et al., 1987). Strictly speaking, increased neurite growth and neurotransmitter production are not trophic effects; however, I will use the term “neurotrophic” in the extended meaning of enhancing neuronal differentiation as well as neuronal survival. It was expected that these results could be generalized to a model of multiple, mutually independent, retrograde trophic messengers, which are synthesized in distinct target areas and act on restricted neuronal types (Fig. 1). This assumption leads to a conceptually simple way to arrange and maintain a variety of neuronal subsystems. One might call this a modular approach to the construction of the nervous system. The hypothesis of multiple retrograde signals has gained widespread experimental support in recent years. Originally proposed for the PNS, the model could be extended to the CNS, in which target neurons synthesize trophic factors for their afferent neurons (Ernfors et al., 1990b). In addition to NGF, a family of NGF-related molecules (now commonly called neurotrophins), which are thought to exert retrograde trophic influences (DiStefano et al., 1992), has been identified. ER -