TY - JOUR T1 - Somatostatin Inhibits Excitatory Transmission at Rat Hippocampal Synapses via Presynaptic Receptors JF - The Journal of Neuroscience JO - J. Neurosci. SP - 4066 LP - 4075 DO - 10.1523/JNEUROSCI.17-11-04066.1997 VL - 17 IS - 11 AU - Stefan Boehm AU - Heinrich Betz Y1 - 1997/06/01 UR - http://www.jneurosci.org/content/17/11/4066.abstract N2 - Somatostatin is one of the major peptides in interneurons of the hippocampus. It is believed to play a role in memory formation and to reduce the susceptibility of the hippocampus to seizure-like activity. However, at the cellular level, the actions of somatostatin on hippocampal neurons are still controversial, ranging from inhibition to excitation. In the present study, we measured autaptic currents of hippocampal neurons isolated in single-neuron microcultures. Somatostatin and the analogous peptides seglitide and octreotide reduced glutamatergic, but not GABAergic, autaptic currents via pertussis toxin-sensitive G-proteins. This effect was observed whether autaptic currents were mediated by NMDA or non-NMDA glutamate receptors. Furthermore, somatostatin did not affect currents evoked by the direct application of glutamate, but reduced the frequency of spontaneously occurring excitatory autaptic currents. These results show that presynaptic somatostatin receptors of the SRIF1family inhibit glutamate release at hippocampal synapses. Somatostatin, seglitide, and octreotide also reduced the frequency of miniature excitatory postsynaptic currents in mass cultures without affecting their amplitudes. In addition, all three agonists inhibited voltage-activated Ca2+ currents at neuronal somata, but failed to alter K+ currents, effects that were also abolished by pertussis toxin. Thus, presynaptic somatostatin receptors in the hippocampus selectively inhibit excitatory transmission via G-proteins of the Gi/Go family and through at least two separate mechanisms, the modulation of Ca2+channels and an effect downstream of Ca2+ entry. This presynaptic inhibition by somatostatin may provide a basis for its reportedly anticonvulsive action. ER -