PT - JOURNAL ARTICLE AU - Milena Penkowa AU - Javier Carrasco AU - Mercedes Giralt AU - Torben Moos AU - Juan Hidalgo TI - CNS Wound Healing Is Severely Depressed in Metallothionein I- and II-Deficient Mice AID - 10.1523/JNEUROSCI.19-07-02535.1999 DP - 1999 Apr 01 TA - The Journal of Neuroscience PG - 2535--2545 VI - 19 IP - 7 4099 - http://www.jneurosci.org/content/19/7/2535.short 4100 - http://www.jneurosci.org/content/19/7/2535.full SO - J. Neurosci.1999 Apr 01; 19 AB - To characterize the physiological role of metallothioneins I and II (MT-I+II) in the brain, we have examined the chronological effects of a freeze injury to the cortex in normal and MT-I+II null mice. In normal mice, microglia/macrophage activation and astrocytosis were observed in the areas surrounding the lesion site, peaking at ∼1 and 3 d postlesion (dpl), respectively. At 20 dpl, the parenchyma had regenerated. Both brain macrophages and astrocytes surrounding the lesion increased the MT-I+II immunoreactivity, peaking at ∼3 dpl, and at 20 dpl it was similar to that of unlesioned mice. In situ hybridization analysis indicates that MT-I+II immunoreactivity reflects changes in the messenger levels. In MT-I+II null mice, microglia/macrophages infiltrated the lesion heavily, and at 20 dpl they were still present. Reactive astrocytosis was delayed and persisted at 20 dpl. In contrast to normal mice, at 20 dpl no wound healing had occurred. The rate of apoptosis, as determined by using terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick end labeling, was drastically increased in neurons of ipsilateral cortex of the MT-I+II null mice. Our results demonstrate that MT-I+II are essential for a normal wound repair in the CNS, and that their deficiency impairs neuronal survival.