TY - JOUR T1 - Enhancement of the Dense-Core Vesicle Secretory Cycle by Glucocorticoid Differentiation of PC12 Cells: Characteristics of Rapid Exocytosis and Endocytosis JF - The Journal of Neuroscience JO - J. Neurosci. SP - 2495 LP - 2503 DO - 10.1523/JNEUROSCI.20-07-02495.2000 VL - 20 IS - 7 AU - Abdeladim Elhamdani AU - Mary E. Brown AU - Cristina R. Artalejo AU - H. Clive Palfrey Y1 - 2000/04/01 UR - http://www.jneurosci.org/content/20/7/2495.abstract N2 - The secretory cycle of dense-core vesicles (DCVs) in physiologically stimulated patch-clamped PC12 cells was analyzed using both amperometry and capacitance measurements. Untreated cells had low or undetectable Ca currents and sparse secretory responses to short depolarizations. Dexamethasone (5 μm) treatment for 5–7 d tripled Ca current magnitude and dramatically increased quantal secretion in response to depolarization with action potentials. Such cells expressed L-, N-, and P-type Ca channels, and depolarization evoked rapid catecholamine secretion recorded as amperometric spikes; the average latency was ∼50 msec. These spikes were much smaller and shorter than those of primary adrenal chromaffin cells, reflecting the smaller size of DCVs in PC12 cells. Depolarizing pulse trains also elicited a rapid increase in membrane capacitance corresponding to exocytosis in differentiated but not in naı̈ve cells. On termination of stimulation, membrane capacitance declined within 20 sec to baseline indicative of rapid endocytosis (RE). RE did not take place when secretion was stimulated in the presence of Ba or Sr, indicating that RE is Ca-specific. RE was blocked when either anti-dynamin antibodies or the pleckstrin homology domain of dynamin-1 was loaded into the cell via the patch pipette. These studies indicate that neuroendocrine differentiation of PC12 cells with glucocorticoids enhances the development of the excitable membrane and increases the coupling between Ca channels and vesicle release sites, leading to rapid exocytosis and endocytosis. Slow catecholamine secretion in undifferentiated cells may be caused in part by a lack of localized secretory machinery rather than being an intrinsic property of dense-core vesicles. ER -