RT Journal Article SR Electronic T1 Intracellular Signals That Control Cell Proliferation in Mammalian Balance Epithelia: Key Roles for Phosphatidylinositol-3 Kinase, Mammalian Target of Rapamycin, and S6 Kinases in Preference to Calcium, Protein Kinase C, and Mitogen-Activated Protein Kinase JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 570 OP 580 DO 10.1523/JNEUROSCI.21-02-00570.2001 VO 21 IS 2 A1 Mireille Montcouquiol A1 Jeffrey T. Corwin YR 2001 UL http://www.jneurosci.org/content/21/2/570.abstract AB In fish, amphibians, and birds, the loss of hair cells can evoke S-phase entry in supporting cells and the production of new cells that differentiate as replacement hair cells and supporting cells. Recent investigations have shown that supporting cells from mammalian vestibular epithelia will proliferate in limited numbers after hair cells have been killed. Exogenous growth factors such as glial growth factor 2 enhance this proliferation most potently when tested on vestibular epithelia from neonates. In this study, the intracellular signaling pathways that underlie the S-phase entry were surveyed by culturing epithelia in the presence of pharmacological inhibitors and activators. The results demonstrate that phosphatidylinositol 3-kinase is a key element in the signaling cascades that lead to the proliferation of cells in mammalian balance epithelia in vitro. Protein kinase C, mammalian target of rapamycin, mitogen-activated protein kinase, and calcium were also identified as elements in the signaling pathways that trigger supporting cell proliferation.