RT Journal Article SR Electronic T1 In Vivo Disruption of Xenopus CLOCK in the Retinal Photoreceptor Cells Abolishes Circadian Melatonin Rhythmicity without Affecting Its Production Levels JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 1600 OP 1607 DO 10.1523/JNEUROSCI.22-05-01600.2002 VO 22 IS 5 A1 Naoto Hayasaka A1 Silvia I. LaRue A1 Carla B. Green YR 2002 UL http://www.jneurosci.org/content/22/5/1600.abstract AB Xenopuslaevis retinas, like retinas from all vertebrate classes, have endogenous circadian clocks that control many aspects of normal retinal physiology occurring in cells throughout all layers of the retina. The localization of the clock(s) that controls these various rhythms remains unclear. One of the best studied rhythmic events is the nocturnal release of melatonin. Photoreceptor layers can synthesize rhythmic melatonin when these cells are in isolation. However, within the intact retina, melatonin is controlled in a complex way, indicating that signals from many parts of the retina may contribute to the production of melatonin rhythmicity. To test this hypothesis, we generated transgenic tadpoles that express different levels of a dominant negative XenopusCLOCK specifically in the retinal photoreceptors. Eyes from these tadpoles continued to produce melatonin at normal levels, but with greatly disrupted rhythmicity, the severity of which correlated with the transgene expression level. These results demonstrate that although many things contribute to melatonin production in vivo, the circadian clock localized in the retinal photoreceptors is necessary for its rhythmicity. Furthermore, these data show that the control of the level of melatonin synthesis is separable from the control of its rhythmicity and may be controlled by different molecular machinery. This type of specific “molecular lesion” allows perturbation of the clock in intact tissues and is valuable for dissection of clock control of tissue-level processes in this and other complex systems.