RT Journal Article SR Electronic T1 κ Opioid Receptor Antagonism and Prodynorphin Gene Disruption Block Stress-Induced Behavioral Responses JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 5674 OP 5683 DO 10.1523/JNEUROSCI.23-13-05674.2003 VO 23 IS 13 A1 Jay P. McLaughlin A1 Monica Marton-Popovici A1 Charles Chavkin YR 2003 UL http://www.jneurosci.org/content/23/13/5674.abstract AB Previous studies have demonstrated that stress may increase prodynorphin gene expression, and κ opioid agonists suppress drug reward. Therefore, we tested the hypothesis that stress-induced release of endogenous dynorphin may mediate behavioral responses to stress and oppose the rewarding effects of cocaine. C57Bl/6 mice subjected to repeated forced swim testing (FST) using a modified Porsolt procedure at 30°C showed a characteristic stress-induced immobility response and a stress-induced analgesia observed with a tail withdrawal latency assay. Pretreatment with the κ opioid receptor antagonist nor-binaltorphimine (nor-BNI; 10 mg/kg, i.p.) blocked the stress-induced analgesia and significantly reduced the stress-induced immobility. The nor-BNI sensitivity of the behavioral responses suggests an activation of the κ opioid receptor by a stress-induced release of dynorphin peptides. Supporting this hypothesis, transgenic mice possessing a disrupted prodynorphin gene showed no increase in immobility or stress-induced analgesia after exposure to repeated FST. Because both stress and the κ opioid system can modulate the response to drugs of abuse, we tested the effects of forced swim stress on cocaine-conditioned place preference (CPP). FST-exposed mice conditioned with cocaine (15 mg/kg, s.c.) showed significant potentiation of place preference for the drug-paired chamber over the responses of unstressed mice. Surprisingly, nor-BNI pretreatment blocked stress-induced potentiation of cocaine CPP. Consistent with this result, mice lacking the prodynorphin gene did not show a stress-induced potentiation of cocaine CPP, whereas wild-type littermates did. The findings suggest that chronic swim stress may activate the κ opioid system to produce analgesia, immobility, and potentiation of the acute rewarding properties of cocaine in C57Bl/6 mice.