PT - JOURNAL ARTICLE AU - Kelly L. Jordan-Sciutto AU - Guoji Wang AU - Michael Murphey-Corb AU - Clayton A. Wiley TI - Cell Cycle Proteins Exhibit Altered Expression Patterns in Lentiviral-Associated Encephalitis AID - 10.1523/JNEUROSCI.22-06-02185.2002 DP - 2002 Mar 15 TA - The Journal of Neuroscience PG - 2185--2195 VI - 22 IP - 6 4099 - http://www.jneurosci.org/content/22/6/2185.short 4100 - http://www.jneurosci.org/content/22/6/2185.full SO - J. Neurosci.2002 Mar 15; 22 AB - Cell cycle proteins regulate processes as diverse as cell division and cell death. Recently their role in neuronal death has been reported in several models of neurodegeneration. We have reported previously that two key regulators of the cell cycle, the retinoblastoma susceptibility gene product (pRb) and transcription factor E2F1, exhibit altered immunostaining patterns in simian immunodeficiency virus encephalitis (SIVE). Here we show that E2F1 and the inactivated, hyperphosphorylated form of pRb (ppRb) also exhibit altered immunostaining patterns in human immunodeficiency virus encephalitis (HIVE). Quantification of E2F1 and ppRb staining by immunofluorescent confocal microscopy confirms a significant increase in E2F1 and ppRb in both HIVE and the simian model. This increase in E2F1 and ppRb staining correlates with an increase in the presence of activated macrophages, suggesting a link between changes in cell cycle proteins and the presence of activated macrophages. Changes in ppRb and E2F1 staining in SIVE also correlate with alterations in E2F/DNA binding complexes present in the nuclear and cytoplasmic fractions from both midfrontal cortex and basal ganglia. These findings suggest that changes in cell cycle proteins occur in both HIVE and the simian model and that these changes have functional implications for gene expression in neural cells under encephalitic conditions mediated by macrophage activation or infiltration.