RT Journal Article SR Electronic T1 Ethanol-Modulated Camouflage Response Screen in Zebrafish Uncovers a Novel Role for cAMP and Extracellular Signal-Regulated Kinase Signaling in Behavioral Sensitivity to Ethanol JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 8408 OP 8418 DO 10.1523/JNEUROSCI.0714-09.2009 VO 29 IS 26 A1 Jisong Peng A1 Mahendra Wagle A1 Thomas Mueller A1 Priya Mathur A1 Brent L. Lockwood A1 Sandrine Bretaud A1 Su Guo YR 2009 UL http://www.jneurosci.org/content/29/26/8408.abstract AB Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates. Here we report a novel and tractable ethanol response in zebrafish. Using this ethanol-modulated camouflage response as a screening assay, we have identified a zebrafish mutant named fantasma (fan), which displays reduced behavioral sensitivity to ethanol. Positional cloning reveals that fan encodes type 5 adenylyl cyclase (AC5). fan/ac5 is required to maintain the phosphorylation of extracellular signal-regulated kinase (ERK) in the forebrain structures, including the telencephalon and hypothalamus. Partial inhibition of phosphorylation of ERK in wild-type zebrafish mimics the reduction in sensitivity to stimulatory effects of ethanol observed in the fan mutant, whereas, strikingly, strong inhibition of phosphorylation of ERK renders a stimulatory dose of ethanol sedating. Since previous studies in Drosophila and mice show a role of cAMP signaling in suppressing behavioral sensitivity to ethanol, our findings reveal a novel, isoform-specific role of AC signaling in promoting ethanol sensitivity, and suggest that the phosphorylation level of the downstream effector ERK is a critical “gatekeeper” of behavioral sensitivity to ethanol.