PT - JOURNAL ARTICLE AU - Wei Zhang AU - David J. Linden TI - Neuromodulation at Single Presynaptic Boutons of Cerebellar Parallel Fibers Is Determined by Bouton Size and Basal Action Potential-Evoked Ca Transient Amplitude AID - 10.1523/JNEUROSCI.3793-09.2009 DP - 2009 Dec 09 TA - The Journal of Neuroscience PG - 15586--15594 VI - 29 IP - 49 4099 - http://www.jneurosci.org/content/29/49/15586.short 4100 - http://www.jneurosci.org/content/29/49/15586.full SO - J. Neurosci.2009 Dec 09; 29 AB - Most presynaptic terminals in the brain contain G-protein-coupled receptors that function to reduce action potential-evoked neurotransmitter release. These neuromodulatory receptors, including those for glutamate, GABA, endocannabinoids, and adenosine, exert a substantial portion of their effect by reducing evoked presynaptic Ca2+ transients. Many axons form synapses with multiple postsynaptic neurons, but it is unclear whether presynaptic attenuation in these synapses is homogeneous, as suggested by population-level Ca2+ imaging. We loaded Ca2+-sensitive dyes into cerebellar parallel fiber axons and imaged action potential-evoked Ca2+ transients in individual presynaptic boutons with application of three different neuromodulators and found that adjacent boutons on the same axon showed striking heterogeneity in their strength of attenuation. Moreover, attenuation was predicted by bouton size or basal Ca2+ response: smaller boutons were more sensitive to adenosine A1 agonist but less sensitive to CB1 agonist, while boutons with high basal action potential-evoked Ca2+ transient amplitude were more sensitive to mGluR4 agonist. These results suggest that boutons within brief segment of a single parallel fiber axon can have different sensitivities toward neuromodulators and may have different capacities for both short-term and long-term plasticities.