RT Journal Article SR Electronic T1 Synaptic Scaling and the Development of a Motor Network JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 8871 OP 8881 DO 10.1523/JNEUROSCI.0880-10.2010 VO 30 IS 26 A1 Laura D. Knogler A1 Meijiang Liao A1 Pierre Drapeau YR 2010 UL http://www.jneurosci.org/content/30/26/8871.abstract AB Neurons respond homeostatically to chronic changes in network activity with compensatory changes such as a uniform alteration in the size of miniature postsynaptic current (mPSC) amplitudes termed synaptic scaling. However, little is known about the impact of synaptic scaling on the function of neural networks in vivo. We used the embryonic zebrafish to address the effect of synaptic scaling on the neural network underlying locomotion. Activity was decreased during development by TTX injection to block action potentials or CNQX injection to block glutamatergic transmission. Alternatively TNFα was chronically applied. Recordings from spinal neurons showed that glutamatergic mPSCs scaled up ∼25% after activity reduction and fortuitously scaled down ∼20% after TNFα treatment, and were unchanged following blockade of neuromuscular activity alone with α-bungarotoxin. Regardless of the direction of scaling, immediately following reversal of treatment no chronic effect was distinguishable in motoneuron activity patterns or in swimming behavior. We also acutely induced a similar increase of glutamatergic mPSC amplitudes using cyclothiazide to reduce AMPA receptor desensitization or decrease of glutamatergic mPSC amplitudes using a low concentration of CNQX to partially block AMPA receptors. Though the strength of the motor output was altered, neither chronic nor acute treatments disrupted the patterning of synaptic activity or swimming. Our results show, for the first time, that scaling of glutamatergic synapses can be induced in vivo in the zebrafish and that synaptic patterning is less plastic than synaptic strength during development.