%0 Journal Article %A Kara G. Pratt %A Ping Zhu %A Hirofumi Watari %A David G. Cook %A Jane M. Sullivan %T A Novel Role for γ-Secretase: Selective Regulation of Spontaneous Neurotransmitter Release from Hippocampal Neurons %D 2011 %R 10.1523/JNEUROSCI.4625-10.2011 %J The Journal of Neuroscience %P 899-906 %V 31 %N 3 %X With a multitude of substrates, γ-secretase is poised to control neuronal function through a variety of signaling pathways. Presenilin 1 (PS1) is an integral component of γ-secretase and is also a protein closely linked to the etiology of Alzheimer's disease (AD). To better understand the roles of γ-secretase and PS1 in normal and pathological synaptic transmission, we examined evoked and spontaneous neurotransmitter release in cultured hippocampal neurons derived from PS1 knock-out (KO) mice. We found no changes in the size of evoked synaptic currents, short-term plasticity, or apparent calcium dependence of evoked release. The rate of spontaneous release from PS1 KO neurons was, however, approximately double that observed in wild-type (WT) neurons. This increase in spontaneous neurotransmission depended on calcium influx but did not require activation of voltage-gated calcium channels or presynaptic NMDA receptors or release of calcium from internal stores. The rate of spontaneous release from PS1 KO neurons was significantly reduced by lentivirus-mediated expression of WT PS1 or familial AD-linked M146V PS1, but not the D257A PS1 mutant that does not support γ-secretase activity. Treatment of WT neuronal cultures with γ-secretase inhibitor mimicked the loss of PS1, leading to a selective increase in spontaneous release without any change in the size of evoked synaptic currents. Together, these results identify a novel role for γ-secretase in the control of spontaneous neurotransmission through modulation of low-level tonic calcium influx into presynaptic axon terminals. %U https://www.jneurosci.org/content/jneuro/31/3/899.full.pdf