%0 Journal Article %A PG Funch %A MR Wood %A DS Faber %T Localization of active sites along the myelinated goldfish Mauthner axon: morphological and pharmacological evidence for saltatory conduction %D 1984 %R 10.1523/JNEUROSCI.04-09-02397.1984 %J The Journal of Neuroscience %P 2397-2409 %V 4 %N 9 %X njections of Lucifer Yellow (LY) and horseradish peroxidase (HRP) were made within the myelin sheath of the goldfish Mauthner axon to determine the domains of individual oligodendrocytes. Long segments of the myelin sheath were stained with both markers. The lengths and locations of these sheath segments were analyzed in whole mount preparations (LY) or in reconstructions of serial vibratome sections (HRP). The termination sites of individual myelin sheaths, relative to gross anatomical landmarks of the brain, were consistent within and between all fish studied. In particular, the average locations of the termination sites were separated by 2.2 to 2.6 mm and corresponded to the brain regions where active site foci have been previously localized electrophysiologically. Individual sheath segments generally spanned the entire distance between adjacent active sites. The node-internode- node structure of the Mauthner axon that is suggested by these findings was further tested by ejecting tetrodotoxin (TTX) at various discrete rostral-caudal locations just outside the fiber. Large all-or-nothing components of the antidromic action potential were rapidly blocked (within seconds) only when the TTX ejections were made within a few hundred micrometers of the active site foci. The amplitudes of these blocked components are also consistent with predictions based upon previous electrophysiological analyses which demonstrated an active site spacing of 2.2 to 2.6 mm, a space constant of 5.0 mm, and a safety factor of 6 for impulse propagation. It is concluded from these morphological, pharmacological, and electrophysiological observations that the Mauthner axon possesses nodes separated by 2.2 to 2.6 mm and that a single oligodendrocyte spans an internodal region. Although nodal ultrastructure remains to be described, these results rule out the possibility that each of the short (approximately 50 micron), closely spaced (average separation = 155 micron) axon collaterals is a site of action current production. %U https://www.jneurosci.org/content/jneuro/4/9/2397.full.pdf