RT Journal Article SR Electronic T1 Forskolin's effect on transient K current in nudibranch neurons is not reproduced by cAMP JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 443 OP 452 DO 10.1523/JNEUROSCI.07-02-00443.1987 VO 7 IS 2 A1 J Coombs A1 S Thompson YR 1987 UL http://www.jneurosci.org/content/7/2/443.abstract AB Forskolin, a diterpene extracted from Coleus forskolii, stimulates the production of cAMP in a variety of cells and is potentially an important tool for studying the role of cAMP in the modulation of neuronal excitability. We studied the effects of forskolin on neurons of nudibranch molluscs and found that it caused characteristic, reversible changes in the amplitude and waveform of the transient K current, IA, and also activated an inward current similar to the cAMP- dependent inward current previously described in molluscan neurons. Forskolin altered the time course of IA activation and inactivation but did not affect the voltage dependence or the reversal potential of the current. IA normally inactivates exponentially, but in forskolin the time course of inactivation can be fit by the sum of 2 exponentials with an initial rate that is faster than the control and a final rate that is much slower. On depolarization in forskolin, IA begins to activate at the normal rate, but a slower component of activation is also seen. The changes in IA in the nudibranch cells were qualitatively different than the changes caused by forskolin in Aplysia bag cell neurons (Strong, 1984). Experiments were performed to determine whether these effects of forskolin require cAMP. Intracellular injection of cAMP, application of membrane-permeable analogs of cAMP, application of phosphodiesterase inhibitors, and intracellular injection of the active catalytic subunit of cAMP-dependent protein kinase did not affect the amplitude or waveform of IA. Also, the changes in IA that are caused by forskolin were not prevented or reversed by intracellular injection of an inhibitor of cAMP-dependent protein kinase. Cyclic AMP did, however, activate inward current at voltages near the resting potential. We conclude that the changes in IA and the activation of inward current represent separate affects of forskolin. The inward current appears to depend on an increase in intracellular cAMP, while the changes in IA do not. These experiments show that, in addition to activating adenylate cyclase, forskolin may have a separate direct affect on the transient K current.