PT - JOURNAL ARTICLE AU - Alex Roxin AU - Nicolas Brunel AU - David Hansel AU - Gianluigi Mongillo AU - Carl van Vreeswijk TI - On the Distribution of Firing Rates in Networks of Cortical Neurons AID - 10.1523/JNEUROSCI.1677-11.2011 DP - 2011 Nov 09 TA - The Journal of Neuroscience PG - 16217--16226 VI - 31 IP - 45 4099 - http://www.jneurosci.org/content/31/45/16217.short 4100 - http://www.jneurosci.org/content/31/45/16217.full SO - J. Neurosci.2011 Nov 09; 31 AB - The distribution of in vivo average firing rates within local cortical networks has been reported to be highly skewed and long tailed. The distribution of average single-cell inputs, conversely, is expected to be Gaussian by the central limit theorem. This raises the issue of how a skewed distribution of firing rates might result from a symmetric distribution of inputs. We argue that skewed rate distributions are a signature of the nonlinearity of the in vivo f–I curve. During in vivo conditions, ongoing synaptic activity produces significant fluctuations in the membrane potential of neurons, resulting in an expansive nonlinearity of the f–I curve for low and moderate inputs. Here, we investigate the effects of single-cell and network parameters on the shape of the f–I curve and, by extension, on the distribution of firing rates in randomly connected networks.