RT Journal Article SR Electronic T1 Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 9194 OP 9204 DO 10.1523/JNEUROSCI.0919-15.2015 VO 35 IS 24 A1 Krista M. Rodgers A1 F. Edward Dudek A1 Daniel S. Barth YR 2015 UL http://www.jneurosci.org/content/35/24/9194.abstract AB Variable-duration oscillations and repetitive, high-voltage spikes have been recorded in the electrocorticogram (ECoG) of rats weeks and months after fluid percussion injury (FPI), a model of traumatic brain injury. These ECoG events, which have many similarities to spike-wave-discharges (SWDs) and absence seizures, have been proposed to represent nonconvulsive seizures characteristic of post-traumatic epilepsy (PTE). The present study quantified features of SWD episodes in rats at different time points after moderate to severe FPI, and compared them with age-matched control rats. Control and FPI-injured rats at 1 year of age displayed large-amplitude and frequent SWD events at frontal and parietal recording sites. At 3–6 months, SWDs were shorter in duration and less frequent; extremely brief SWDs (i.e., “larval”) were detected as early as 1 month. The onset of the SWDs was nearly always synchronous across electrodes and of larger amplitude in frontal regions. A sensory stimulus, such as a click, immediately and consistently stopped the occurrence of the SWDs. SWDs were consistently accompanied by behavioral arrest. All features of SWDs in control and experimental (FPI) rats were indistinguishable. None of the FPI-treated rats developed nonconvulsive or convulsive seizures that could be distinguished electrographically or behaviorally from SWDs. Because SWDs have features similar to genetic absence seizures, these results challenge the hypothesis that SWDs after FPI reflect PTE.